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Abstract: In a DNN-based recommendation system, the input selection of a model and design of
an appropriate input are very important in terms of the accuracy and reflection of complex user
preferences. Since the learning of layers by the goal of the model depends on the input, the more
closely the input is related to the goal, the less the model needs to learn unnecessary information.
In relation to this, the term Drafted-Input, defined in this paper, is input data that have been
appropriately selected and processed to meet the goals of the system, and is a subject that is updated
while continuously reflecting user preferences along with the learning of model parameters. In this
paper, the effects of properly designed and generated inputs on accuracy and usability are verified
using the proposed systems. Furthermore, the proposed method and user–item interaction are
compared with state-of-the-art systems using simple embedding data as the input, and a model
suitable for a practical client–server environment is also proposed.

Keywords: MovieDIRec; drafted-input; personalized recommendation system

1. Introduction

Recently, various studies related to recommendation systems have been actively
conducted. There are two main themes. The first is methods to solve the fundamental
problems of the recommendation system such as the first rater, the cold start problem,
overspecialization, and protection of user privacy [1–3], and the second is the improvement
of the accuracy of the recommendation system [4–9].

Currently, various methods combining a DNN (Deep Neural Network) with collab-
orative filtering, content-based filtering, etc., including pure DNN-based methods, are
being studied and advanced to improve accuracy [2,10–12]. Most of the methods of recent
research are methods of inferring preference trends using similar users, such as collabora-
tive filtering, based on vectors embedding user–item interaction. In this case, the model
learns the user–item preference distribution. However, since the data describing the item
are limited to the embedding vector dimension, there is a tendency to generalize the
user’s complex preferences. On the other hand, a method using content-based filtering is
also being actively studied. The study mainly solves the cold-start problem or the first-
rater problem and is introduced as a solution with improved accuracy compared to pure
content-based filtering.

The method we propose is an approach using a DNN, which uses the Drafted-Input
data with potential meanings to omit the inaccurate and generalized semantic transforma-
tion process from the model and induces learning only the necessary meanings. Certain
parts of the drafting process of Drafted-Input clearly fall under feature engineering or
pre-processing. However, it means more than preprocessing, in that it is continuously
updated by learning and each role exists within the model network. Drafted-Input is data
processed by analyzing/selecting related meta data according to the purpose pursued by
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the model, as well as the model. However, the reason for the new definition of “Drafted-
Input” without using terms such as “Add-hoc”, “meta data”, or “Preprocessed data” is
as follows:

• It is the subject of training and is input data that are continuously updated through
learning once they are created ≈ preliminary and updatable object.

• These are the input data selected to describe the target in terms of the goal of the
model ≈ select for a certain purpose.

In this paper, we propose a movie recommendation system that focuses on the latter,
improving accuracy, and also providing an appropriate configuration to apply it in a
practical client–server environment. The reason why the scope is limited to movies is that
the proposed method has the characteristic of operating only in one domain, and the data
are relatively open compared to multiple domains. In this paper, movie data of IMDB and
rating data of MovieLens-20m were used [13]. We propose two types of DNN-based models
that learn through the user’s implicit feedback and provide personalized recommendations;
the first is a model that is as rough as possible so that it is easy to understand and modify
concepts and can be applied in a centralized environment. Second, the Auto-Encoder
concept is applied to the first model in consideration of the practical environment so that
the server and the client divide and share the operation. It is a model that reduces the
traffic for inference as much as possible.

Our Contributions. The major contributions are summarized as follows:

• Verify the effect of Drafted-Input of movie/user on training and recommendation accuracy;
• Propose an inference resource distribution method based on Auto-Encoder considering

the client–server environment;
• Propose a method to personalize by paying attention to specific preference features of

items in the network using User’s weights extracted through a specific method.

2. Related Works
2.1. DNN-Based Recommendation System

So far, various approaches using a DNN have been proposed in the field of recom-
mendation systems. A well-known example is the recommendation system of the YouTube
platform [11]. Due to the vast amount of content on YouTube, a lot of calculations are
required for recommendations. Therefore, the method that YouTube has chosen is to apply
the Candidate model that filters out candidates from a huge amount of content and the
ranking model that infers ranking among the filtered content. It is to infer the user’s
action using a model similar to the candidate model through hundreds of videos that are
impressions from the candidate model. YouTube uses implicit feedback based on whether
the user watched or not, instead of explicit feedback such as ‘like’ and ‘dislike’, which
are functions provided by the platform. This is because, in general, explicit feedback is
very sparse, and more user history can be utilized using implicit feedback. Furthermore,
YouTube took a method of solving the cold-start problem to some extent by including the
user’s geographic information or demographic information in the input features.

