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Abstract: This work was undertaken to develop a low-cost but reliable assessment method for
agricultural water requirements in semi-arid locations based on remote sensing data/techniques.
In semi-arid locations, water resources are often limited, and long-term water consumption may
exceed the natural replenishment rates of groundwater reservoirs. Sustainable land management in
these locations must include tools that facilitate assessment of the impact of potential future land use
changes. Agricultural practices in the Boufakrane River watershed (Morocco) were used as a case
study application. Land use practices were mapped at the thematic resolution of individual crops,
using a total of 13 images generated from the Sentinel-2 satellites. Using a supervised classification
scheme, crop types were identified as cereals, other crops followed by cereals, vegetables, olive trees,
and fruit trees. Two classifiers were used, namely Support vector machine (SVM) and Random forest
(RF). A validation of the classified parcels showed a high overall accuracy of 89.76% for SVM and
84.03% for RF. Results showed that cereal is the most represented species, covering 8870.43 ha and
representing 52.42% of the total area, followed by olive trees with 4323.18 ha and a coverage rate of
25%. Vegetables and other crops followed by cereals cover 1530.06 ha and 1661.45 ha, respectively,
representing 9.4% and 9.8% of the total area. In the last rank, fruit trees occupy only 3.67% of the
total area, with 621.06 ha. The Food and Agriculture Organization (FAO) free software was used
to overlay satellite data images with those of climate for agricultural water resources management
in the region. This process facilitated estimations of irrigation water requirements for all crop
types, taking into account total potential evapotranspiration, effective rainfall, and irrigation water
requirements. Results showed that olive trees, fruit trees, and other crops followed by cereals
are the most water demanding, with irrigation requirements exceeding 500 mm. The irrigation
requirements of cereals and vegetables are lower than those of other classes, with amounts of 300 mm
and 150 mm, respectively.

Keywords: Sentinel-2; SVM; RF; Boufakrane River watershed; irrigation requirements; water
resources; sustainable land use; agriculture
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1. Introduction

According to World Bank data, the global rural population declined from 66.39%
of the total population in 1960 to 44.72% in 2016. Meanwhile, agricultural added value,
as a percentage of GDP (gross domestic product), decreased from 7.59 to 3.43% during
the period 1994–2017. Despite these changes, the continued growth of the global human
population has resulted in phases of deforestation together with innovations, increasing the
efficiency of agricultural systems, and subsequent crises of unprecedented demographic,
economic and urban expansion [1,2].

In semi-arid regions like Morocco, agricultural practices are facing a series of chal-
lenges not limited to climate change, which is reflected in an increasingly warmer and drier
climate [3], coupled with the increasingly random spatiotemporal variability of rainfall, and
associated droughts and floods [4–8]. These issues are exacerbated by increasingly complex
land use and land cover practices that in turn adversely affect socio-economic develop-
ment [9]. Agriculture, as an important economic sector, is therefore deeply impacted, given
crop production dependence on the annual rainfall distribution [4–8]. It is clear that hu-
mans have created and are now witnessing a great agricultural ecosystem disturbance [8].

Recently, geospatial technologies have been used extensively for spatiotemporal
monitoring of environmental phenomena, including land use/land cover changes [6,9–15],
understanding the ecosystem functions [16,17], identifying agricultural systems and crop
mapping [3,8,18,19], estimating fractional crop cover and crop residue [20], estimating
the impacts of urbanization on agricultural dynamics [3], identifying the karst cavities in
agricultural areas [21–23], and water balance assessments at regional and local scales [6,24].
Many investigations have shown a great deal of potential in terms of different machine
learning approaches in imagery classification, such as vector machine support [3,25–29]
and random forest [30–32]. These innovative data interrogation and modeling approaches
are critically important for estimating agricultural crop water use. This is important in
order to implement effective strategies for advanced water resource management for
agriculture in response to contemporary water budget challenges. Several works have
been published supporting these needs in recent years [33–41], particularly in semi-arid
zones [42]. Ofentse Moseki et al. [42] used the CROPWAT model to determine the irrigation
needs of the Jatropha crop in Botswana. They used the CROPWAT model to estimate
baseline evapotranspiration (ETo), evapotranspiration (ETc), irrigation water requirements
(IWR) and yield response to irrigation scheduling in Botswana. The results showed that
the annual ETo from 2014 to 2016 at the station was 1456 mm. The lowest monthly ETo
(50.10 mm) was observed in June and the highest (182.59 mm) in January.

