
applied
sciences

Article

Event-Driven Dashboarding and Feedback for Improved Event
Detection in Predictive Maintenance Applications

Pieter Moens 1,* , Sander Vanden Hautte 1 , Dieter De Paepe 1 , Bram Steenwinckel 1 , Stijn Verstichel 1 ,
Steven Vandekerckhove 2, Femke Ongenae 1 and Sofie Van Hoecke 1

����������
�������

Citation: Moens, P.; Vanden Hautte,

S.; De Paepe, D.; Steenwinckel, B.;

Verstichel, S.; Vandekerckhove, S.;

Ongenae, F.; Van Hoecke, S.

Event-Driven Dashboarding and

Feedback for Improved Event

Detection in Predictive Maintenance

Applications. Appl. Sci. 2021, 11,

10371. https://doi.org/10.3390/

app112110371

Academic Editor: Benoit Iung

Received: 23 August 2021

Accepted: 27 October 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IDLab, Ghent University—imec, 9052 Ghent, Belgium; Sander.VandenHautte@UGent.be (S.V.H.);
Dieter.DePaepe@UGent.be (D.D.P.); Bram.Steenwinckel@UGent.be (B.S.); Stijn.Verstichel@UGent.be (S.V.);
Femke.Ongenae@UGent.be (F.O.); Sofie.VanHoecke@UGent.be (S.V.H.)

2 Renson Ventilation, 8790 Waregem, Belgium; Steven.Vandekerckhove@Renson.be
* Correspondence: Pieter.Moens@UGent.be

Abstract: Manufacturers can plan predictive maintenance by remotely monitoring their assets. How-
ever, to extract the necessary insights from monitoring data, they often lack sufficiently large datasets
that are labeled by human experts. We suggest combining knowledge-driven and unsupervised
data-driven approaches to tackle this issue. Additionally, we present a dynamic dashboard that
automatically visualizes detected events using semantic reasoning, assisting experts in the revision
and correction of event labels. Captured label corrections are immediately fed back to the adap-
tive event detectors, improving their performance. To the best of our knowledge, we are the first
to demonstrate the synergy of knowledge-driven detectors, data-driven detectors and automatic
dashboards capturing feedback. This synergy allows a transition from detecting only unlabeled
events, such as anomalies, at the start to detecting labeled events, such as faults, with meaningful
descriptions. We demonstrate all work using a ventilation unit monitoring use case. This approach
enables manufacturers to collect labeled data for refining event classification techniques with reduced
human labeling effort.

Keywords: anomaly detection; fault detection; dynamic dashboards; semantic reasoning; user feedback

1. Introduction

In industry, remote monitoring of assets allows companies to optimally plan main-
tenance, improve the design of products, or provide extra services to the customer. For
example, a business selling ventilation units for residential buildings may provide cus-
tomers (the people who bought the product and monitor the ventilation unit to verify the
correct functioning of the product) with insights about their indoor air quality while at the
same time allowing the company (or more precisely, the operators) to offer maintenance
when required [1]. Both operators and customers can use the same monitoring tools,
defined by different user profiles.

To provide interesting insights about monitored assets, three research domains are
useful: (D1) anomaly detection [2], which attempts to find abnormal patterns (or outliers)
in the data, (D2) fault detection, which attempts to find patterns that are abnormal with
respect to the knowledge of experts about expected system behavior, and (D3) event
detection, which attempts to find a broader range of defined patterns.

To provide such insights, three challenges arise: (C1) Remote assets need to be moni-
tored and sensor data need to be centrally collected. (C2) Algorithms need to be designed
that can mine the enormous amount of sensor data, to derive insights within a reasonable
time. Furthermore, finally, (C3) sensor data and generated insights need to be visualized to
stakeholders in a meaningful and low-effort way.

Many state-of-the-art services exist to tackle the first challenge of centralizing sensor
data in a (private or public) cloud, ranging from commercial solutions (Microsoft Azure,

Appl. Sci. 2021, 11, 10371. https://doi.org/10.3390/app112110371 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2035-8766
https://orcid.org/0000-0002-5035-4419
https://orcid.org/0000-0002-6661-8474
https://orcid.org/0000-0002-3488-2334
https://orcid.org/0000-0001-8007-2984
https://orcid.org/0000-0003-2529-5477
https://orcid.org/0000-0002-7865-6793
https://doi.org/10.3390/app112110371
https://doi.org/10.3390/app112110371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110371
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110371?type=check_update&version=2

Appl. Sci. 2021, 11, 10371 2 of 24

Amazon Web Services, Google Cloud Platform, etc.) to more research-based solutions such
as Obelisk [3]. The focus of this paper is on the latter two challenges, i.e., analyzing sensor
data for decision support and visualization.

1.1. Solving Challenge 2 (C2): Analysis of Sensor Data

Two types of data analysis are generally recognized: knowledge-driven and data-
driven analysis. Knowledge-driven approaches provide analytics by applying human-
implemented logic rules on available data. These approaches are based on evidence,
guidelines, as well as expert and domain knowledge. Their biggest benefit is that the
resulting models are white-box, providing all the needed insights into a decision sup-
port system. However, knowledge-driven approaches require intensive, and therefore
costly, intervention of experts to construct and maintain them. Moreover, often system
experts cannot express all system behavior with logic rules, this limits knowledge-driven
techniques in their capabilities to detect unknown events or anomalies, since these can
only detect what is modelled. On the other hand, the data-driven approach is based on
machine learning techniques, which learn patterns directly from the data. The benefit of
these techniques is that they require minimal expert intervention, are very efficient, and
adaptable to new situations. However, training these models requires a large amount of
data that is representative for all operating conditions to avoid data bias. Moreover, these
models are often black-box models, making results difficult to interpret.

In the context of anomaly detection, knowledge-driven techniques are better at de-
tecting known faults by checking system behavior against the available expert knowledge.
However, they cannot detect system failures that experts are not yet aware of, i.e., unknown
faults or anomalies [4]. On the contrary, data-driven approaches can detect anomalies that
experts have not yet described, but they lack specificity when they cannot be trained on
large, labeled datasets. Unfortunately, the unavailability of labeled datasets is a problem in
many industry domains.

When companies have both sufficiently large (unlabeled) datasets and expert knowl-
edge at their disposal, or are prepared to collect them, knowledge- and data-driven tech-
niques can be combined, overcoming the disadvantages of both techniques. When datasets
are unlabeled and too large in size to have experts label them, data-driven methods can be
used to detect candidate events. It then suffices to have experts validate these candidate
events, rather than have them explicitly label all data, saving a lot of effort. In this way,
the expert knowledge is also incorporated into the decision making process. As user feed-
back becomes more detailed, adaptive detection algorithms become more accurate and/or
will be able to find new types of events. This process can be facilitated by combining
visualization and feedback mechanisms, as discussed next.

1.2. Solving Challenge 3 (C3): Meaningful and Low-Effort Visualization

The other challenge deals with presenting stakeholders with a tool that visualizes
sensor data and collected insights. Often, a wide range of stakeholders are interested in such
a visualization tool. One challenge here is that the best visualization can vary depending
on the type of data to be visualized and the background, or role, of the stakeholder. This
requires dashboarding software to be dynamic.

A vast amount of such software tools exist on the business intelligence (BI) mar-
ket, such as Qlik Sense (https://www.qlik.com/us/products/qlik-sense, accessed on 26
October 2021), Microsoft Power BI (https://powerbi.microsoft.com, accessed on 26 Octo-
ber 2021), Tableau (https://www.tableau.com, accessed on 26 October 2021) and Sisense
(https://sisense.com, accessed on 26 October 2021). Traditional dashboarding platforms
require that their users handcraft visualization widgets one by one using a wizard, in which
one or more data source(s) and a visualization must be selected and configured. Many
dashboarding tools provide a plethora of visualization types to select from, which can lead
to choice overload for the user and/or inappropriate visualizations for the data type as a
result of lack of expert knowledge about the data they want to visualize. A dashboarding

https://www.qlik.com/us/products/qlik-sense
https://powerbi.microsoft.com
https://www.tableau.com
https://sisense.com

Appl. Sci. 2021, 11, 10371 3 of 24

platform that enables a wide range of stakeholders to visualize the data according to their
interests should not require stakeholders to intensively study the available data, data
types, or visualization options. The user-driven dynamic dashboarding software presented
in [5] reduces visualization choice overload by suggesting visualizations that match with
chosen data sources, using semantic reasoning on the available metadata. This metadata
includes information about which types of data sensors provide and what the abilities of
visualizations are.

Ideally, dashboards actively help to investigate problems when they occur. When
an expert wants to investigate an event, the dashboarding software could automatically
render an entire set of visualizations by matching the known abilities of visualizations with
the information gathered about the observation(s) that constitute the event, the sensors
that measured it and the detection techniques involved. This allows experts to focus on
monitoring industrial assets only, rather than repeatedly spending time on constructing
visualizations manually. Essentially, this presents the opportunity to move from user-driven
dashboarding to automated, event-driven dashboarding. To the best of our knowledge, no
tools currently generate dashboards for detected events.

1.3. Our Research

In this work, we present two innovations: the fusion of knowledge- and data-driven
learning, as well as event-driven dashboards. We validate the research on a remote ventila-
tion unit monitoring use case. The following goals were set for this research:

• build an event detection system for real-world, streaming ventilation monitoring data,
fusing knowledge- and data-driven approaches;

• automatically and rapidly construct dashboards for detected events;
• capture user feedback in the dashboard that enables increased detector performance

and automated event labeling; and
• the presented solution should be dynamic and adaptive end-to-end, such that it can

be applied to other use cases.

Software components were created for each of the above goals and integrated into
a full architecture, and were validated on the streaming data of a real ventilation unit
monitoring use case. We show that our symbiosis of data-driven and knowledge-driven
techniques, combined with our dynamic dashboards for anomaly investigation and feed-
back capturing makes anomaly detection more accurate and results in meaningful labels,
partly automatically assigned, therefore reducing human labeling effort.