Another approach that is rapidly emerging is a method using a Variational Auto
Encoder (VAE) [4,6–8]. Dissimilar to the dimensionality reduction in the input, which is
one of the purposes of the commonly used Auto Encoder, a VAE aims to generate new
data using the learned distribution. To apply this to the recommendation system, these
studies suggest improvement methods such as applying the reparameterization trick or
modifying the loss function of the existing VAE to effectively tune the parameters. A VAE
has the characteristic of being able to solve problems of linear latent factor models (e.g.,
Matrix Factorization), such as overfitting caused by sparse data or slowing down due
to model size, by applying the concept of the multinomial distribution, which was not
mainly used in the recommendation system. However, as mentioned above, if a single
shared model is used, distribution learning using embedding vectors tends to generalize
user preferences. In addition, it is also impossible to reflect the negative experience to the
user’s preference by using a vector that maps interaction to 0 and 1 for the distribution
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calculation. Due to these characteristics, the results are reflected insensitively to the user’s
dislike when recommending.

2.2. TF-IDF

The term Frequency–Inverse Document Frequency (TF-IDF) is one of the text vector-
ization techniques and is a method of weighing the importance of each word in a document
through word frequency and inverse document frequency. When the document is d and
the word is t, the tf-idf vectorization can be expressed as the following expression:

t f id f (t, d, D) = t f (t, d)× id f (t, D) (1)

Here, t f (t, d) can be seen as the frequency of the term in the document, and id f is
calculated as follows:

id f (t, D) = log
|D|

|{d ∈ D : t ∈ d}| (2)

This property can prevent frequently included words such as “this” and “the” from affect-
ing the vector expressing the meaning of the document, although it contains little meaning.

2.3. Truncated-SVD

Singular Value Decomposition (SVD) means decomposing a given m× n matrix A
as follows.

A = UΣVT (3)

In the above equation, U is an m×m orthogonal matrix obtained by the eigen de-
composition of AAT. It is called a left singular vector of A, and V is an n× n type right
singular vector obtained by the eigen decomposition of ATA. Finally, Σ is a rectangular
diagonal matrix of the form m× n whose diagonal elements are the square roots of the
eigenvalues of U and V. The one method is called Full-SVD, and there are Compact-SVDs
in which a portion having singular values of zeros is reduced and a Thin-SVD method in
which only rows excluding a diagonal matrix are reduced. However, it is difficult to use in
a recommendation system environment with sparse data.

Another method is the Truncated-SVD method, which extracts and uses only the top t
singular values of the SVD. This is aimed at approximation rather than restoration, and by
setting t at a level that does not negatively affect the approximation, a reduced UΣVT is
obtained, and a compressed vector as much as t can be obtained through this. Because of
these characteristics, it can be used in a more suitable way for sparse data. Both SVD and
t-SVD are methods frequently used as matrix factorization techniques for collaborative
filtering, and studies using them are still being actively conducted [14–18].

2.4. Auto Encoder

Dissimilar to the VAE described above, an Auto Encoder is generally used for di-
mensionality reduction. The model consists of an encoder model that compresses input
features and a decoder model that approximates the original by expanding the compressed
code information. The Auto Encoder has the characteristic that an SVD is a linear dimen-
sionality reduction algorithm, whereas the Auto Encoder is a non-linear based algorithm,
so it can operate smoothly even for complex data compression. Methods using the data
compression and approximation characteristics of an Auto Encoder in the recommendation
system have been actively proposed [19,20]. These methods aim to create a new latent
vector for a user or item, and it was confirmed that they generate a vector of better quality
than the traditional generation methods. However, in terms of performance, the overall
performance was lower than the recent state-of-the-art systems using a VAE.

3. Our Approach

In this chapter, our proposed DNN-based approaches are described in detail. As
stated in the introduction, we propose two models: the MovieDIRec, which is rough and
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easily configured, and MovieDIRec+, which can be applied to a practical environment
by applying an Auto Encoder to MovieDIRec. Furthermore, the Drafted-Input creation
method and outline proposed in this paper are described in detail.