This model is widely used, especially in understanding the changes in crop water
requirements [38], which are defined as the depth of water required to meet the evapo-
transpiration water loss (ETc) of a disease-free crop growing in large fields; this parameter
is important for promoting sustainable development. In particular, the model is used
in the determination of crop water and of the effects of irrigation programming on the
crop [40,41]. This model allows calculation of the water requirements of the different crops
using soil data, climatic data, and data on the crops themselves. Therefore, to determine
the crop’s water requirement, several parameters were calculated.

Calculation of Potential Evaporation of Crop ETc: Before calculating the ETc, specific stud-
ies on the water requirements of crops in the area should be examined; the meteorological
and research stations and the environment should also be visited. The calculation of this
parameter is done by the following two main steps:

(a) Reference evapotranspiration (ET0): Collect climate data and choose the method for
calculating ET0 for each 30 or 10 day period using the average climate data.

(b) Crop coefficient (kc): Determine the timing of planting or sowing, the rate of crop
development, the duration of crop development stages and the growing season.
Choose the kc for a given crop plan and crop development stage under prevailing
climatic conditions, and prepare a crop coefficient curve for each one.

(c) Crop evapotranspiration (ETcrop): Calculate ETcrop for each 30- or 10-day period:
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ETc = Kc ∗ ET0

Irrigation requirements: Part of the crop water requirements is met by rainfall (Pe),
groundwater (Ge) and stored soil water (Wb); or

Irr.Req = ETc− Pe− Ge−Wb

and is determined on a monthly basis.
The specific objectives of this work were to (i) use high spatial resolution Sentinel-2

images to map crop types in the Boufakrane watershed; (ii) evaluate machine learning
(ML) methods such as support vector machine (SVM) classifier and random forest (RF) in
crop species’ mapping; (iii) use the CROPWAT 8.0 model to estimate water demand for
agriculture in the study area through the calculation of potential evaporation and effective
rainfall. Finally, irrigation water requirements were estimated.

2. Materials and Methods
2.1. Study Area

The Boufakrane River watershed is located in the headwaters region of the Great
Sebou Basin between longitudes 5◦25′46.13′ ′ and 5◦37′49.71′ ′ W and between latitudes
33◦28′54.40′ ′ and 33◦58′32.93′ ′ N (Figure 1). Locally, the area is part of the Fez-Meknes
region, which is one of the most important and productive areas for agriculture in the region,
given its relatively high water availability and good quality soils. The regional Useful
Agricultural Area (UAA) is estimated to be approximately 1,340,826 hectares, representing
15% of the national total area. The UAA is dominated by cereals (816,000 ha) and olive
trees (350,000 ha), and 14% of the area is irrigated (184,162 ha). Climatically, the region
is characterized by a semi-arid climate, with a mean annual rainfall of 500 mm, a mean
annual reference evapotranspiration of 907 mm, and a dry season extending from June to
October (Figure 2).
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Figure 2. Ombrothermic diagram of the meteorological station at Meknes. Rainfall is mean monthly
rain depth and temperature is mean monthly air temperature (1998–2018).

2.2. Data

The regions of interest used for land use classification were developed based on a
series of field missions throughout the study area along with high-resolution Google Earth
visualizations. A total of 88,546 pixels with a resolution of 10 m2 was used for classification;
65% were used as reference data and 35% for the validation. The sampling was done in a
random way; it was chosen to be representative and well distributed in the area. Figure 3
shows the field data used for this work. Weather data were collected for the study period
of September 2018 to August 2019. These data included monthly mean rainfall, monthly
average minimum temperature, monthly average maximum temperature, humidity (%),
wind speed (m/s), and sunshine intensity (hours). Figure 4 shows climate data collected
by the climate station at the Faculty of Science of Meknes, Moulay Ismail University,
coordinates: Latitude: 33◦52′11.12′ ′ N, Longitude: 5◦32′35.11′ ′ W, Z = 554 m.