The remainder of this paper is structured as follows. Section 3 will present the indoor
ventilation monitoring use case. Next, Section 4 provides a general summary of how
knowledge-driven, data-driven and a feedback system can be combined. Two data-driven
anomaly detectors and one knowledge-driven fault detector will be introduced in Section 5.
Section 6 details how we semantically describe anomalies and faults. Then, we explain
our approach to automated, anomaly driven dashboarding in Section 7 and user feedback
capturing in Section 8. Section 9 explains how three additional detectors, again combining
both data-driven and knowledge-driven techniques, are able to incorporate user feedback.
In Section 10, we present an overview of the implemented, overarching architecture that
integrates all detectors and the dynamic dashboard and evaluate the results obtained on real,
streaming data of a ventilation unit monitoring use case. Section 11 concludes this research
and presents future work.

2. Related Work

Dashboard applications, providing the output of a machine learning detector in a
predictive maintenance setting are still in its initial stage. Tran et al. describes such an
application to show and derive faults within an IoT use case [6]. While their focus is
mainly on the detection of possible cyber attacks on the IoT system, the underlying system
only evaluates the detection rate of the deployed machine learning model. No continuous
interaction between the provided dashboard and the used detector is provided in this

Appl. Sci. 2021, 11, 10371 4 of 24

research work. The provided training dataset for the detector algorithm was also labelled
upfront. Such a labelled dataset is rather scarce in a predictive maintenance context.

In addition, multiple platforms exist to monitor, steer and adapt machine learning
models designed for such predictive maintenance cases [7–9]. The incorporation of expert
knowledge within these platforms is, however, limited to the data ingestion layer. The goal
of these platforms is to help the data scientist to deliver useful insights. These platforms
themselves are not created to adapt based on these generated insights automatically.

The more general human-in-the-loop concepts are also applied within a predictive
maintenance setting [10,11]. Here, the human from this perspective also provides data in
the form of maintenance documents which are (semantically) annotated for further usage.
By incorporating the human within the decision making flow, more reliable information
about the occurring incident or the performed maintenance operations can be captured.

While all fields contribute to the ultimate goal of providing useful information for
automated predictive maintenance, a system which combines all these concepts and also
relies on the decisions of a real human is, to our knowledge, still underexplored.

3. Use Case: Indoor Ventilation Monitoring

In this work, we demonstrate our approach on an indoor ventilation dataset provided
by Renson. Renson is a Belgian company that produces ventilation and shading products,
including the Healthbox 3.0 ventilation unit (https://www.renson.eu/gd-gb/producten-
zoeken/ventilatie/mechanische-ventilatie/units/healthbox-3-0, accessed on 13 August
2021). When installed in a domestic environment, ventilation shafts connect the unit to
nearby rooms. The shaft connector contains a valve to regulate airflow and is equipped
with sensors that measure various air quality metrics such as humidity, CO2 or VOC
(volatile organic compounds, i.e., odours). Using these sensors, the unit estimates the air
quality and regulates the airflow by positioning the valves. The air quality and operating
metrics of the healthbox are also sent to cloud infrastructure, provided customers agreed
to this. This allows Renson to remotely monitor the performance of the Healthboxes, so
they can predict when maintenance will be required. Additionally, this allows customers
to monitor and control their indoor air quality through a smartphone app.

The Renson dataset used in this work was captured from a Healthbox 3.0 installed in
a real house with two ventilated rooms: a bathroom and bedroom. The data contains time
series for the following sensor metrics: temperature, CO2, absolute and relative humidity
and VOC (bathroom only). The data were sampled at 30 s intervals and was collected for
94 days. During the first 3 days, the house was not yet in use; during the next 14 days, the
house was used normally; and during the remaining 77 days, the bathroom door was kept
open so temperature/humidity/VOC was easily transferred between both rooms. Figure 1
displays the absolute humidity signals present in the dataset. Large spikes in the humidity
signal of the bathroom (top of the figure) are attributed to showers. Smaller increases in
the humidity signal of the bedroom (bottom of the figure) often occur after a shower and
capture the spreading of humidity in the bedroom when the bathroom door is opened,
a so-called shower echo effect. Humidity spikes do not occur at the start of the dataset,
since the house was not in use during the first three days. Please note that variance in the
indoor humidity signals is also influenced by outside weather conditions. Zero values in
the signals indicate missing values due to data transmission failures.

Renson’s smartphone app for customers overlays air quality time series data with
event markers to provide insights about changes in air quality and to explain ventilation
boosts taken by the Healthbox. Renson is continuously expanding the set of detectors to
display more useful event markers, however, in this paper, we focus on the interplay of
different detectors rather than detecting as many events as possible. Therefore, in this paper,
the detected events are limited to the following humidity related events: showers (large
humidity spikes occurring in the bathroom), echo effects of showers (smaller humidity
increases in rooms near the bathroom after a shower) and humid weather (high humidity
caused by the outside weather when doors or windows are left open).

https://www.renson.eu/gd-gb/producten-zoeken/ventilatie/mechanische-ventilatie/units/healthbox-3-0
https://www.renson.eu/gd-gb/producten-zoeken/ventilatie/mechanische-ventilatie/units/healthbox-3-0

Appl. Sci. 2021, 11, 10371 5 of 24

Figure 1. Absolute humidity in the evaluation dataset, shown for the bathroom (top) and bedroom (bottom).

While relevant events have a limited occurrence frequency, the sheer volume of the
data does make manual labeling a challenging job. Data-driven methods can be used
to bootstrap the labeling process by isolating candidate relevant events. However, not
all candidate events found in this manner will be correct. Luckily, asking for customer
feedback at this point is straightforward, by presenting the suggested events. Customers
may notice mislabeled candidate events, incorrect candidate events or even events that
were not suggested. This way, customer feedback can be used to improve the quality of the
detected events. Of course, the goal should be to present the customer with correct labels
as much and as fast as possible, using feedback from only a limited amount of customers
or experts.

4. Combining Knowledge- and Data-Driven Techniques

The general overview of how knowledge- and data-driven techniques can be com-
bined is provided in Figure 2 and is a schematic representation from the work described
in previous research [4]. The events originating from the data stream are being delivered
to both the knowledge-driven fault detection component and the data-driven anomaly
detection component. Based thus on either predefined rules (in the knowledge-driven
component) or a machine learning technique (in the data-driven component), faults and/or
anomalies are, respectively, visualized in a dashboard application to the operator. This
operator is able to tune the rules within the fault detector manually. However, by provid-
ing feedback through the dashboard application, both the knowledge- and data-driven
detection models can be updated automatically. In the knowledge-driven model, new rules
are automatically derived from confirmed anomalies by analyzing the correlation between
such occurring events. In the data-driven model, additional labelled feedback is used to
detect similar future unseen events, evaluating to a more general supervised detection
approach. In this case, the labelled feedback instantiates a supervised machine learning
fault detector.

The feedback mechanism is standardized for both the data-driven as well as the
knowledge-driven detection techniques to prevent the operator from needing to know
which detection model provided the information. The next sections will focus individually
on each of these more general concepts in more detail, and also provide the technology

Appl. Sci. 2021, 11, 10371 6 of 24

which was being used to derive the anomalies and faults for our use case described in
Section 3.

Dashboard

Knowledge–driven
Fault Detection

Data–driven
Anomaly Detection

Rules

Detector
Operator

Data Stream

Feedback

Figure 2. Overview representing how data- and knowledge-driven techniques can be combined in
an anomaly and/or fault detection system.

5. Event Detection

As discussed in Section 1, detection of events can be done using a combination of
data-driven and knowledge-driven techniques, allowing us to both exploit available expert
knowledge and learn yet unknown system behavior from the data. In this section, we
briefly motivate, with regard to related work, the choice for two unsupervised event
detection techniques, one data-driven and one knowledge-driven, to be applied on the
ventilation monitoring use case. Later, in Section 9, three additional supervised detectors
will be introduced, which are able to use available user feedback. Please note that as this
work focuses on the functionality of the dynamic dashboard, the feedback mechanisms
and the integration of the system as a whole, we keep the description of the detection
techniques brief and refer to other works for more in-depth discussion.

5.1. Data-Driven Event Detection

Events related to air quality typically occur over a period of time, examples include
showers (short humidity peak), social events (increased humidity and CO2) or windows
left open (ventilation has lower effect). As such, time series event mining techniques are
particularly interesting, which evaluate time series subsequences rather than individual
data points. One domain-agnostic state-of-the-art technique is the Matrix Profile (MP) [12],
which can be used to look for time series discords and motifs. Discords are sequences that
are unique in a time series, i.e., behavior that is novel or anomalous. Motifs are sequences
that are well preserved (repeated) in time series, i.e., behavior that is repeated throughout a
series. Various extensions have been suggested for the MP, including variants for streaming
data [13], multi-dimensional data [14], missing data [15] and noisy data [16], making it a
well suited technique to monitor real-world data. Our first data detector uses the MP to
find discords in incoming data, since discords consist of previously unseen patterns, we
name this detector the unknown pattern detector.

Per Healthbox, we assigned one unknown pattern detector. This instance ingested
the CO2 and relative humidity signals for all rooms. For each of these signals, a streaming
MP instance compared the incoming signal against the most recent available year of data.
For performance reasons, the incoming signals were subsampled to 1 sample per minute
and blocks of missing values were replaced by a single marker value. The subsequence
lengths were chosen in function of the events we wanted to detect: 1 h (60 samples) for
the relative humidity metric and 8 h for CO2. Additionally, we applied a correction for the
noise present in the data and added a restraint that ensured peaks would only be matched
with other peaks, more details can be found in the work by De Paepe et al. [17].