3.1. Drafted-Input

Drafted-Input is created through a series of preprocessing processes by combining
the user’s rating vector with the movie’s metadata obtained through IMDB. Drafted-Input
is data that describe the object in more detail than a simple embedding vector and is
composed of data closely related to user preferences. We used director, actor, genre, release
date, votes, plot, etc., from the movie information provided by IMDB, and the Drafted-
Input Data generated through it consisted of the following: M: Data that describe the Movie
and consist of a Director, Actor, Genre, Story, and Popularity. UW: User’s preferred weights
corresponding to each feature of M except for popularity. UP: User’s preferred weight for
popularity. UF: User Features that express user preferences through the t-SVD method.

The draft process to create Drafted-Input is carried out before learning and when
new movies and users are introduced. In this paper, TF-IDF and t-SVD were used during
the draft process. According to [6], t-SVD, a type of matrix factorization method, has the
following disadvantages: (1) Speed decrease due to model size. (2) Not applicable to new
user/item. (3) A large amount of user feedback is concentrated on well-known content, so
overfitting is easy.

However, in the proposed system, the draft process, train, and runtime processes
were separated, so the speed of the t-SVD model did not affect the runtime. In addition,
it was possible to apply a new user through the draft process that could be connected to
provisioning. Lastly, even if it was a new item, the Actor and Director features created by
the t-SVD were shared and learned between movies, so they could be directly applied to
new movies.

3.1.1. Movie Features

Movie Features M are a feature for describing a movie and are information related
to preferences. Among them, Director, Actor, and Popularity, except for Genre and Story,
which are fixed features, can be interpreted as continuously changing features, which are
defined as features that need to be updated by user feedback. We converted the rating data
into rating data corresponding to each Actor/Director, differentially applied weights set
appropriately, and compressed them through the t-SVD to transform them into matrices
with potential meaning. In the case of popularity P, it consisted of a single scalar value,
and a normalized rank according to the number of ratings per published date was used.

It should be noted that, in the case of P, it required a different treatment from other
features of M. Popularity is a scalar value indicating the popularity of the movie, and it
was judged that separate treatment was necessary because it was the only verified value
directly related to the quality of a movie among features and an important value that affects
the overall preference. Therefore, the user’s preferred weight corresponding to popularity
was also treated independently.

In the case of Genre, vectorization was performed through TF-IDF. The reason that
simple count vectorization was not applied is that count vectors contain very sparse
information and the genre distribution tends to be very different.

In the case of the story, the following pre-processing was performed in advance and,
then, vectorization was performed:

1. Remove numbers and symbols that are not related to the story;
2. Remove person names and attach NER(Named Entity Recognition) tags using the

pre-trained Bert model [21];
3. Remove movies with five or fewer descriptive words;
4. Only words included in the movie plot were left, and TF-IDF was conducted only for

words that appeared three or more times in all movies.



Appl. Sci. 2021, 11, 10412 5 of 14

While genre and story features were mapped 1:1 with a movie, the created actor and
director features were shared to all movies, and they were mapped as N:N, because a movie
often includes multiple actors/directors. Therefore, in Drafted-Input, the actor and director
features were replaced with two features weighted and averaged according to the written
order. When updating, the gradient for the weighted averaged feature was obtained,
so the update was performed by applying it to the target features at once. Figure 1 is a
visualization of the process of Drafted-Input for the movie being input to the model.
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target movie.

3.1.2. User Features

User features consist of UW, UP, and UF. This is information expressing user prefer-
ence. UW is a preference weight array corresponding to (actors, directors, genre, story),
respectively, and UP is a single weight corresponding to popularity. Lastly, UF is a feature
that directly expresses the user rather than the previous features and was obtained by
using t-SVD in the User×Movie rating matrix. Since these features all contain changing
preferences, they must be continuously updated not only in Train, but also in Runtime.