For the satellite data, a total of 13 satellite images covering a whole crop year were
used to carry out this work. All these images were obtained from the Sentinel-2 sensor of
the European Space Agency (https://sentinel.esa.int/web/sentinel/sentinel-data-access
(accessed on 15 August 2021)). This mission was launched in June 2015, with a revisit
time (i.e., image interval) of 10 days and image spatial resolution of 10 m to 60 m in
thirteen spectral bands from visible to mid-infrared. Images were downloaded from
https://scihub.copernicus.eu/dhus/#/home (accessed on 15 August 2021) for the period
August 2018–August 2019 (Table 1).

Table 1. Sentinel-2 satellite image acquisition dates.

Image Acquisition Dates

1 22 August 2018
2 1 September 2018
3 21 October 2018
4 15 November 2018
5 15 December 2018
6 14 January 2019
7 13 February 2019
8 15 March 2019
9 29 April 2019

10 14 May 2019
11 8 June 2019
12 18 July 2019
13 22 August 2019

https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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2.3. Methodolgy

Normalized difference vegetation index (NDVI) was calculated to construct NDVI
time-series images. In parallel, several surveys and field missions were conducted in the
region to collect reference (validation) points for the different agricultural crops. These data
were combined with the high spatial resolution Google Earth images. Spectral profiles were
then constructed and used as input data for a machine learning approach to map different
crop species in the region. As a final step, and to associate satellite data with observed
water management practices, CROPWAT 8.0 software was used to estimate crop water
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requirements (Figure 5). The simulation was carried out on three parameters: potential
evapotranspiration for the different crop types (ETc), effective rainfall (ER), and irrigation
water requirements (IWR). These three parameters are dependent on each other. The ETc is
the amount of water that should be transpired in a given time by the crop, while the ER
is defined as the rainfall fraction that responds to the crops’ water needs [43]. During the
rainy months, rainfall covers the water requirements of the crops, while during the dry
months, rainfall must be supplemented by irrigation water to cover water requirements.
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2.4. Support Vector Machine (SVM)

SVMs belong to a family of algorithms that use supervised learning and are specialized
in solving mathematical discrimination and regression problems. They were developed
in 1998 by Vladimir Vapnik [44]. Support vector machines (SVMs) represent a group of
theoretically superior machine learning algorithms. The development of this method was
initially triggered by the exploration and formalization of machine learning capacity control
and over-fitting problems [44] and represents an efficient technique, with reduced data and
processing demands. The method avoids the problems of over-adjustment and does not
require any hypothesis on the type of data. Although non-parametric, the method is capable
of developing efficient decision limits and can therefore minimize classification errors.
This is done by searching for the optimal separation between classes [45]. Their work was
quickly adopted because of their ability to work with large data, their theoretical guarantees
and the good results achieved in practice. Requiring a small number of parameters, SVMs
are appreciated for their simplicity of use.

2.5. Random Forest (RF) Classifier

Random forest (RF) was developed by [46]. It is a supervised non-parametric method
applicable for both classification and prediction [47,48]. Model subroutines are composed
of a combination of decision trees used independently to assign the most frequent class to
the input data, and the majority vote of the trees determines the class prediction. The part
of the data not used in tree training is used for performance evaluation.

For the current investigation, after extracting the crop type characteristic based on the
data collected in the field, twelve decision trees were constructed and were the basis for RF
classifier (Figure 6). These decision trees make it possible to predict the different classes.
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2.6. NDVI Time-Series Spectral Profile Curves

Field data and data collected from the Regional Directorate of Agriculture showed
the presence of five main cropping systems in the region, including cereals, other crops
followed by cereals, vegetables (onion, potatoes, tomatoes), olive trees and fruit trees. More
than two hundred profiles were developed for the different crop types. These profiles were
associated with the field data and the visualization of high spatial resolution Google Earth
images in order to collect input data for classification (Figures 7 and 8).