Appl. Sci. 2021, 11, 10371 7 of 24

5.2. Knowledge-Driven Event Detection

A second detector uses a knowledge-driven approach that employs expert knowledge
and therefore detects events for which descriptions are available. Techniques for collecting
expert knowledge have been mostly applied for describing risks and failures, e.g., Fault
Tree Analysis (FTA) [18] or Failure Mode and Effects Analysis (FMEA) [19], but a similar
methodology can be followed for non-fault based events. Once collected, expert knowledge
can then be expressed semantically, in the form of ontologies and rules [20,21] such as the
FOLIO ontology [4], whose purpose is to describe anomalies and root causes thereof. This
acquired expert knowledge can be combined together with semantic expressions of the
sensor observations and system context into a Knowledge Graph (KG). When the sensor
observations and context in this KG trigger a rule created by a domain expert, an event
is detected.

The second detector on the ventilation unit monitoring use case applies this knowledge-
driven approach. It maintains, for every sensor and observed property, a window of the ten
last semantic observations (5 min of data) and enriches them with semantic descriptions
of the operating context (observed property, sensor and the type of the monitored room).
For example, one expert rule states that a large enough increase over time of the humidity
in a bathroom is indicative of a shower. If instead the humidity increase takes place in a
bedroom, the detector will consider the pattern as a humid weather event. Two dedicated
works further detail the expert knowledge collection [21] and the semantic event detector
(applied on a train bogie monitoring use case) [4].

6. Semantic Event Description

As our system consists of many components dealing with events, communication
between these components needs to be considered. We created a common message format
to describe events that could be used for bidirectional exchange of information between
event detectors and dashboards, containing the details needed for event visualization and
feedback capturing. This way, components only need to understand a single message
format, instead of one per communication path.

Since our system contains both semantic and non-semantic components, we opted
for a semantic format. Semantic descriptions use the Resource Description Framework
(RDF) [22], a standard data exchange format representing data as a set of facts (also called
triples), expressed as subject-predicate-object relationships such as “Event 1 was detected
by detector X”. The resources used as subject, predicate or object are represented by an
IRI (Internationalized Resource Identifier), facilitating the uniqueness and unambiguity of
identifiers. Most often, IRIs are constructed using URLs (Uniform Resource Locators), i.e.,
addresses of resources on the Internet. In addition to resources, triple objects may be literals,
i.e., data-typed values such as a date or a number. A set of triples is called a (knowledge)
graph. Reuse of resources from other graphs is highly encouraged. Vocabularies or ontolo-
gies are graphs that bundle reusable resources and relationships and additional information
such as restrictions and logic rules. Because of these mechanisms, using the RDF standard
as a common event message format allows detectors and dashboards to unambiguously
refer to specific events, detectors, sensors, sensor observations, etc. Moreover, the addition
of identified resource relations, restrictions and logic rules enable machine-understandable
semantics: consumers of event information messages can interpret the meaning of the
described resources. This enables semantic reasoning about the event information, which
is the basis of the knowledge-driven event detectors and automated event dashboarding
presented in this paper.

An example event description can be found in Listing 1. Please note that we use the
Notation3 (N3) [23] to serialize the RDF. N3 is one of the standard serialization formats of
RDF and provides good human-readability and low verbosity.

Appl. Sci. 2021, 11, 10371 8 of 24

Listing 1. Semantic description of an example event detected by the Unknown Pattern Detector,
serialized in N3 notation.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix sosa: <http://www.w3.org/ns/sosa/> .
@prefix folio: <http://IBCNServices.github.io/Folio-Ontology/Folio.owl#> .
@prefix ssn: <http://www.w3.org/ns/ssn/> .
@prefix ns4: <https://idlab-iot.tengu.io/api/v1/vocabulary/> .
@prefix ns5: <https://idlab-iot.tengu.io/api/v1/booleans/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://gitlab.ilabt.imec.be/dyversify/dyversify-ml-anomaly-detector/UAD/HEALTHBOX3.171030S0005.2/
sensor.indoor.CO2.concentration%3A%3Anumber/1532217600000/1532217601000> a folio:Anomaly,↪→

folio:UnknownPatternAnomaly ;
dcterms:description "Unusual pattern detected." ;
sosa:resultTime "2019-11-25T15:33:04.333950+00:00"^^xsd:dateTime ;
sosa:usedProcedure <https://gitlab.ilabt.imec.be/dyversify/dyversify-ml-anomaly-detector/ns/

unknown-pattern-detector/1> ;↪→
ssn:wasOriginatedBy <http://example.com/stimulus/HEALTHBOX3.171030S0005.2/

sensor.indoor.CO2.concentration%3A%3Anumber/1532217600000/1532217601000> ,↪→
<http://example.com/stimulus/HEALTHBOX3.171030S0005.2/

sensor.indoor.absolute.humidity.humidity%3A%3Anumber/1532217600000/
1532217601000> ;

↪→
↪→

ns4:thingId "HEALTHBOX3.171030S0005.2" ;
ns4:metricId "sensor.indoor.CO2.concentration::number" ;
ns5:update "false" .

<https://gitlab.ilabt.imec.be/dyversify/dyversify-ml-anomaly-detector/ns/unknown-pattern-detector/
1> a sosa:Procedure ;↪→
prov:specializationOf [rdfs:label "MatrixProfile"] .

<http://example.com/stimulus/HEALTHBOX3.171030S0005.2/sensor.indoor.CO2.concentration%3A%3Anumber/
1532217600000/1532217601000> a ssn:Stimulus ;↪→
folio:fromObservation <http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/

HEALTHBOX3.171030S0005.2/metrics/sensor.indoor.CO2.concentration%3A%3Anumber/observations/
1532217600000> ;

↪→
↪→
folio:toObservation <http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/

HEALTHBOX3.171030S0005.2/metrics/sensor.indoor.CO2.concentration%3A%3Anumber/observations/
1532217601000> ;

↪→
↪→
folio:observedProperty <http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/

HEALTHBOX3.171030S0005.2/metrics/sensor.indoor.CO2.concentration%3A%3Anumber> .↪→

<http://example.com/stimulus/HEALTHBOX3.171030S0005.2/
sensor.indoor.absolute.humidity.humidity%3A%3Anumber/1532217600000/1532217601000> a ssn:Stimulus ;↪→
folio:fromObservation <http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/

HEALTHBOX3.171030S0005.2/metrics/sensor.indoor.absolute.humidity.humidity%3A%3Anumber/
observations/1532217600000> ;

↪→
↪→
folio:toObservation <http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/

HEALTHBOX3.171030S0005.2/metrics/sensor.indoor.absolute.humidity.humidity%3A%3Anumber/
observations/1532217601000> ;

↪→
↪→
folio:observedProperty <http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/

HEALTHBOX3.171030S0005.2/metrics/sensor.indoor.absolute.humidity.humidity%3A%3Anumber> .↪→

<http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/HEALTHBOX3.171030S0005.2/metrics/
sensor.indoor.CO2.concentration%3A%3Anumber/observations/
1532217600000> sosa:resultTime "1532217600000"^^xsd:dateTime .

↪→
↪→
<http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/HEALTHBOX3.171030S0005.2/metrics/

sensor.indoor.CO2.concentration%3A%3Anumber/observations/
1532217601000> sosa:resultTime "1532217601000"^^xsd:dateTime .

↪→
↪→
<http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/HEALTHBOX3.171030S0005.2/metrics/

sensor.indoor.absolute.humidity.humidity%3A%3Anumber/observations/
1532217600000> sosa:resultTime "1532217600000"^^xsd:dateTime .

↪→
↪→
<http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/HEALTHBOX3.171030S0005.2/metrics/

sensor.indoor.absolute.humidity.humidity%3A%3Anumber/observations/
1532217601000> sosa:resultTime "1532217601000"^^xsd:dateTime .

↪→
↪→

Our event description model reuses resources from several ontologies. Prefixes for
the ontology namespaces are defined at the top of Listing 1. Two ontologies are key
in our event descriptions. The first one is the SOSA (Sensor, Observation, Sample, and
Actuator) ontology [24], which is the core ontology contained in the SSN (Semantic Sensor
Network) ontology [25,26], the W3C (The World Wide Web Consortium is an international
organization of researchers and industry stakeholders, proposing standards for the Web)
recommendation for describing sensors and sensor observations. Finally, we use the FOLIO
ontology, described in the previous section, to represent the events themselves.

Appl. Sci. 2021, 11, 10371 9 of 24

The URL of an event (see Listing 1) is constructed using values that together constitute
a unique identifier, i.e., a base URL; the sensor and observed property for which the event
was detected; and finally, the start and end timestamps of the event. Since the Linked
Data principles recommend using a base URL of a controlled domain when defining new
resources, we used the base URL of the code repository for the detector.

The example event shown in Listing 1 was detected with the Matrix Profile-based
Unknown Pattern Detector described in Section 5. As mentioned, this detector detects
unique patterns (discords) in time series, i.e., sensors measurements, but it cannot attribute
any specific label to discords, such as “Shower”. Because of this, the event is reported by
the detector as an instance of the folio:UnknownPatternAnomaly class provided by the
FOLIO ontology (see Listing 1). Other subclasses of folio:Anomaly are used to label faults
detected by the knowledge-driven event detector, discussed in Section 5, or by the adaptive
event detectors that attribute labels to events using expert feedback, as will be discussed
in Section 8. A distinction between faults and anomalies is made from this perspective.
Faults are defined as unwanted behaviour which can be clarified either upfront or due
additional investigation of an operator. Anomalies are all unwanted events for which no
clarification is found (yet). The knowledge-driven event detector will always detect faults
here, while the data-driven event detector will initially only detect anomalies, but, based
on the feedback given, can shift towards detecting faults.

Detectors also provide an event description (dcterms:description). Since the Un-
known Pattern Detector cannot attribute a specific label to the event, a generic description
is used. More information about the event include the time at which the event occurred,
the detector that reported the event (sosa:usedProcedure) and which sensor properties
(ssn:wasOriginatedBy) showed unexpected time series behavior leading to the detec-
tion of the event. For the event in Listing 1, observations for two sensor properties are
documented to have led to the reporting of a discord: CO2 and absolute humidity.