UW should express how much each target movie feature affects the user’s preference.
We tested the following methods to obtain the user’s weight. First, we tried to obtain the
user’s preference bias by using the characteristic of the L2 norm, in which the result value
increased as the outlier was larger. In this case, a sparse count vector set E, not Movie
Features M, was used for the weight calculation. Set E had a size unique to each number of
features: 151,859 actors, 48,459 directors, 28 genres, and 12,624 words of stories. For user u,
Ru, which is a rating set for specific movies I of the user, exists, and Ew, I corresponding to
four types of metadata W also exists. The preference weight Uw was generated as follows:

V =
{

e� RT
u

∣∣∣ e ∈ E
}

, N = {||v||2 | v ∈ V}, Uw,i =
Ni

max(N)
(4)

However, the above formula tended to significantly lower the values of other features
when the user had a large bias towards a particular feature. This was due to the character-
istic of L2-norm, whose value increased exponentially according to the size of the outlier,
and we tri to lead so that the value was not greatly influenced by each feature by adjusting
the scale of the value through the equation below:

Ai =
∑Vi

x x2

∑x∈Vi |x〉0 1
, Uw,i =

Ai
max(A)

(5)

As a result of applying the above formula, the difference according to the scale of the
value dropped significantly, but in the case of features such as actors and stories, embedded
items with countless but small values entered the average element and tended to lower
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the result value. Therefore, we chose the coefficient of variation as a method to more
appropriately detect the bias extracted by outliers without being affected by the scale
between features. Since the coefficient of variation uses the standard deviation of the target
vector, the scale became more uniform than the methods using the square. In addition to
the process of obtaining the variance in the vector, the process of dividing by the arithmetic
mean was included, so that the bias toward the outlier could be obtained more flattened.
The method was as follows:

Gi =
std(Vi)

avg(Vi)
, Uw,i =

Gi
max(G)

(6)

In the case of UP, it was created as an average of differentially applied popularity, just
such as how to create actors and director features. It was judged that this method was
suitable for users to explain the evaluation tendency according to popularity.

If the specific user’s UP was UP,u, the movie’s popularity was Mp, the rated item set
was I, and the weighted rating set was R, then UP,u was obtained as follows:

UP,u =
∑I

i Ru,i ∗Mp,i

|Ru|
(7)

UP represents how much the user depends on the popularity of a movie, and by using
this, the degree of attenuation and amplification according to popularity can be adjusted.
That is since users with high UP tend to give high scores to movies with high popularity, the
influence on preference should be amplified. On the other hand, a person with a low UP is
a person who has a negative view of most movies and should try to attenuate the influence
on preference. Considering this, if there was Pi, which is the popularity of specific movie
i, and UP,u, which is the UP of a specific user u, the above amplification and attenuation
effect could be achieved just by multiplying Pi ×UP,u to the previous layer’s output.

Because of these characteristics of UP,u, it is important to guide the user to input the
preferred movie at a higher rate than the unfavorable movie in the provisioning stage
where the user’s explicit feedback is provided.

3.2. Proposed Methods: MovieDIRec and MovieDIRec+

The first model proposed is shown in the left of Figure 2. The output layer of the
model was a Softmax classifier that predicted implicit feedback. Implicit feedback was im-
plemented by converting four or more points into positive in the rating data and binarizing
them. Therefore, in the final layer of the model, Softmax performed binary classification
to predict the user’s positive interaction. The model consisted of fully connected layers
that simply compressed or expanded the input, and multiply and concatenation layers that
connected U and M.

Drafted-Input, which refers to the preferences of actors, directors, and users, must
change over time. Therefore, Drafted-Inputs except for MG, MS, and MP were included
in the learning target together with the model parameters during training. As shown
in Figure 1, MA′ and MD′ were features combined into one dimension by weighting all
actors/directors included in the target movie. Therefore, when updating, all MA′ and MD
included in the target movie were updated using the gradient of MA′ and MD′ as it was.

We constructed a model network so that as UP and UW had higher values, more
attention was paid to the M features corresponding to UP and UW. The features that were
paid attention to according to the user’s weight were finally combined with the user’s latent
meaning UF to interpret the preference, and, at this time, it played a role in expanding the
part so that the model could focus on the user’s interest.

MovieDIRec+ in the right of Figure 2 was the second model proposed in this paper.
Additionally, it is a model configured so that the client and server can share the recommen-
dation load in a practical environment. As shown in Figure 3, by placing an Auto-Encoder
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in the MovieDIRec model, the encoding part of Movie features could be configured as the
Server-side and the decoding part as the Client-side.
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This configuration had the following advantages in a client–server environment; First,
coded Mo could be used as a compressed feature for a movie, and the processing speed
was improved as the input was reduced and the encoder layers were omitted. If the UF
existed in the client environment, the client could proceed with inference only through
Mo, which is a coded feature, and MP, which is a scalar value. Second, learning can be
distributed by a separate client–server model. This means split learning, and the client
model performed the same function as performing batch learning based on the user simply
by passing the gradient for Mo to the server-side. Finally, by using compressed information,
a candidate group could be derived by methods such as nearest neighbor search, which
can dramatically improve speed [11].