From Figure 8, it is possible to discriminate the spectral characteristics of the different
crops in relation to NDVI values during the year. This index, proposed for the first time
by Rouse et al., 1973 [49], is widely used and provides information on the quantity and
vigor of vegetation, taking into account the near infrared (NIR) and visible red bands of the
electromagnetic spectrum [49,50] calculated by the following equation:

NDVI = ρNIR − ρRED/ρNIR + ρRED

where ρNIR : the reflectance in the near− infrared reflectance, ρRED : the reflectance in
the red band.

For example, for an olive pixel, the NDVI value did not change significantly through-
out the year, with an increase around February. While for a pixel of cereals, the NDVI
values did increase with the crop growth cycle.
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AeroGRID, IGN, and the GIS User Community).
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3. Results
3.1. Overall Accuracy

The classification approaches used in this work were selected based on the confusion
matrix and the Kappa index [51–53], whose the overall accuracy is the proportion of the
area mapped correctly. It provides the user of the map with the probability that a randomly
selected location on the map is correctly classified. The Kappa coefficient measures the
agreement between the resulting classes of the classifier and the true values [52,54], with
values ranging from 0 to 1, where 0 represents no agreement and 1 represents perfect
agreement. The Table 2 shows the confusion matrix calculated from the reference data
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and the map classes; the reference data is presented in the row, and the map classes in the
columns. The results showed that the two approaches showed high classification accuracies.
The overall accuracy for the SVM classifier exceeded 89.76%, and a significant agreement
by the Kappa index of 0.79 was obtained. The overall accuracy for RF was 84.03%, with a
Kappa index of 0.68. For the validation, 57,554 pixels were used. In most cases, it showed a
high accuracy of this classification for most crop species. Few confusions between classes
were recorded using the RF approach (e.g., crops followed by cereals, cereals, vegetables,
and olive trees).

Table 2. Confusion Matrix. OCFC = Other Crops Followed by Cereals.

Reference Data (%)

Map Classes Cereals OCFC Vegetables Olive Trees Fruit Trees Total (%)
Classifier SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

Cereals 88.23 87.40 6.05 24.43 2.05 1.52 1.21 5.17 0.65 6.17 64.17 64.32

OCFC 5.27 4.48 88.10 41.86 4.80 10.76 1.66 7.39 0.48 0.62 5.54 5.81

Vegetables 3.97 3.30 1.88 10.96 92.61 84.30 0.97 0.39 0.39 0.06 14.63 13.13

Olive trees 2.20 3.41 3.76 13.47 0.43 0.88 94.79 70.05 2.36 23.69 11.42 10.79

Fruit trees 0.33 1.40 0.21 9.29 0.11 2.53 1.37 17.01 96.13 69.46 4.23 5.94

100 100

In addition to the overall accuracy and the Kappa index, other types of accuracy and
errors were calculated for both classifiers, including the producer’s accuracy, the user’s
accuracy, the commission error, and the omission error (Table 3) [53].

(i) Producer’s accuracy is defined as the probability that a value in a reference dataset
was correctly classified. Producer’s accuracy is the complement to the probability of
omission error.

(ii) User’s accuracy represents the probability that a resulting value in a certain class is really
that class. User’s accuracy is the complement to the probability of commission error.

(iii) Commission errors represent the fraction of the resulting values in a class that does
not belong to that class.

(iv) Omission errors represent the fraction of values that belongs to one class but was
predicted in a different class.

Table 3. Commission, omission, producer’s and user’s accuracy for the SVM and RF classifiers.

Classes Commission (%) Omission (%) Producer’s Accuracy (%) User’s Accuracy (%)

Classifier SVM RF SVM RF SVM RF SVM RF

Cereals 0.74 1.91 11.77 12.60 88.23 87.40 99.26 98.09
OCFC 82.93 92.26 11.90 58.14 88.10 41.86 17.07 7.74

Vegetables 20.49 19.38 7.39 15.70 92.61 84.30 79.51 80.62
Olive trees 15.56 33.95 5.21 29.95 94.79 70.05 84.44 66.05
Fruit trees 9.27 53.29 3.87 30.54 96.13 69.46 90.73 46.71

In terms of accuracy, the producer’s accuracy and user’s accuracy confirm the results
found for the overall accuracy. The producer’s accuracy showed very high values, with
more than 80% for all classes in the both classifiers SVM and RF, except the class other
crops followed by cereals, which presented a value of 41.86% for the RF classifier. The
user’s accuracy showed very high values, with more than 79% for all classes in the SVM
classifier, except for other crops followed by cereals, which presented a value 17.07%. For
the RF classifier, this accuracy shows high values for the three classes of cereals, vegetables,
and olive trees: 98.09%, 80.62%, and 66.05%, respectively. The other two classes, fruit trees
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and other crops followed by cereals, represent low precision, with values of 46.71% and
7.74%, respectively.

