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Abstract: Polyvinyl chloride (PVC) pipes have been extensively applied in water supply network
fields. Understanding the mechanical properties and burst pressure of PVC pipes is necessary
because a large number of pipes rupture due to excessive internal water pressure. In this paper, a
practical approach based on the average shear stress yield (ASSY) criterion was proposed to assess
the PVC pipe burst pressure. In addition, the PVC uniaxial tensile tests and the pipe burst tests
were carried out to determine the material characteristic parameters and burst pressure of the PVC
pipe. Furthermore, a finite element analysis (FEA) of PVC burst pressure was also performed based
on the tangent intersection (TI) method to validate the proposed method and experimental results.
Moreover, the impact of material parameters and pipe size, such as the strain hardening exponent
and standard dimension ratio (SDR) on bursting pressure, were investigated. The comparison
with the proposed theoretical model and the experimental and FEA results shows that the burst
pressure derived from ASSY was consistent with the experimental data, with a relative error ranging
from −2.76% to 2.65%, which is more accurate compared to other yield criteria. The burst pressure
obtained by the ASSY approach declined with the increase of the hardening exponent n and increased
with the increase of SDR. Therefore, the burst pressure solution-based ASSY proposed in this paper
is an adequately suitable and precise predictive tool for assessing the failure pressure of PVC pipes.

Keywords: burst pressure; PVC pipes; burst test; analysis model

1. Introduction

Water pipelines are critical infrastructures and pipe burst accidents have caused
huge economic and social losses [1]. A study on water pipes in the United States and
Canada showed that in the past six years, the proportion of pipe breaks and failures has
increased by 27%, with collected data on approximately 23,803 water pipe cracks, involving
170,569 miles of pipelines, which accounted for 12.9% of the total water pipe length in
the United States and Canada [2,3]. For every 100 miles of pipeline, there are 14 ruptures
per year. When it comes to polyvinyl chloride (PVC) pipes, this statistical data reaches
2.3 per 100 miles as shown in Figure 1. There are more than 190 pipe rupture accidents
recorded by China web news media each year and the diameters of those broken pipes
belonged to the DN200~DN600, DN800, and DN1000~DN1200 [4]. The water cut and drop
of water pressure caused by pipe burst events seriously affects the urban water supply for
residents. How to avoid and hinder broken pipe accidents due to excessive water pressure
has become an important research field [5–8].
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Figure 1. The proportion of broken water pipes and failures [2]. 

Water pipe rupture is related to the mechanical properties of the pipe material and 
environment, while internal pressure load is also an important factor leading to pipe burst 
[9]. According to a study by the Plastic Pipe Database Committee (PPDC) of the United 
States, design and installation errors account for the largest proportion of PVC pipe failure 
causes, followed by material defects (Figure 2), meaning that inappropriate pipe products 
with working pressure specifications that do not meet the requirements were selected and 
installed in the pipe engineering design and construction. In addition, several researchers 
have found that extreme water pressure caused by water hammers is one of the most 
common factors affecting PVC pipe bursts [10–13]. For the ultimate strength analysis, the 
burst pressure of a pipe is an important parameter in PVC pipeline design and safe oper-
ation, which is determined as the internal water pressure resulting in pipe rupture. There-
fore, accurate burst pressure prediction is needed in support of pipe engineering critical 
assessment. 
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Figure 2. Failure cause of PVC pipes [2]. 

In the past few decades, evaluation methods for the pipe burst pressure have been 
developed to precisely estimate the failure pressure when the pipe cracking will occur. 
Currently, there are a variety of evaluation models to determine the pipe burst pressure 
[14–17]. In 1950, Cooper developed theoretical solutions based on the von Mises criterion. 
In mid-1990s, Steward et al. proposed a calculation model for thin-walled pipes with 

Figure 1. The proportion of broken water pipes and failures [2].

Water pipe rupture is related to the mechanical properties of the pipe material and
environment, while internal pressure load is also an important factor leading to pipe
burst [9]. According to a study by the Plastic Pipe Database Committee (PPDC) of the
United States, design and installation errors account for the largest proportion of PVC pipe
failure causes, followed by material defects (Figure 2), meaning that inappropriate pipe
products with working pressure specifications that do not meet the requirements were
selected and installed in the pipe engineering design and construction. In addition, several
researchers have found that extreme water pressure caused by water hammers is one of the
most common factors affecting PVC pipe bursts [10–13]. For the ultimate strength analysis,
the burst pressure of a pipe is an important parameter in PVC pipeline design and safe
operation, which is determined as the internal water pressure resulting in pipe rupture.
Therefore, accurate burst pressure prediction is needed in support of pipe engineering
critical assessment.
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In the past few decades, evaluation methods for the pipe burst pressure have been
developed to precisely estimate the failure pressure when the pipe cracking will occur. Cur-
rently, there are a variety of evaluation models to determine the pipe burst pressure [14–17].