However, according to [22–24], the matrix factorization method did not satisfy the
triangle inequality caused by the dot product. Since a matrix composed of t-SVD was
included among the components, it was necessary to check that the similarity check
between the transformed vectors was valid. There was one interesting point here. Figure 4
is a graph that visualizes cases in which the triangle inequality was checked and unsatisfied
for all pairs by sampling each epoch for 50 random Mo as the experimental results. As
shown in the graph, it was seen that the Mo feature was updated in a direction that satisfied
the triangle inequality by a nonlinear transformation. This was a more meaningful result
as a test using a model with fixed t-SVD features, except for input training.
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4. Experiments

In this chapter, we compared and verified the learning results of MovieDIRec and
MovieDIRec+ models with various state-of-the-art recommendation systems.

4.1. Metric

As a metric for performance evaluation, it was decided to use Recall@k and NDCG@k,
which are ranking-based metrics commonly used in most approaches to compare with
various state-of-the-art recommendation systems [4–8,22,25]. Before verification, the proba-
bilities predicted by the implicit positive of the Softmax output were sorted and ranked
for verification.

Recall@k for verification was performed as follows: r̂ means the set predicted for
implicit feedback as the sorted Softmax output r̂ is greater than 0.5. R is the ground truth
value, which is a set of users’ implicit feedback. Finally, I[ ] means indicator function.

Recall@k =
∑k

i=1 I
[
r̂′i ∈ R

]
|R| (8)

NDCG (Normalized Discounted Cumulative Gain) is a metric mainly used in the
ranking-based system. Since a metric of the same scale was required for comparison,
NDCG was normalized by dividing DCG by IDCG, which was the DCG value of the ideal
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result. The expression of DCG@k for implicit feedback composed of the binary class used
in the proposed method was as follows:

DCG@k =
k

∑
i=1

reli
log(i + 1)

, reli = 2I[r̂
′
i ∈R] − 1 (9)

4.2. Setup

The output of the model was composed of a Softmax output layer as a binary proba-
bility predicting implicit feedback. Binary cross entropy was used as the loss function. The
parameters of the model were updated by Adam and, in the case of the input train, the
updates were applied by SGD. The learning rate of both was set equal to 0.0001, Adam’s
epsilon was set to 1 × 10−8, and betas were set to (0.9, 0.999).

As comparison methods, there were records verified using Recall@k and NDCG@k
metric using ML-20M dataset for accuracy comparison between methods, and systems
with high accuracy were selected.

• VASP [4]: The author proposed a model ensembled by element-wise multiplication of
NEASE and FLVAE as a VAE-based Top-N recommendation system.

• RaCT [5]: An efficient and scalable learning-to-rank algorithm was proposed by bor-
rowing the actor–critic idea of reinforcement learning to approximate the ranking metric.

• RecVAE [6]: The authors followed the Mult-VAE model using multinomial distribu-
tion instead of Gaussian and Bernoulli distribution, which is generally used as the
likelihood function in VAE, but improved the performance by modifying the Evidence
Lower Bound (ELBO) formula and detailed architecture.

• CML [22]: By combining metric learning algorithms with collaborative filtering, the
authors proposed a method to learn using similarity between user–user and user–
item, and achieve significant speedup and approximate nearest-neighbor search with
a slight decrease in accuracy.

4.3. Dataset

In the case of the Rating Dataset, the preprocessing was performed as follows, con-
sidering the negative impact on learning: (1) Filtering to have at least 5 ratings per user
among 20 million data of ML-20m. (2) Among the filtered data, the movie to be evaluated
consisted of only movies included in the IMDB dataset. The data were finally filtered to
51,869 users, 4714 movies, and 6,429,862 ratings. (3) Finally, the distribution was as follows,
so that there was no overlapping rating in each process.

• D@1: All rating data;
• D@2, 3: Data(D@2) randomly extracted from 10 ratings per user to make Drafted-Input

in D@1 and remaining data(D@3);
• D@4, 5: Data(D@4) extracted from D@3 of 10,000 Held-out users and the rest of the

data (D@5);
• D@6, 7: Data(D@6) extracted at a rate of 10% from D@5 for training and data(D@7)

extracted from 20% of the remaining data for testing for input training;
• D@8: Data extracted at a rate of 12% from D@4 for validation/test.