In terms of commission error, the results showed that the other crops followed by
cereals represents the highest values for the two classifiers SVM and RF, with values of
82.93% and 92.26%, respectively, followed by vegetables and fruit trees. The other two
classes represented a low value for this error. For the omission error, cereals and other crops
followed by cereals represented the highest value for the SVM, whereas for RF, cereals and
other crops followed by cereals represent a high value of 58.14%, followed by fruit trees
with 30.54% and olive trees with 29.95%.

3.2. Crop Mapping

Crop mapping was performed based on field data combined with a detailed study of
the chlorophyll response (NDVI) for each of crop type. The crops determined in the region
were cereals, other crops followed by cereals, vegetables (onions, potatoes, tomatoes), olive
trees, and fruit trees. In order to calculate the areas of each class, pixel size was used.
Therefore, after obtaining the classes, the area of each class was obtained by multiplying the
number of pixels and the pixel size (10 m × 10 m). For the crop year 2018–2019, the areas
determined for the cereals represented the largest class, with an area of 8870.43 ha, followed
by olive trees with an area of 4323.18 ha. Classes of other crops followed by cereals and
vegetables represented 1661.45 ha and 1530.06 ha, respectively. The least represented class
was that of fruit trees, with only 661.05 ha (Figure 9).
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3.3. CROPWAT for Water Crop Requirements

This section includes calculation of the crop water requirements using the FAO free
software CROPWAT 8.0, based on climate, soil, and crop data. Thus, three main variables
were estimated by the units of water depth (mm): ETc, ER, and IWR. For preliminary
planning, monthly data are frequently used, and the total of the data of the different crops
over the area constitutes the basis for determining the supply.

The climatic data were used to calculate the reference evapotranspiration ET0, and by
determining the timing of planting or sowing, the rate of crop development, the duration
of crop development stages, and the growing season kc for a given crop were chosen. Then,
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the ETc for each crop type was calculated for each 10 day period. Figure 10 shows the
different crop types’ evapotranspiration from October 2018 to August 2019. The curves
show that this parameter increases in the driest months (July and August) for all crop types,
while it decreases in the rainiest months (December to February). For the class of other crops
followed by cereals, for example, the potential evapotranspiration reached up to 70 mm.
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Figure 10. Potential evaporation of crops ETc.

Not all precipitation is effective, and in the most cases some of this precipitation
can be lost through surface runoff, deep percolation, or evaporation. Only part of the
high-intensity rain can penetrate and be stored in the root zone. These rains can be 100%
effective when the vegetation cover is complete, while they can be only 60% effective with a
low percentage of vegetation cover. The relationship between the average monthly ER and
the average monthly rainfall is shown for different values of the average monthly ETc [55].
Figure 11 shows the evolution of ER for the different types of crops. The evolution curves
of this parameter show that the crops’ needs were met in the rainy months. However, in
the dry months, these crops suffered from water stress.
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Irrigation water requirements are calculated using the field water balance, based on
ETc and ER. They allow for optimal production in a given growing environment.