Additionally, a trace of the detecting procedure is left in the event information, most
importantly documenting the name of the detection technique used. Next, the stimuli
are reported that led to the detection of the event, i.e., unexpected patterns seen in the
time series data produced by the sensors. Stimuli information includes the specific sensor
properties and the start and end observations of the unexpected patterns.

7. Automated Event Visualization Using Semantic Reasoning

Remote monitoring systems in industry integrate with a plethora of sensors. At the
same time, many dynamic dashboards provide a large set of visualizations. Users must
select one of these visualizations and configure it such that it knows how to parse and
display a selected data source. This makes matching sensor data sources with available
visualizations a burdensome task for the user. However, by combining the event data
presented in the previous section with available metadata about the involved sensors, auto-
matic visualization through reasoning becomes possible. In this section, we demonstrate a
semantic reasoning approach that will enable automatic creation of visualization widgets
in a dashboard tab to investigate an event in more detail, as a result of the user selecting
that event.

In order to visualize events, the system needs to know what type of information is
captured by each sensor. This information is available in the sensor metadata, which is
stored in a semantic database. To describe dashboard specific components (e.g., metrics,
widgets, visualizations) and their relationships, an open-source ontology has been created
and published in an online repository (https://github.com/idlab-predict/ddashboard-
ontology, accesssed on 15 October 2021). Listing 2 shows the metadata for the CO2 sensor
It describes what type of data the sensor holds that a dashboard can visualize. In this
case, CO2 values are specifically supported. This allows dashboard operators to attach
visualization configurations such as boundaries for sensor values (e.g., “acceptable CO2
values are between 400 and 1000 ppm and can be displayed with green dots”) or document
that special visualizations are supported. In addition to this metadata, the property of a

https://github.com/idlab-predict/ddashboard-ontology
https://github.com/idlab-predict/ddashboard-ontology

Appl. Sci. 2021, 11, 10371 10 of 24

sensor (e.g., a CO2 sensor of a specific Healthbox, is linked to a dashboard metric that is
supported and can be visualized (dashb:produces).

Listing 2. Metadata describing a single CO2 sensor. This metadata is stored in the semantic database
and is used by the dashboard when reasoning the proper widget selection for visualizing an event.

@prefix sosa: <http://www.w3.org/ns/sosa/> .
@prefix ns4: <https://idlab-iot.tengu.io/api/v1/vocabulary/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dashb: <http://dynamicdashboard.ilabt.imec.be/broker/ontologies/dashboard#> .

<http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/HEALTHBOX3.171030S0005.2>
sosa:observes <http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/
HEALTHBOX3.171030S0005.2/metrics/sensor.indoor.CO2.concentration%3A%3Anumber>
.

↪→
↪→
↪→

<http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/HEALTHBOX3.171030S0005.2/metrics/
sensor.indoor.CO2.concentration%3A%3Anumber> a <http://IBCNServices.github.io/dyversify/Renson#CO2>
;

↪→
↪→

rdfs:label "CO2 concentration (Healthbox 171030S0005.2)" ;
ns4:metricId "sensor.indoor.CO2.concentration::number" ;
dashb:produces

<http://dynamicdashboard.ilabt.imec.be/broker/ontologies/metrics#airParticlesPpmConcentration> ;↪→
sosa:isObservedBy

<http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/HEALTHBOX3.171030S0005.2> .↪→

Visualization reasoning is initiated when the user selects an event in the dashboard.
Listing 3 provides an example RDF triple stating that a new dashboard tab needs to be
created to investigate the unknown pattern described in the previous section. Since the
dashboard tab has not been created yet, it is here represented by a blank node, which is
constructed in Notation3 with an underscore namespace prefix [23]. The event selected by
the user for investigation, is identified by the URL that originates from the original event
description in Listing 1.

Listing 3. Input for the automated dashboarding approach, stating which event was selected by a
user to be visualized in a new, dedicated tab in the dashboard.

@prefix dashb: <http://dynamicdashboard.ilabt.imec.be/broker/ontologies/dashboard#> .

_:tab dashb:investigatedAnomaly <https://gitlab.ilabt.imec.be/dyversify/dyversify-ml-anomaly-detector/UAD/
HEALTHBOX3.171030S0005.2/sensor.indoor.CO2.concentration%3A%3Anumber/1532217600000/1532217601000>
.

↪→
↪→

The contents of Listing 3 and the event metadata from Listing 1 are the first inputs
passed to the EYE reasoner [27], a fast semantic reasoner software package. The speed of
the EYE reasoner will guarantee low visualization delays for the end user. This reasoner
takes RDF facts, logic rules and a query file as input. Listing 4 defines the query for
this use case. This query essentially states that the output expected from the reasoner
consists of all widget instances that are able to visualize the applicable data sources, which
will be either the event selected by the user, or sensor properties linked to the selected
event. Any outputted dashboard widget instances must document which data source they
visualize, which visualization is constructed and which name was given to the widget. The
query is constructed as a logic rule, written in N3 Logic [23]. The first part of the query
specifies the combination of triples that is expected to be found in the reasoner’s RDF
graph. Variable names, starting with a question mark, act as a placeholder for any RDF
resource that matches the specified combination of rules. The second part of the query
specifies the exact triples expected to be outputted by the reasoner, if any triples are found
that match with the requirements. This conditional logic is written with the => symbol,
which serves as a shorthand for the predicate log:implies (from the logic namespace
(http://www.w3.org/2000/10/swap/log#, accessed on 17 August 2021)), stating that if

http://www.w3.org/2000/10/swap/log#

Appl. Sci. 2021, 11, 10371 11 of 24

one formula of triples (delimited by the accolades) exists, it leads to another formula as
a result [23]. In this case, because the logic condition is in a separate query file, the EYE
reasoner knows the resulting triples must be outputted as the final result of the reasoning
process.

Listing 4. The query passed to the EYE reasoner, stating which triples are expected output for the
automatic event visualization process.

@prefix dashb: <http://dynamicdashboard.ilabt.imec.be/broker/ontologies/dashboard#> .

{
?widget a dashb:Widget ;

dashb:dataSource ?dataSource ; # The anomaly or sensor property that is visualized in this
widget.↪→

dashb:visualization ?visualization ; # Visualization to display the info about the given anomaly
or the historical data of the sensor property.↪→

dashb:widgetName ?widgetName . # Description of the anomaly or sensor property to be visualized
in this widget.↪→

}
=>
{

?widget a dashb:Widget ;
dashb:dataSource ?dataSource ;
dashb:visualization ?visualization ;
dashb:widgetName ?widgetName .

} .

With the RDF input from Listings 1 and 3, the logic condition in the query is not
yet fulfilled. Additional files passed to the reasoner express visualization logic and facts
about available visualizations. With this additional knowledge, the semantic reasoner
will continuously apply logic rules on existing facts to deduce new facts, until no new
knowledge can be derived, after which the query output is returned. The visualization
logic is shown in Listings 5–7. Please note that in these listings, events are referred to
as “anomalies” instead of the more broad “event”. This is because the original use case
only foresaw anomalies as interesting, whereas it became quickly obvious that various
interesting events, such as showers, cannot really be considered anomalous behavior. The
logic is summarized as follows:

• create a widget that visualizes basic information about the selected event, such as the
names of the sensors and observed properties for which the event was detected, and
during which time interval it has been detected;

• create a similar basic information widget for child events linked to an event (if any), as
Section 8 will explain;

• for each sensor property linked to the selected event (e.g., CO2), create a widget that
visualizes the historical observations made for the sensor property;

• similarly, create historical sensor data widgets for each sensor property linked to child
events (if any) of the selected event.

For the first two cases, the type of visualization to be displayed in the dashboard wid-
get is directly set to be of type dashb:AnomalyVisualization, for which one concrete, basic
anomaly visualization was currently sufficient. Its RDF metadata is shown in Listing 7. It
specifies that the only accepted input data is one anomaly and documents which javascript
file contains the code for construction of the visualization, which the dashboarding platform
will import.

For the latter two cases listed above, the visualization choice is less trivial though.
Sensor observations can be visualized with gauges, textual displays, bar charts, line charts,
etc. Therefore, the logic rules of the latter two cases in the above list add that the sensor data
originates from a time window, rather than a single timestamp. Additional visualization
logic then determines that the only currently supported visualization for this case is a
line chart. The additional visualization logic is published, together with all other files in-
volved, in an online repository (https://github.com/idlab-predict/ddashboard-reasoning,

https://github.com/idlab-predict/ddashboard-reasoning

Appl. Sci. 2021, 11, 10371 12 of 24

accessed on 15 October 2021), and is discussed in detail in Vanden Hautte et al. [5]. As
a result, the line chart’s RDF resource is set as a dashb:candidateVisualization for the
widget. The number of candidate visualizations for all widgets on the event dashboard tab
has been reduced by reasoning over all rules expressed in the visualization logic [5]. Even-
tually, only one candidate visualization remains, and future work will foresee additional
rules at the end of the reasoning process in case of ties to select the candidate visualization
that is used most frequently among all dashboard operators.

The presented reasoner input, query, event and sensor metadata, visualization logic
and visualization annotations lead to the reasoner output shown in Listing 8. Based on this
output, the dashboarding platform will create an event investigation tab that will contain,
for the specific event discussed in this section, a widget displaying basic information
about the event (event type, description, sensor properties involved, timestamps) and two
additional widgets, for the time series data of the CO2 and absolute humidity properties,
respectively.

In summary, this event visualization reasoning allows the dashboarding platform to
construct visualizations automatically for events that users want to investigate. This way,
users can spend their time on investigating events instead of losing time on constructing
visualization widgets manually.

Listing 5. Input for the anomaly visualization reasoning: Semantic rules for visualization of the
anomaly itself.

@prefix folio: <http://IBCNServices.github.io/Folio-Ontology/Folio.owl#> .
@prefix dashb: <http://dynamicdashboard.ilabt.imec.be/broker/ontologies/dashboard#> .
@prefix dcterms: <http://purl.org/dc/terms/> .