When 80% was used as train data, it had a density of about 2.6%, which was 9 times
higher than 0.28%, which was the average density value of train data processed in compar-
ative methods to compare. For an accurate comparison, the density of D@6, the train data,
were extracted at a rate of 10% to lower the density to 0.26%.

On the other hand, in the case of test data D@4, the Recall@k and NDCG@k metrics
used for comparison produced different results depending on the target average number
of ratings and the ratio of positives, so it was essential to set them to the same level as the
comparison methods. Therefore, it was extracted at a rate of 12% to approximate 14, which
was the average size of validation of the comparison methods.
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The steps for verification and comparison were as follows: First, we created Drafted-
Input using D@2. Afterward, the entire model was trained using Drafted-Input and D@6.
Finally, validation was carried out through D@8, and in the case of the input train model,
the effect of the learned Drafted-Input had to be utilized, so it was tested through D@7.

4.4. Results and Analysis

Table 1 is the data setting of the baselines and the proposed system. In the baselines,
the density of the entire dataset was similar, so no separate processing was required,
whereas the distribution of the proposed method was greatly changed by filtering by IMDB
movies. Therefore, we matched the target density and the number of interactions per user
in the test through a fixed ratio.

Table 1. Comparison table with data environment of baselines. % Density Train means the density
of the training dataset in the corresponding methods. #Interaction Test means the average number
of ratings for each user used in the test stage. #User, #Movie, and #Rating are the number of
preprocessed datasets in each method. % Train/Test is the ratio of the train (and valid) set/test set,
including Held-out data.

%Density
Train

#Interaction
Test #User #Movie #Rating %Train/Test

VASP [4] 0.29% 14.63 136,677 20,108 10M 80%/20%
RaCT [5] - - 136,677 20,108 10M -

RecVAE [6] 0.28% 14.61 136,677 20,720 9,990,682 80%/20%
CML [22] 0.29% 15.31 129,797 20,709 9,939,873 80%/20%

Ours 0.26% 14.87 51,869 4714 6,429,862 10%/12%

Table 2 is a comparison table for metrics with target baselines. For a more detailed
comparison, we divided the two models into four models with or without input training.
Each metric was calculated using D@7 and D@8, respectively, and the models were trained
only by 10 epochs using D@6 in consideration of overfitting. The numbers written in the
metric columns were calculated for all users and averaged.

Table 2. Comparison table for each metric. * is a symbol for models that were trained with Drafted-
Input.

%Density
Train NDCG@10 NDCG@100 Recall@20 Recall@50

VASP [4] 0.29% - 0.448 0.414 0.552
RaCT [5] - - 0.403 0.403 0.543

RecVAE [6] 0.28% - 0.442 0.414 0.553
CML [22] 0.29% 0.5301 - - 0.4665

MovieDIRec

0.26%

0.6113 0.4567 0.5223 0.5319
MovieDIRec+ 0.6246 0.4790 0.5532 0.5634

MovieDIRec * 0.6136 0.4789 0.5189 0.5342
MovieDIRec+ * 0.6535 0.5132 0.5049 0.5276

Comparing the metric values between the proposed models showed different perfor-
mances depending on the environment of the model. In the case of the models undergoing
input training, the NDCG values increased, but the Recall values tended to decrease. We
repeated a lot of learning to interpret this phenomenon and came to the following conclu-
sions: First, as a result of examining the output of the models subjected to Drafted-Input
learning, it was observed that the positive prediction including false positive and true
positive was reduced by about 10%. In addition, NDCG is a metric that is more sensitive
to ranking than Recall, and Recall tends to score high when there are many positive predic-
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tions. Therefore, if NDCG scored high in distribution with a reduced positive prediction, it
was interpreted as improved in terms of recommendation accuracy.

Table 3 is a metric table that assumes a rich rating data environment without matching
the density with baselines. For this, we separately created an 80% train set and a 20%
validation set and trained them for 30 epochs. It could be seen that the more data, the higher
the learning progress. In addition, even in the environment of Table 3, it was observed that,
as in Table 2, there was a tendency to become more personalized when input training was
carried out.

Table 3. Metric table of models that did train/test in a ratio of 80:20 without matching the density.