Figure 12 shows the evolution of water requirements for agriculture for the different
types of crops. In the rainy months, rainfall covers the water requirements of the crops;
during this time, the water requirements for irrigation are expected to be very low. This
parameter is strongly related to the climatic conditions and is directly influenced by
variations in conditions. It is inversely correlated with the daily rainfall. Thus, it is
high in the dry months and low in the rainy months.
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Figure 13 shows the total for the year of the three estimated parameters (ETc, ER,
and IWR) for the different types of crops. For water irrigation requirements, other crops
followed by cereals, olive trees, and fruit trees were the three types of crops that required a
very large quantity of water, exceeding 500 mm. Vegetables required about 450 mm; the
demand of cereals did not exceed 200 mm. The potential evapotranspiration was strongly
correlated with the water demand; the crop types that demanded a lot of water were those
that recorded high values of evapotranspiration. For the ER, the class that recorded the
lowest values was vegetables, while the other classes recorded values higher than 300 mm.
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4. Discussion

Using the classification approach described earlier, and based on spectral analysis re-
sults, a map of the different agricultural species was produced for the study area (Figure 9).
Results generally showed that the classification using both classifiers was satisfactory, with
the exception of some confusion between a few classes, which is likely due to the spectral
similarity of the crops.

Previous investigations using geospatial techniques have shown a strong efficiency in
land use/land cover change monitoring [6,11], crop mapping [3,18], and identification of
agricultural systems [8]. Ouzemou et al. [3] carried out an insightful study in the plains
of Tadla, Morocco. The objectives included mapping different agricultural species using
high-resolution satellite data and machine learning approaches and comparing the different
used approaches. Their study showed an overall accuracy of 89.26%, 85.27%, and 57.17%,
respectively, for random forest, support vector machine, and spectral angle mapper, with a
Kappa index of 0.85, 0.80, and 0.4, respectively. Comparing our result with this one, our
study also showed a high overall accuracy of 89.76% for SVM and 84.03% for RF, and a
Kappa index of 0.79 and 0.68, respectively.

The CROPWAT model was used to determine water demand for the different agricul-
tural species in the region. Three parameters were calculated, namely, the crops’ potential
evaporation, the effective rain, and the irrigation requirements. The results obtained by [40]
showed that the irrigation requirements varied according to the location, whereas the
required water quantity per palm varied between 115 and 200 liters per day. Comparing
our result with this one, our study showed that olive trees, fruit trees, and other crops
followed by cereals are the most water demanding, with needs exceeding 500 mm. The
water demands of cereals and vegetables are lower than that of other classes, with amounts
of 300 mm and 150 mm, respectively.

As explained, water consumption is increasing in the Saiss plain. This is mainly due
to excessive exploitation. According to the 1939–2002 groundwater data record, there is a
constant deficit of approximately 100 Mm3/year, with an estimated inflow of 242 Mm3/year
and an estimated outflow of 342 Mm3/year. While the output includes abstraction with
260 Mm3/year, and rivers and springs with 82 Mm3/year, 22% of the water balance is
dedicated to human drinking water supplies and 78% to private irrigation [56].

5. Conclusions

The assessment and estimation of water demand for agriculture is crucial to improve
water resource management in a given region. The final objective was to determine the
water demand for agriculture in the Boufakrane River watershed through several steps.
First, a map of the different crop types was produced using the SVM and RF machine
learning algorithms, based on field data combined with the high spatial resolution Google
Earth images. Five crop types were mapped, including cereals, other crops followed by
cereals, vegetables, olive trees, and fruit trees. Then, the evaluation of the classification map
was made based on the Kappa index and the overall accuracy. Finally, the satellite data
were combined with climate, soil, and crop data before being used as inputs for CROPWAT
software to estimate the water requirements for agriculture.

The mapping results showed a strong potential of high-resolution satellite data in
agricultural species mapping. The evaluation of the two classifiers used (RF and SVM)
showed a Kappa index higher than 0.67 and an overall accuracy exceeding 83%. The
irrigation requirements showed that the other crops followed by cereals, olive trees, and
fruit trees were the three types of crops that required a very large quantity of water,
exceeding 500 mm. Vegetables required an amount of about 450 mm; the demand of cereals
did not exceed 200 mm.

The method developed in this work facilitates estimations of the agriculture water
demand in the study area, thereby promoting sustainable water resource management.
Through this study, we recommend a combination of these methods with existing real
data for the implementation of a system for the quantification of water resources for
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crops throughout Morocco, which would allow validation using global crop yield data. It
was also an opportunity to see the link between water demand and known groundwater
reserves and existing data on actual evapotranspiration in this area.
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