Appl. Sci. 2021, 11, 10477 3 of 21

In 1950, Cooper developed theoretical solutions based on the von Mises criterion. In
mid-1990s, Steward et al. proposed a calculation model for thin-walled pipes with Tresca
and von Mises criteria and used test data for verification [18]. Moreover, the CIS (cylin-
drical instability stress) concept was proposed by Law et al. for evaluation of the internal
pressure bearing capacity of thin-walled pipes [19]. Numerical FEM investigations were
developed by considering heavy cyclic thermal loads acting on the structure and a LCF
criterion based on the von Mises equivalent strain concept [20,21]. These findings imply
that the experimental data are inconsistent with those criteria due to the pipe being under
complex stress states when burst occurred. Therefore, more a precise yield criterion is
necessary to develop an accurate model for pipe burst pressure prediction.

Several experimental burst tests have been carried out to verify burst pressure models
for thermoplastic pipes [1,13,22–24] Mohamed Amine Guidara et al. performed experimen-
tal burst tests on cracked high-density polyethylene (HDPE) pipes and investigated the
mechanical behavior of HDPE when subjected to internal pressure [25]. Majid Fatima et al.
proposed evaluation criteria of the internal pressure of rupture for pipes and experimented
to validate both HDPE pipe and PVC specimens [26,27]. In addition, a new failure analysis
and prediction model using burst pressure of undamaged HDPE pipes instead of ultimate
stresses were developed and verified through the damaged HDPE pipes tests with different
levels of groove notches.

In recent years, finite element analysis (FEA), as an effective and reliable simula-
tion method, has been used in the limit analysis and safety assessment of water supply
pipelines [28,29]. Several common burst pressure methods, usually described as a function
of pipe diameter, pipe wall thickness, pipe material, and other parameters, have been
studied for thermoplastic pipes, and the corresponding design criteria have been carefully
analyzed [30]. Three ductile fracture models were proposed to obtain the burst pressure of
a dented aluminum pipe and were verified using FEA by S. Jafari et al. [31]. A simplified
method based on multi-dimensional analysis was proposed for the analysis of the ultimate
water pressure bearing capacity for large-caliber water supply pipes [32]. Ma et al. revealed
the influence of pipe material strength changes on burst pressure and analyzed the sources
of errors in those models [33].

At present, there are still a large number of scholars carrying out the evaluation
and analysis of the burst pressure of PVC pipes, using experimental testing, numerical
simulation, and other methods [34]. However, precise determination of the pipe burst
pressure is still unresolved when the proposed method is used for calculation, due to
the diverse mechanical properties of PVC. In addition, various classic formulas also have
their specific scopes of application and simplified conditions. Therefore, an analysis
and predictive formulas for precise determination of burst pressure that are extensively
applicable have still not been proposed.

The objective of the current paper is to accurately predict the short term burst pressure
of PVC pipes through a theoretical model, laboratory burst tests, and FEA. Firstly, based
on the proposed average shear stress yield (ASSY) theory, a new theoretical solution for
the burst pressure of pipes is obtained. Then, the PVC material tensile test and pipe burst
test are employed to validate the ASSY-based solution. Finally, the predicted results are
compared with a series of experiments and FEA simulations. The comparison results show
that the ASSY method provides a practical solution to demands for accurate prediction of
PVC pipes’ burst pressure.

2. Theoretical Analysis
2.1. The Average Shear Stress Yield Criterion

In many limit analysis cases, the results of the Tresca and Mises yield criteria are not
accurate enough for the neglect of the intermediate principal stress and the difference
in material tensile and compression properties. However, some materials may have
different tensile and compression properties, and most of them work under complex
stress conditions. Many scholars have put forward different models as solutions and have



Appl. Sci. 2021, 11, 10477 4 of 21

achieved excellent results, the most representative of which is the unified strength theory
proposed by Yu et al. [35]. In this theory, the difference in material strength and stress in
three directions is cleverly considered with two parameters [35].