%Density
Train NDCG@10 NDCG@100 Recall@20 Recall@50

MovieDIRec

3.85%

0.7305 0.5908 0.5669 0.6384
MovieDIRec+ 0.7305 0.5910 0.5710 0.6443
MovieDIRec * 0.7522 0.6368 0.5516 0.5851

MovieDIRec+ * 0.7528 0.6293 0.5540 0.5972

Figure 5a is a graph of the candidate group test result of MovieDIRec+, which con-
sisted of the following; First, a compressed Mo was generated for all movies using a
pre-trained server model, and 100 clusters and centroid vectors representing each cluster
were generated through a Gaussian mixture. Afterwards, preference inference was per-
formed on all centroid vectors for 10,000 Held-out users who were not used in the train,
and the results were sorted by each user. Finally, inferences about the movies in the cluster
were performed for each ranked cluster.
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Figure 5. (a): Recommendation result graph according to clusters ranked by user. The x-axis is the
preference ranking of centroids of clusters inferred by each user, and the y-axis means the average
number of real positive interactions. (b): This is a graph measuring the consumed time to recommend
a candidate group for a specific user according to a change in k using MovieDIRec+. Candidate@k
means that the top k among the candidates for the user was used for recommendation. x-axis means
k, and y-axis means time (seconds).

As a result of the test, positive interactions were gathered in a large proportion in the
clusters ranked at the top. This candidate group recommendation had a great advantage
in terms of speed. Table 4 below summarizes the speed comparison of the entire model
and the client’s model for a specific user, including whether or not the candidate group
recommendation was applied. The test environment was conducted in the same server
for an accurate comparison of speed, and the target movie was 91,514 movies including
unrated movies. In the case of the candidate group recommendation, it was conducted
through Candidate@10.
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Table 4. Speed test by scenario. From left to right, full movie inference scenario using MovieDI-
Rec+ full model. Full movie inference scenario using only the client model of MovieDIRec+. Top
10 candidate movie inference scenarios in full model. Top 10 candidate inference scenarios in client
model. As for the input size, there is a slight difference between input vectors for each movie, so the
approximation is expressed through ≈.

Total
+ Full Model

Total
+ Client Model

Candidate@10
+ Full Model

Candidate@10
+ Client Model

Spend time 5.1121 s 2.9961 s 0.2566 s 0.1278 s

vs. Full model - ↓41.39% ↓94.98% ↓97.50%

Input size
(91,514 movies) ≈1.9 GB ≈183 MB ≈190 MB ≈19 MB

Analyzing the table, the candidate process and split model approach were very
efficient methods in terms of load sharing. By limiting the candidate group to 10, the
number of inference objects was reduced by 10 times, but the inference speed was increased
by more than 20 times compared to the comparative model. This was not due to the
reduced number of inference objects, but was judged to be a load due to the huge input
data handling that occurred during the entire reasoning. Figure 5b is a graph measuring
the consumed time for inference by increasing the k of Candidate@k from 1 to 100 using it
as a related visualization graph. As a result, the second column of Table 4 took longer than
the 2.9961 s, which was the time taken for the client model that did not use the candidate.
This was a phenomenon caused by the operation of indexing the movies in each cluster
together with the load caused by the huge input data handling of the total inference.

5. Conclusions

In this paper, we proposed MovieDIRec and MovieDIRec+ using Drafted-Input de-
fined by us. The model prevented overfitting towards identity by configuration and
enabled personalized recommendations according to user characteristics. The proposed
systems were compared with state-of-the-art methods by dividing the input training case
and the without input training case, and it was confirmed that they received a high score.

The proposed system was a system that operated specifically for the Movie domain.
However, we judged that if the characteristics of Drafted-Input were well generated and
trained, the same performance could be achieved in any domain. In particular, in terms of
distribution using a split model, our approach could dramatically reduce the load on the
server, and even if device learning was not performed, it would be possible to recommend
at a breakthrough speed in fields that require real-time recommendation.

We plan the future work for the system proposed in this paper as follows: Combined
with meta learning, it will be improved to uniquely update the client-side model in a
federated environment. It was judged that this could provide an advantage in terms of
personalization and user satisfaction by providing adaptation through a few-shot explicit
feedback. In addition, we plan to add a configuration that allows the training of the
model to largely reflect the user’s recent preferences. Similar to YouTube’s mechanism,
changing preferences can be tracked if the user’s recent interactions contribute significantly
to updating user features.
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