Visualize information about the anomaly itself:
{

?tab dashb:investigatedAnomaly ?anomaly .
?anomaly a folio:Anomaly ;

dcterms:description ?anomalyDescription .
?anomalyVisualization a dashb:AnomalyVisualization .

}
=>
{

?tab dashb:widget [
a dashb:Widget ;
dashb:widgetName ?anomalyDescription ;
dashb:visualization ?anomalyVisualization ;
dashb:dataSource ?anomaly

] .
} .

Visualize information about the child anomalies of the anomaly:
{

?tab dashb:investigatedAnomaly ?anomaly .
?anomaly a folio:MergedAnomaly ;

folio:hasSubAnomaly ?subAnomaly .
?subAnomaly dcterms:description ?subAnomalyDescription .
?anomalyVisualization a dashb:AnomalyVisualization .

}
=>
{

?tab dashb:widget [
a dashb:Widget ;
dashb:widgetName ?subAnomalyDescription ;
dashb:visualization ?anomalyVisualization ;
dashb:dataSource ?subAnomaly

] .
} .

Appl. Sci. 2021, 11, 10371 13 of 24

Listing 6. Input for the anomaly visualization reasoning: Semantic rules for visualization of the
stimuli of the anomaly.

@prefix folio: <http://IBCNServices.github.io/Folio-Ontology/Folio.owl#> .
@prefix ssn: <http://www.w3.org/ns/ssn/> .
@prefix dashb: <http://dynamicdashboard.ilabt.imec.be/broker/ontologies/dashboard#> .
@prefix time: <http://www.w3.org/2006/time#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

Visualize historical data for the sensor properties of the anomaly: (by presenting these sensor
properties and a time window to visualizations.n3)↪→

{
?tab dashb:investigatedAnomaly ?anomaly .
?anomaly a folio:Anomaly ;

ssn:wasOriginatedBy ?abnormalPattern .
?abnormalPattern folio:observedProperty ?sensorProperty .
?sensorProperty rdfs:label ?sensorPropertyName .

}
=>
{

?tab dashb:widget [
a dashb:Widget ;
dashb:widgetName ?sensorPropertyName ;
dashb:dataSource ?sensorProperty ;
dashb:timeWindow [

a time:Interval
]

] .
} .

Visualize historical data for the sensor properties of the child anomalies: (by presenting these sensor
properties and a time window to visualizations.n3)↪→

{
?tab dashb:investigatedAnomaly ?anomaly .
?anomaly a folio:MergedAnomaly ;

folio:hasSubAnomaly ?subAnomaly .
?subAnomaly ssn:wasOriginatedBy ?abnormalPattern .
?abnormalPattern folio:observedProperty ?sensorProperty .
?sensorProperty rdfs:label ?sensorPropertyName .

}
=>
{

?tab dashb:widget [
a dashb:Widget ;
dashb:widgetName ?sensorPropertyName ;
dashb:dataSource ?sensorProperty ;
dashb:timeWindow [

a time:Interval
]

] .
} .

Outputting, for the sensor properties visualizations (the last 2 cases), all candidate visualizations
resulting from the logic in visualizations.n3:↪→

{
?tab dashb:investigatedAnomaly ?anomaly ;

dashb:widget ?widget .
?widget dashb:candidateVisualization ?visualization .

}
=>
{

?widget dashb:visualization ?visualization .
} .

Appl. Sci. 2021, 11, 10371 14 of 24

Listing 7. Input for the anomaly visualization reasoning: Semantic description of the visualizations.

@prefix dashb: <http://dynamicdashboard.ilabt.imec.be/broker/ontologies/dashboard#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

Two of the available visualizations are able to visualize basic info about anomalies and historical
data of sensors that showed abnormal behavior:↪→

<http://localhost/sensor-gateway/things/visualizations/general-anomaly-info> a dashb:AnomalyVisualization
;↪→

rdfs:label "General anomaly info"@en ;
dashb:implementation

<http://localhost/sensor-gateway/static/visualization_serving/general_anomaly_info.js> ;↪→
dashb:component [

dashb:accepts [dashb:datatype folio:Anomaly];
dashb:min 1;
dashb:max 1

] .

<http://localhost/sensor-gateway/things/visualizations/time-series-line-chart-with-time-range-selector> a
dashb:HistoricalDataVisualization ;↪→
rdfs:label "Line chart (updating at observation frequency)"@en ;
dashb:implementation <http://localhost/sensor-gateway/static/visualization_serving/

time_series_line_chart_with_time_range_selector.js>
;

↪→
↪→
dashb:component [

dashb:accepts [dashb:datatype xsd:double];
dashb:min 1;
dashb:max 1

] .

Listing 8. Output of the anomaly visualization reasoning for an event detected by the Unknown
Pattern Detector. Based on this output, a dashboard tab will be created for the investigation of the
event, consisting of a widget displaying key event information and two widgets displaying historical
sensor data for the CO2 and absolute humidity sensor properties for which the unexpected time
series was detected.

@prefix dashb: <http://dynamicdashboard.ilabt.imec.be/broker/ontologies/dashboard#> .

[] a dashb:Widget ;
dashb:dataSource <https://gitlab.ilabt.imec.be/dyversify/dyversify-ml-anomaly-detector/UAD/

HEALTHBOX3.171030S0005.2/sensor.indoor.CO2.concentration%3A%3Anumber/1532217600000/
1532217601000> ;

↪→
↪→
dashb:visualization <http://localhost/sensor-gateway/things/visualizations/general-anomaly-info> ;
dashb:widgetName "Unusual pattern detected." .

[] a dashb:Widget ;
dashb:dataSource <http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/

HEALTHBOX3.171030S0005.2/metrics/sensor.indoor.CO2.concentration%3A%3Anumber> ;↪→
dashb:visualization <http://localhost/sensor-gateway/things/visualizations/

time-series-line-chart-with-time-range-selector> ;↪→
dashb:widgetName "CO2 concentration (Healthbox 171030S0005.2)" .

[] a dashb:Widget ;
dashb:dataSource <http://dyversify-stack.idlab.be/scopes/icon.dyversify.renson/things/

HEALTHBOX3.171030S0005.2/metrics/sensor.indoor.absolute.humidity.humidity%3A%3Anumber> ;↪→
dashb:visualization <http://localhost/sensor-gateway/things/visualizations/

time-series-line-chart-with-time-range-selector> ;↪→
dashb:widgetName "Absolute humidity (Healthbox 171030S0005.2)" .

8. Capturing User Feedback

Through the dashboard user’s analysis of visualized events, user feedback can be
captured to assess the correctness of detected events. We implemented the following
three actions for users to submit feedback (Figure 3 visualizes which interaction can be
performed by the user):

• (Re)labeling event alerts: by clicking the pencil icon next to an alert (see Figure 3)
the user can give the event a meaningful free-text description. Suggestions of similar
descriptions pop up below the text box to avoid that many variations of the same

Appl. Sci. 2021, 11, 10371 15 of 24

description are entered in the system. As a result, the dashboard’s back end system up-
dates the event’s folio:description and adds the types folio:RelabeledAnomaly
and folio:ConfirmedAnomaly from the FOLIO ontology to the semantic description
of the event (see Section 6). The former indicates the user has changed the event
description, the latter indicates the user has acknowledged the event as a positive
example of the event. Please note that the event description is always shown in the
list of detected anomalies, just like the date of detection and the sensor on which the
event was detected.

• Merging event alerts, by selecting multiple alerts and then clicking the merge button
(see Figure 3). This indicates that multiple detections (e.g., over different signals) actu-
ally belong to a single event. When doing so, a new event is created in the dashboard’s
back end system with the types folio:MergedAnomaly and folio:ConfirmedAnomaly.
The selected events will be linked as children to the new, parent event with the prop-
erty folio:hasSubAnomaly. If all child events have the same description or are of
the same type (e.g., folio-ext:ShowerAnomaly), the merged event is also assigned
that description and/or type, otherwise an additional manual labeling by the user
is required.

• Deleting (rejecting) event alerts, by clicking the trash bin icon. The user can reject
events when they are false alerts. Instead of deleting the event from the database, we
mark it as a folio:RejectedAnomaly instead, such that detectors can learn from these
negative examples.

Please note that we made the design choice of immediately flagging relabeled or
merged events as folio:ConfirmedAnomaly as well. We argue that when events are rela-
beled or merged, their correctness is actually inherently confirmed, given that otherwise
(i.e., if an alert was deemed incorrect) the user would delete the alert.

Figure 3. Options in the event alert list for a user to submit feedback: relabeling (using the pencil
icon), merging (selecting multiple events and clicking the merge button) and deleting (using the trash
bin icon).

Whenever any kind of user interaction updates an event, the dashboard posts the
updated event description to the message bus. From here, the update will reach the
event detectors and be persisted in a semantic database. Because events are persisted, the
dashboard can retrieve historic events if needed, this functionality is shown on the bottom
of Figure 3. In the next section, we discuss how the detectors use this user feedback.

Appl. Sci. 2021, 11, 10371 16 of 24

9. Improved Event Detection with Captured User Feedback

Using the feedback captured in the dashboard, the performance of event detectors can
be improved. For our use case, we employed three additional detectors that incorporate
user feedback to automatically detect and label new events. Similar to Section 5, we keep
explanations brief and instead refer to dedicated works [4,17] for further details.

9.1. Matrix Profile-Based Known Pattern Detector

The first feedback-incorporating detector is data-driven and based on the Matrix
Profile, similar to the unknown pattern detector described in Section 5. However, where
that detector was used to detect unique pattern sequences, this detector is used to detect
similarities. Specifically, the detector checks for similarities between previously confirmed
events and new incoming data, firing an event when a predefined similarity threshold is
reached. Events detected this way will be linked to the original event (i.e., the one they
are similar to), and will be assigned the same label. Because the similarity technique in the
Matrix Profile can only efficiently compare one series against a single pattern, we need to
create one instance per each confirmed event. Though this lead to a much higher number of
detector instances, the memory load of each detector is many times smaller as this detector
does not require historic data for detections. Since this detector focuses on patterns that
have been labeled by the user, it is named the “known pattern detector”.