The principal stress in three directions (σ1, σ2, σ3) is transformed into the principal
shear stress state (τ13, τ23, τ23) (Figure 3). The principal shear stress is converted into the
double shear stress state (τ12, τ13, σ12, σ13) or (τ23, τ23, σ13, σ13) for only two independent
quantities appearing in the latter. Its expression is obtained by the following:

F = τ13 − bτ12 + β(σ13 + bσ12) = C, τ12 + βσ12 ≥ τ23 + βσ23

F′ = τ13 + bτ23 + β(σ13 + bσ23) = C, τ12 + βσ12 ≤ τ23 + βσ23
(1)

β =
σc − σt

σc + σt
=

1− α

1 + α
, C =

(1 + b)σcσt

σc + σt
=

1− α

1 + α
σt, b =

(1 + α)τ0 − σt

σt − τ0
(2)

where b is a material parameter reflecting the effect of intermediate principal stress; β
and C are the coefficients which are determined by the material tensile strength limit σt
and compressive strength limit σc; τ0 is the shear strength of the material; σt and σc are the
uniaxial tensile strength and uniaxial compressive strength, respectively; and α = σt/σc
represents the tensile and compression strength ratio.
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The shear stress τ13, τ23, or τ12 and the normal stress σ13, σ12, or σ23 on the acting
surface are

τ13 = 1
2 (σ1 − σ3)σ13 = 1

2 (σ1 + σ3)

τ12 = 1
2 (σ1 − σ2)σ12 = 1

2 (σ1 + σ2)

τ23 = 1
2 (σ2 − σ3)σ23 = 1

2 (σ2 + σ3)

(3)

Therefore, the principal stress expression is

f = σt =

{
σ1 − α

1+b (bσ2 + σ3), σ2 ≤ σ1+ασ3
1+α

1
1+b (σ1 + bσ2)− ασ3, σ2 ≥ σ1+ασ3

1+α

(4)

Equation (3) indicates that the unified strength theoretical model contains two material
parameters, α and b. When the parameters α and b take values between 0 and 1, various
yield criteria are obtained (Figure 4). As shown in Equation (5), when α = 1 and b = 0,
Equation (3) is converted to the Tresca yield criterion. Similarly, when α = 1 and b = 1/2, the
Mises yield criterion is obtained. Apart from these two yield criterion, the twin shear stress
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yield (TSSY) criterion established by Yu is a relatively common yield criterion applicable to
most materials [35]. When α = 1 and b = 1, TSSY is expressed as Equation (5).

σT = max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|), Tresca yield criterion

σM = 1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
] 1

2 , Mises yield criterion

σTS =

{
σ1 − 1

2 (σ2 + σ3), σ2 ≤ 1
2 (σ2 + σ3)

1
2 (σ1 + σ2)− σ3, σ2 ≥ 1

2 (σ1 + σ3)
, Twin shear stress yield criterion

(5)

where σT, σM, and σTS are the equivalent stress based on Tresca, Mises, and Twin shear
stress yield criterion, respectively.
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When the Tresca and von Mises yield criterion are used in material plasticity analysis,
many studies have confirmed that the initial yield and post-yielding occur between those
two theories’ predictions [28,31]. To describe this plastic yield behavior more accurately,
a new yield model, the ASSY criterion for isotropic hardening materials, was introduced
and applied to burst pressure determination [36]. The average shear stress is defined as
the average value of the maximum shear stress and the von Mises effective shear stress
with the assumption that the material yields when the average stress reaches a critical
value. According to Equations (3) and (4), when α = 1 and b =

(
8
√

3− 10
)

/23, using the
assumption of σ1 ≥ σ2 ≥ σ3, the equivalent stress based on ASSY is expressed as

σA =
1

2 +
√

3

(√
3σT + 2σM

)
(6)

where σA is the equivalent stress based on ASSY.

2.2. Stress–Strain Relationship of PVC

Most polymer materials are ductile and show a nonlinear relationship between stress
and strain. The power exponential constitutive model, as shown in Figure 5, has significant
advantages in describing the nonlinear behavior of materials from plastic deformation
to failure [37].
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Therefore, the power law curve is applied to characterize the stress–strain relationship
of PVC material as follows:

σ′ =

{
Eε′, 0 < ε′ ≤ σy

E
Kε′n, σy

E < ε′
, n = ln(1 + εt) = εt

′, K = σt(
e
n
)

n
(7)

where σ′ and ε′ are the uniaxial true stress and true strain in simple tension; εt
′ represents

the true strain of ultimate strength; σt and εt represent the uniaxial engineering stress and
uniaxial engineering strain; σy represents the yield strength; and n and K are the strain
hardening index and strengthening coefficient, respectively.