9.2. Temporal Rule Mining

Rule mining is most known for association rule mining as part of market basket
analysis [28], where rules are mined over products bought by customers to predict which
products are often bought together. Association rules consist of two parts, antecedent and
consequent, each representing an item set, e.g., a set of products, where the antecedent
predicts the consequent. Rule utility is determined by its confidence, the ratio of correct
predictions, and its support, the number of times a rule can be applied to a dataset.
Temporal rule mining [29] differs only in that it searches for rules in streams of timed
events, rather than item sets. As such, rules predict a future event (consequent) after
several preceding events (antecedent) have been observed.

The second feedback-incorporating component performs temporal rule mining using
the algorithm described in Fahed et al. [30]. The events being mined consist of all user
confirmed events, as well as several meaningful generic indicators such as the time of
day (per hour), the weekday or season. This allows the component to find rules such as
“windows are often opened at 8AM during summer”. While the component does not detect
events itself, the rules can be used to help the user understand specific types of events
(e.g., event X only occurs in winter), or to suggest likely event descriptions to events being
relabeled by the user. As the component periodically mines for rules using the confirmed
events, rules may become replaced by others as the user provides more input.

9.3. Semantic Rule Mining

The unified semantic format of events described in this paper also allows for semantic
reasoning-based rule mining techniques. All detected events are continuously added into a
single Knowledge Graph (KG), stored in a semantic database. From this KG, a semantic
rule miner [4] infers cause-effect rules that predict events. These rules are inferred using
the supervised framework Descriptive Logic Learner (DL-Learner) [31]. They must predict,
with a configured minimum confidence, which occurrences of observations, sensors and
system contexts typically lead to new events. Design details of this semantic rule miner are
documented in Steenwinckel et al. [4].

The mined rules are similar to the expert rules used by the semantic fault detector,
but they are now gathered automatically. Moreover, as operators relabel, merge or reject
events in the dashboard, the corresponding event knowledge in the semantic database
is constantly evolving. So, semantic rule mining allows adapting the detection system

Appl. Sci. 2021, 11, 10371 17 of 24

continuously and automatically, rather than having to rely on the constant presence of
system experts to manually provide and adapt system logic.

On the ventilation unit monitoring data, this detection technique is able to learn rules
to detect and label new shower echo effects.

10. Implementation and Evaluation

This section will overview a system architecture that integrates all discussed event
detectors and the dynamic dashboard and will evaluate the results obtained on the real-
world, streaming data of the ventilation unit monitoring use case that was presented in
Section 3.

10.1. A Monitoring Architecture for Real-World, Streaming Data

The first research objective set in this paper was building a complete architecture
for monitoring real-world home ventilation units that upload sensor data continuously.
To this end, we have built an architecture that combines all components presented in
the previous sections and guarantees that all event detectors can cope with the volume
and velocity of streaming sensor data uploaded in real time by many ventilation units.
The dynamic dashboarding platform must display event alerts as soon as they have been
detected. Feedback from dashboard users about the correctness of detected events must
rapidly be exchanged with adaptive event detectors. A unified, semantic event data model
was already proposed to exchange event information between the system components.
However, the system also needs a solution for fast exchange of event information and for
permanent storage of event information, to enable later retrieval in bulk by the dashboard,
e.g., when a user wants to list events detected over the past weekend.

Figure 4 provides an overview of our system architecture and shows how event
information is passed between all system components. Data-driven detectors are displayed
in blue, knowledge-driven detectors in green. Arrows indicate the flow direction of
information, often a detected event or an update of event information, e.g., an update
based on user feedback (displayed at the top right of the figure). Where this work focuses
on the dashboard architecture, the work by De Paepe et al. [17] discusses the overall system
architecture of our use case, including sensor data ingest, deployment and semantification.

Kafka (http://kafka.apache.org/, accessed on 26 October 2021) is a highly scalable
distributed message passing platform that enables real-time, in-order and at-least-once
processing of messages. It is used to stream incoming sensor observations in real time to
the event detectors. When an event is detected, it is again published through Kafka where
it is picked up by the dashboard, but also persisted in Stardog (https://www.stardog.com/,
accessed on 26 October 2021), a semantic database specialized in storing RDF graphs. This
permanent storage of events allows the dashboarding platform to retrieve them in bulk at
a later stage.

The dynamic dashboarding platform mainly consists of a graphical user interface (GUI)
for its users and a broker component [5]. The dashboarding GUI is a web application that
users run in their web browser to create dashboards that visualize sensor data and event
information. The dashboard broker acts as the central back-end service for all dashboarding
operations, such as listing available sensors and saving dashboard compositions.

An Event API serves as a utility web service to the dashboarding GUI for retrieving,
storing or updating events. The Event API streams events, as soon as they are detected,
from Kafka, to the dashboarding GUI, using the WebSocket protocol (https://tools.ietf.
org/html/rfc6455, accessed on 17 August 2021). Furthermore, the dashboarding GUI uses
the Event API for fetching historical events (e.g., the events that occurred over the past
month) from permanent event storage, using Stardog’s data querying endpoint and the
SPARQL querying language (https://www.w3.org/TR/sparql11-overview/, accessed on
17 August 2021).

http://kafka.apache.org/
https://www.stardog.com/
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://www.w3.org/TR/sparql11-overview/

Appl. Sci. 2021, 11, 10371 18 of 24

Figure 4. Overview of the interplay of event detectors (colored, thin border) and the dashboarding platform (grey, thick
border). Data-driven detectors are displayed in blue (solid border), knowledge-driven in green (dashed border). Arrows
indicate the flow direction of information.

Figure 5 shows the dashboard GUI, where the event list on the right side is updated in
real time through the Event API. When a user selects an event from the list, the dashboard
broker automatically composes a dashboard tab to visualize the selected event. Specifically,
it performs the event-driven visualization reasoning process as described in Section 7 using
the EYE Server (https://github.com/RubenVerborgh/EyeServer, accessed on 17 August
2021), which exposes the EYE reasoner as a service. The reasoning output specifies a set
of visualization widgets for the new dashboard tab and is passed by the broker to the
dashboard GUI, where the widgets are added to the web page.

Please note that the dashboard broker automatically discovers the semantic annota-
tions of all sensors and visualizations that are used for the event visualization reasoning.
This allows operators to update the information of sensors and monitored assets, as well
as the set of available visualizations, in a decentralized way. The design of the Dynamic
Dashboard is documented in detail in Vanden Hautte et al. [5]

Whenever a user interacts with the dashboard and provides feedback about an event
alert, the dashboard GUI informs the Event API, which then publishes the update on
Kafka. The update is in turn ingested by the known pattern detector and rule miner
components, who use it to improve their event detection performance on new sensor
data. This essentially closing a feedback loop and creates a synergy between detectors and
dashboard for obtaining better-quality event detection.

We validated the throughput of this architecture by replacing the stream of incoming
measurements by a high-speed replay of recorded measurements originating from a single
ventilation unit. This way, all incoming data and events would be visualized in a single
dashboard. In our experiment, we achieved a throughput rate of 400 measurement values
per second, where a normal throughput would be 16 measurement values per minute. As

https://github.com/RubenVerborgh/EyeServer

Appl. Sci. 2021, 11, 10371 19 of 24

the event data comes in at a much lower rate than the measurements, it has little effect on
the total throughput rate.

In summary, this architecture succeeds in combining event detection techniques,
knowledge-driven as well as data-driven, with dynamic dashboarding for feedback captur-
ing, under high load of streaming data representative for real-time ventilation monitoring
in the field.

Figure 5. The dynamic dashboard GUI displaying a shower event. On the right, events are listed as they are detected. The
user can also retrieve historical events using the input field at the bottom. The dashboard tab on the left displays an event
detected by the unknown pattern detector.

10.2. Automated and Fast Event-Driven Dashboard Creation

Companies will welcome any reduction of human effort required to monitor the sheer
amount of assets and event alerts, as this will reduce costs and will help experts focus more
on the monitoring task itself. Therefore, the second objective in this paper was attaining
fully automated and rapid dashboard creation for events selected for further investigation
by an expert.

Contrary to earlier design of the dynamic dashboard, as published in Vanden Hautte
et al. [5], event visualization is done using semantic reasoning as described in Section 7 and
no longer requires the dashboard user to manually select, per widget, a visualization from
a set of well-matching candidate visualizations. The number of candidate visualizations for
all widgets on the event dashboard tab is systematically reduced by subsequent reasoning
over all rules expressed in the visualization logic. Eventually, either only a single candidate
visualization remains, or additional rules at the end of the reasoning process select the
candidate visualization that is used most frequently among all dashboard operators.

To achieve good user experience, it is important that the delay required to construct
the event dashboard is below one second. The semantic reasoning involved is the most
complex step in this process. Table 1 shows the execution times of the semantic reasoner
on all types of events: those produced by data-driven and knowledge-driven detectors, as

Appl. Sci. 2021, 11, 10371 20 of 24

well as relabeled and merged events. Each of these tests (We have published these tests at
https://github.com/idlab-predict/ddashboard-reasoning, accessed on 15 October 2021)
show that the reasoning completes within half a second, a delay that will not disturb the
user experience.

Table 1. Execution times, in seconds, required for the visualization reasoning of all types of events.

Event Reasoning Time (s)

Unknown pattern 0.452 (±0.012 std)
Semantic fault 0.500 (±0.031 std)
Known pattern 0.481 (±0.026 std)
Relabeled event 0.457 (±0.011 std)
Merged event 0.458 (±0.013 std)

Relabeled, merged event 0.465 (±0.010 std)

In summary, fully automated event-driven (rather than user-driven) visualization
of events using semantic reasoning can be achieved, with reasoning delays well below
one second.

10.3. User Feedback Capture for Increased Detector Performance and Automated Labeling

In industry, it is often hard to set up powerful data-driven monitoring systems because
large, labeled datasets are seldom available. Therefore, the third research objective set
in this paper was to capture and use user feedback in the monitoring system. As labels
become available, adaptive detection methods should improve in utility through higher
detection accuracy or a wider range of detected relevant events.

As described in Section 8, we added functionality in the dynamic dashboard’s user
interface to label events with meaningful descriptions (event relabeling), to merge events
reported by multiple detectors and to reject incorrect event alerts. As a result, the event
description is updated and the event is classified as a folio:ConfirmedAnomaly, indicating
a user has validated the event. Depending on the user interaction, the event is also classified
as a folio:RelabeledAnomaly, folio:Merged-
Anomaly or folio:RejectedAnomaly. As a semantic ontology, FOLIO could be easily
extended to fit the needs of specific use cases. For example, a folio-ext:ShowerEvent
could be defined if specific functionality or visualizations were needed for shower events.
Furthermore, if this class was defined as a subclass of folio:Anomaly, no other system
would be impacted by this change.

The descriptive labels assigned to events can be reused by the adaptive detectors
described in Section 9. Figure 6 illustrates how the known pattern detector can automat-
ically suggest many labels based on a small amount of patterns that were verified and
labeled by the user. In this figure, we see the humidity of the bathroom over a period
of 21 days. Red segments (annotated with “A”) are suggested events detected by the
unknown pattern detector from Section 5. After a user verifies and labels A0 and A4 as
shower events (with A4 representing two consecutive showers), the known pattern detector
will automatically recognize the orange segments (annotated with “F”) as shower events
because of the pattern-wise similarity. These matches will be reported as new events that
are linked to the original event. In this short example, two interactions of the user in the
first week of data led to a total of seventeen automatic labels. A demo movie (Available
at https://www.youtube.com/watch?v=r7ygntYFLxo, accessed on 11 July 2021) shows
the full system in action and demonstrates this automated event labeling over a larger
timespan.

Therefore, with very limited feedback collected from the dashboard user, the detectors
are able to automatically label a large amount of similar patterns. In contrast, without the
detectors, a considerable amount of dashboard users would be required to try to cope with
the data velocity, meaning that event labeling would be much more costly and many events
would likely go undetected. Moreover, the relabeling of incorrectly detected events again

https://github.com/idlab-predict/ddashboard-reasoning
https://github.com/idlab-predict/ddashboard-reasoning
https://www.youtube.com/watch?v=r7ygntYFLxo

Appl. Sci. 2021, 11, 10371 21 of 24

leads to more precise labeling. The demonstrated symbiosis of dashboards for feedback
capturing and different event detection techniques therefore enable label collection and
correction on large datasets with only limited human intervention.

Figure 6. Bathroom humidity over a period of 21 days. Red fragments (“A”) indicate events detected by the unknown
pattern detector from Section 5. After a user confirms events A0 and A4, seventeen similar segments are found by the
known pattern detector (orange, “F”). This mechanism can greatly reduce labeling efforts.

10.4. Dynamic and Adaptive Solution End-to-End, Applicable to Other Use Cases

The expert knowledge and training data used in this work originate from a ventilation
monitoring use case. Other use cases may of course benefit from a similar approach. We
designed the system in such a way that components are generic solutions that can be
easily reused for other use cases, i.e., the unified RDF-based event data model, the event-
driven dashboard generation, feedback capturing and the architecture for streaming and
permanent storage of events. In Steenwinckel et al. [4], the system is applied on a train
bogie monitoring case to detect train issues and wheel issues. In Moens et al. [3], the event
model, dashboard and overarching architecture are used for monitoring accelerated bearing
lifetime tests, where the dashboard reports degradation in rolling elements bearings and
displays their estimated remaining useful lifetime.

10.5. Summary

In summary, all research objectives for this paper were attained. We explained the
role of different components in our architecture and explained how events are exchanged

Appl. Sci. 2021, 11, 10371 22 of 24

and stored persistently. The system enables detection and alerting of events in real-time
measurement data at high volume and velocity, as evaluated on the ventilation monitoring
use case. Semantic reasoning avoids the need for human intervention when visualizing
events. As reasoning time stays well below one second, a smooth user experience is ensured.
Through user interaction with the dashboard, limited amounts of human feedback enable
automatic methods to label a large amount of new events automatically. Finally, other
industrial use cases can easily reuse the dynamic dashboard for event visualization and
feedback capturing, the unified event data format, and the architecture for exchange of
event information.

11. Conclusions

In industry, the lack of available large, labeled datasets is often a problem for the
roll-out of accurate, remote asset monitoring systems. Moreover, such monitoring systems
traditionally employ dashboards that overview the state of assets in the field, these require
a lot of manual effort from the operator to visualize important events occurring in the
data. In this paper, we present an approach to detect events in sensor data, with no initial
labels available and requiring only limited intervention from system experts, applied to a
ventilation monitoring use case.

Our approach consists of a dynamic dashboard that displays both measurement data
and detected events within these measurements. Events originate from both data-driven
and knowledge-driven detector components and are described in a semantic format. When
a user wishes to inspect an event, semantic reasoning is used to automatically determine
suitable widgets to be displayed, reducing the workload for the user. By interacting
with the dashboard, the user provides feedback by describing events or providing a
ground truth regarding the events. As soon as feedback is available, it is fed back to the
dynamic detectors. Even with a limited amount of feedback, these dynamic detectors
can automatically detect and label a large amount of future events. As such, this system
addresses many of the roadblocks faced in industry.

Next, we present some suggestions for future work. A dashboard user will likely
not deem all visualizations as an interesting event. For instance, an event detector may
report that a combination of three sensor properties was important in its decision for
flagging a pattern as unexpected, but an expert may immediately see that only one of the
three sensor properties actually shows abnormal behavior. In such cases, the user may
delete irrelevant widgets from the dashboard, or add additional widgets. Such dashboard
interactions can be used to improve the automatically generated visualizations for similar
events. Ideally, the dashboard is able to tailor the visualizations to the specific context
in which the event occurred (e.g., the asset or operating conditions), or to personalize
the dashboard for the user. To this end, the semantic reasoning approach may be fused
with machine learning-based recommendation engines to further optimize and tailor the
visualisation suggestions.

Besides more advanced dashboard interactions, the scalability of the whole system
should also be evaluated to ensure a large amount of unknown events can be defined
and visualized to the end user. While the currently implemented system already uses the
Obelisk stack through a consumer-producer paradigm [3], a clear evaluation investigating
the load and the possible user burden of such a system is still needed.

A different research direction is also related to personalization, be it on the detection
side. Currently, the semantic event model captures the feedback provided by an expert.
However, it is possible that experts may have different opinions whether or not specific
events are relevant and how to classify them. To tackle this situation, the data model would
have to be extended with the ability to track labels by different users, for example using
the provenance ontology [32]. Next, detection algorithms would have to incorporate this
info into their detection process.

Appl. Sci. 2021, 11, 10371 23 of 24

Author Contributions: Conceptualization, S.V.H. (Sander Vanden Hautte); methodology, S.V.H.
(Sander Vanden Hautte), D.D.P. and B.S.; software, P.M., S.V.H. (Sander Vanden Hautte) , D.D.P.,
B.S., S.V. (Stijn Verstichel) and S.V. (Steven Vandekerckhove); validation, P.M. and S.V.H. (Sander
Vanden Hautte); investigation, S.V.H. (Sander Vanden Hautte), D.D.P. and B.S.; resources, S.V. (Steven
Vandekerckhove); writing—original draft preparation, S.V.H. (Sander Vanden Hautte); writing—
review and editing, P.M., S.V.H. (Sander Vanden Hautte), D.D.P. and B.S.; visualization, S.V.H. (Sander
Vanden Hautte) and D.D.P.; supervision, F.O. and S.V.H. (Sofie Van Hoecke); project administration,
D.D.P., F.O. and S.V.H. (Sofie Van Hoecke); funding acquisition, S.V.H. (Sofie Van Hoecke); All authors
have read and agreed to the published version of the manuscript.

Funding: This research is part of the imec ICON project Dyversify, co-funded by imec, VLAIO,
Renson Ventilation NV, Televic Rail and Cumul.io (project HBC.2017.0147).

Acknowledgments: Renson Ventilation NV, the manufacturer of the Healthbox 3.0, delivered the
use case data, expert knowledge and additional metadata to evaluate the proposed methodology.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. De Maré, B.; Germonpré, S.; Laverge, J.; Losfeld, F.; Pollet, I.; Vandekerckhove, S. Large-scale performance analysis of a smart

residential MEV system based on cloud data. In Proceedings of the 40th AIVC Conference, Ghent, Belgium, 15–16 October 2019.
2. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [CrossRef]
3. Moens, P.; Bracke, V.; Soete, C.; Vanden Hautte, S.; Nieves Avendano, D.; Ooijevaar, T.; Devos, S.; Volckaert, B.; Van Hoecke, S.

Scalable Fleet Monitoring and Visualization for Smart Machine Maintenance and Industrial IoT Applications. Sensors 2020, 20,
4308. [CrossRef] [PubMed]

4. Steenwinckel, B.; De Paepe, D.; Vanden Hautte, S.; Heyvaert, P.; Bentefrit, M.; Moens, P.; Dimou, A.; Van Den Bossche, B.;
De Turck, F.; Van Hoecke, S.; et al. FLAGS: A methodology for adaptive anomaly detection and root cause analysis on sensor
data streams by fusing expert knowledge with machine learning. Future Gener. Comput. Syst. 2021, 116, 30–48. [CrossRef]

5. Vanden Hautte, S.; Moens, P.; Van Herwegen, J.; De Paepe, D.; Steenwinckel, B.; Verstichel, S.; Ongenae, F.; Van Hoecke, S. A
Dynamic Dashboarding Application for Fleet Monitoring Using Semantic Web of Things Technologies. Sensors 2020, 20, 1152.
[CrossRef] [PubMed]

6. Tran, M.Q.; Elsisi, M.; Mahmoud, K.; Liu, M.K.; Lehtonen, M.; Darwish, M.M. Experimental setup for online fault diagnosis
of induction machines via promising IoT and machine learning: Towards industry 4.0 empowerment. IEEE Access 2021,
9, 115429–115441. [CrossRef]

7. Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Reliable industry 4.0 based on machine learning and IOT for analyzing,
monitoring, and securing smart meters. Sensors 2021, 21, 487. [CrossRef] [PubMed]

8. Aksa, K.; Aitouche, S.; Bentoumi, H.; Sersa, I. Developing a Web Platform for the Management of the Predictive Maintenance in
Smart Factories. Wirel. Pers. Commun. 2021, 119, 1469–1497. [CrossRef]

9. Ayvaz, S.; Alpay, K. Predictive maintenance system for production lines in manufacturing: A machine learning approach using
IoT data in real-time. Expert Syst. Appl. 2021, 173, 114598. [CrossRef]

10. Jwo, J.S.; Lin, C.S.; Lee, C.H. Smart technology–driven aspects for human-in-the-loop smart manufacturing. Int. J. Adv. Manuf.
Technol. 2021, 114, 1741–1752. [CrossRef]

11. Kaur, K.; Selway, M.; Grossmann, G.; Stumptner, M.; Johnston, A. Towards an open-standards based framework for achieving
condition-based predictive maintenance. In Proceedings of the 8th International Conference on the Internet of Things, Santa
Barbara, CA, USA, 15–18 October 2018; pp. 1–8.

12. Yeh, C.C.M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H.A.; Silva, D.F.; Mueen, A.; Keogh, E. Matrix Profile I: All Pairs
Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets. In Proceedings of the 2016 IEEE
16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 1317–1322. [CrossRef]

13. Zhu, Y.; Zimmerman, Z.; Senobari, N.S.; Yeh, C.C.M.; Funning, G.; Brisk, P.; Keogh, E. Matrix Profile II : Exploiting a Novel
Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and Joins. In Proceedings of the 2016 IEEE
16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 739–748. [CrossRef]

14. Yeh, C.C.M.; Kavantzas, N.; Keogh, E. Matrix Profile VI: Meaningful Multidimensional Motif Discovery. In Proceedings of
the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 565–574.
[CrossRef]

15. Zhu, Y.; Mueen, A.; Keogh, E. Admissible time series motif discovery with missing data. arXiv 2018, arXiv:1802.05472.
16. De Paepe, D.; Janssens, O.; Van Hoecke, S. Eliminating Noise in the Matrix Profile. In Proceedings of the 8th International

Conference on Pattern Recognition Applications and Methods, Prague, Czech Republic, 19–21 February 2019; pp. 84–93.

http://doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.3390/s20154308
http://www.ncbi.nlm.nih.gov/pubmed/32748809
http://dx.doi.org/10.1016/j.future.2020.10.015
http://dx.doi.org/10.3390/s20041152
http://www.ncbi.nlm.nih.gov/pubmed/32093134
http://dx.doi.org/10.1109/ACCESS.2021.3105297
http://dx.doi.org/10.3390/s21020487
http://www.ncbi.nlm.nih.gov/pubmed/33445540
http://dx.doi.org/10.1007/s11277-021-08290-w
http://dx.doi.org/10.1016/j.eswa.2021.114598
http://dx.doi.org/10.1007/s00170-021-06977-9
http://dx.doi.org/10.1109/ICDM.2016.0179
http://dx.doi.org/10.1109/ICDM.2016.126
http://dx.doi.org/10.1109/ICDM.2017.66

Appl. Sci. 2021, 11, 10371 24 of 24

17. De Paepe, D.; Vanden Hautte, S.; Steenwinckel, B.; Moens, P.; Vaneessen, J.; Volckaert, B.; Ongenae, F.; Van Hoecke, S. A
Complete Software Stack for IoT Time Series Analysis that Combines Semantics and Machine Learning—Lessons Learned from
the Dyversify Project. J. Syst. Softw. 2021, submitted.

18. Lee, W.S.; Grosh, D.L.; Tillman, F.A.; Lie, C.H. Fault Tree Analysis, Methods, and Applications: A Review. IEEE Trans. Reliab.
1985, 34, 194–203. [CrossRef]

19. Stamatis, D.H. Failure Mode and Effect Analysis: FMEA from Theory to Execution; ASQ Quality Press: Milwaukee, WI, USA, 2003.
20. Lykourentzou, I.; Papadaki, K.; Kalliakmanis, A.; Djaghloul, Y.; Latour, T.; Charalabis, I.; Kapetanios, E. Ontology-based

Operational Risk Management. In Proceedings of the 2011 IEEE 13th Conference on Commerce and Enterprise Computing,
Luxembourg, 5–7 September 2011; pp. 153–160. [CrossRef]

21. Steenwinckel, B.; Heyvaert, P.; De Paepe, D.; Janssens, O.; Vanden Hautte, S.; Dimou, A.; De Turck, F.; Van Hoecke, S.; Ongenae, F.
Automated extraction of rules and knowledge from risk analyses: A ventilation unit demo. In Proceedings of the ISWC 2018
Posters & Demonstrations, Industry and Blue Sky Ideas Tracks, Co-Located with 17th International Semantic Web Conference
(ISWC 2018), Monterey, CA, USA, 8–12 October 2018; Volume 2180, p. 4.

22. Cyganiak, R.; Wood, D.; Lanthaler, M.; Klyne, G.; Carroll, J.J.; McBride, B. RDF 1.1 concepts and abstract syntax. W3C Recomm.
2014, 25, 1–22.

23. Berners-Lee, T.; Connolly, D.; Kagal, L.; Scharf, Y.; Hendler, J. N3Logic: A logical framework for the World Wide Web. Theory
Pract. Log. Program. 2008, 8, 249–269. [CrossRef]

24. Janowicz, K.; Haller, A.; Cox, S.J.D.; Phuoc, D.L.; Lefrancois, M. SOSA: A lightweight ontology for sensors, observations, samples,
and actuators. J. Web Semant. 2019, 56, 1–10. [CrossRef]

25. Haller, A.; Janowicz, K.; Cox, S.J.D.; Lefrançois, M.; Taylor, K.; Le Phuoc, D.; Lieberman, J.; García-Castro, R.; Atkinson, R.; Stadler,
C. The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and
actuation. Semant. Web 2019, 10, 9–32. [CrossRef]

26. Haller, A.; Janowicz, K.; Cox, S.; Phuoc, D.L.; Taylor, K.; Lefrançois, M.; Atkinson, R.; García-Castro, R.; Lieberman, J.; Stadler, C.
Semantic Sensor Network Ontology. W3C Recomm. 2017, 56, 1–10.

27. Verborgh, R.; De Roo, J. Drawing Conclusions from Linked Data on the Web: The EYE Reasoner. IEEE Softw. 2015, 32, 23–27.
[CrossRef]

28. Agrawal, R.; Imieliński, T.; Swami, A. Mining Association Rules between Sets of Items in Large Databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 25–28 May 1993; Association for
Computing Machinery: New York, NY, USA, 1993; pp. 207–216. [CrossRef]

29. Shokoohi-Yekta, M.; Chen, Y.; Campana, B.; Hu, B.; Zakaria, J.; Keogh, E. Discovery of meaningful rules in time series. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia,
10–13 August 2015; pp. 1085–1094. [CrossRef]

30. Fahed, L.; Brun, A.; Boyer, A. Efficient Discovery of Episode Rules with a Minimal Antecedent and a Distant Consequent. In
Knowledge Discovery, Knowledge Engineering and Knowledge Management; Fred, A., Dietz, J.L.G., Aveiro, D., Liu, K., Filipe, J., Eds.;
Springer International Publishing: Zurich, Switwerland, 2015; pp. 3–18.

31. Lehmann, J. DL-Learner: Learning Concepts in Description Logics. J. Mach. Learn. Res. 2009, 10, 2639–2642. [CrossRef]
32. Lebo, T.; Sahoo, S.; McGuinness, D.; Belhajjame, K.; Cheney, J.; Corsar, D.; Garijo, D.; Soiland-Reyes, S.; Zednik, S.; Zhao, J.

PROV-O: The PROV Ontology; W3C Recommendation, World Wide Web Consortium: Cambridge, MA, USA, 2013.

http://dx.doi.org/10.1109/TR.1985.5222114
http://dx.doi.org/10.1109/CEC.2011.18
http://dx.doi.org/10.1017/S1471068407003213
http://dx.doi.org/10.1016/j.websem.2018.06.003
http://dx.doi.org/10.3233/SW-180320
http://dx.doi.org/10.1109/MS.2015.63
http://dx.doi.org/10.1145/170035.170072
http://dx.doi.org/10.1145/2783258.2783306
http://dx.doi.org/10.5555/1577069.1755874

	Introduction
	Solving Challenge 2 (C2): Analysis of Sensor Data
	Solving Challenge 3 (C3): Meaningful and Low-Effort Visualization
	Our Research

	Related Work
	Use Case: Indoor Ventilation Monitoring
	Combining Knowledge- and Data-Driven Techniques
	Event Detection
	Data-Driven Event Detection
	Knowledge-Driven Event Detection

	Semantic Event Description
	Automated Event Visualization Using Semantic Reasoning
	Capturing User Feedback
	Improved Event Detection with Captured User Feedback
	Matrix Profile-Based Known Pattern Detector
	Temporal Rule Mining
	Semantic Rule Mining

	Implementation and Evaluation
	A Monitoring Architecture for Real-World, Streaming Data
	Automated and Fast Event-Driven Dashboard Creation
	User Feedback Capture for Increased Detector Performance and Automated Labeling
	Dynamic and Adaptive Solution End-to-End, Applicable to Other Use Cases
	Summary

	Conclusions
	References