2.3. Burst Pressure Solution Based ASSY

A general stress analysis is presented in the cylinders subjected to inner pressure P
(Figure 6). The solution is applied under closed-end conditions and the three principal
stresses are as follows [36]:

σ1 = σθ =
PiD
2t

, σ2 = σz =
PiD
4t

, σ3 = σr ≈ 0 (8)

where θ, r, and z mean the hoop, radial, and axial directions, respectively; σr, σθ , and σz
represent the radial stress, the hoop stress, and the axial stress, respectively; and D and t
are the pipe mean diameter and mean wall thickness, respectively.

In general, the axial strain is small and can be ignored in the pipeline, and the three
strains are

ε1 = εθ = ln
D
D0

, ε2 = εz = 0, ε3 = εr = ln
t
t0

(9)

where D0 and t0 represent the initial diameter and wall thickness respectively.
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When the pipe fails due to burst, large plastic deformation usually occurs; considering
the incompressibility of the material volume ε1 + ε2 + ε3 = 0, From Equation (9), one has

ε1 − ε3 = 2ε1 = ln
D
t

t0

D0
(10)

From Equations (6) and (8)–(10), the ASSY equivalent stress and equivalent strain in
the pipe are determined as

σA =
1

2 +
√

3

(√
3σT + 2σM

)
=

2
√

3
2 +
√

3
σ1 (11)

εA =
1

2 +
√

3

(√
3εT + 2εM

)
=

2
√

3
2 +
√

3
ε1 (12)

From Equations (11) and (12), it can be known from Hill’s plastic work assumption that
σAεA = σ1ε1 = σε, and the diameter and wall thickness are derived from Equations (10) and (12) as

D
t
=

D0

t0
e((4
√

3/(2+
√

3))εA) (13)

According to Equations (8)–(13), the internal loading limit of the pipe is a function of
the geometric size, the properties of the pipe material, and the equivalent strain, which can
be expressed by the following formula:

P =

(
1
2
+

1√
3

)
2t0

D0
e−((4

√
3/(2+

√
3)εA)(

e
n
)

n
σtε

n
A (14)

When ∂P/∂εA = 0, the maximum value of equivalent strain based on ASSY is
ε∗A =

(
2 +
√

3
)

n/4
√

3. Hence, the burst pressure calculated by ASSY is determined as a
function of the size and material of the pipe, including diameter, wall thickness, the σt, and
the hardening exponent n:

PA = (
2 +
√

3
4
√

3
)

n+1
4t0

D0
σt (15)
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Similarly, the burst pressure based on the three yield criteria can be determined
as follows [36]:

PT = ( 1
2 )

n+1 4t0
D0

σt for Tresca criterion;

PM = (
√

3
3 )

n+1 4t0
D0

σt for Mises criterion;

PTS = ( 2
3 )

n+1 4t0
D0

σt for TSSY criterion.

(16)

3. Experimental Study
3.1. Tensile Testing

The purpose of this test was to obtain the mechanical properties of PVC materi-
als under tensile conditions. According to the ASTM D638-14 standard, the cylindrical
hourglass-shaped (CHS) specimens were taken from the PVC pipe and processed parallel
to the axial direction carefully. As shown in Figure 7a, the uniaxial tensile test was carried
out at 23 ◦C and the tensile rate was set to 50 mm/min using an extensometer with a gauge
length of 50 mm. The resulting curve of the PVC pipe material after averaging treatment is
presented in Figure 7b.

Three stages that can reflect the characteristics of the material are observed clearly
from the stress-strain curve: (1) the initial linear elastic response before yielding; (2) after the
initial linear elastic response, the stress-strain curve rollover due to the material yielding;
and finally (3) a stage of strain hardening. Mechanical parameters can be achieved from
the curve, such as the yield stress σy (43.67 MPa) and Young’s modulus E (1259 MPa). The
detailed parameter values of the five tests are listed in Table 1.
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Table 1. PVC material tensile testing result.

Parameters σy (MPa) σt (MPa) εt E (MPa) σt
′ (MPa) εt

′ n K

value 43.67 45.15 0.047 1259.43 47.28 0.046 0.046 57.05

3.2. Burst Tests

The burst test is an intuitive and effective method for evaluating the safety and
reliability of a pipe’s materials and structure. The pipeline burst test was carried out
to measure the ultimate internal pressure bearing capacity, pressure duration, and the
corresponding expansion deformation of the PVC pipe. In addition, the failure mode was
also studied through the damaged specimen. To validate the theoretical method, 4 groups
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of 16 specimens were prepared for burst tests and placed at 23 ◦C before water injection
and pressurization (Figure 8). The pipe samples used in the test were all obtained from the
same batch of products. The details of the PVC pipe geometry values are listed in Table 2.
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Table 2. Pipe specimen geometry and test results.

Pipe Number Length
(L/mm)

Wall Thickness
(t/mm)

Mean Diameter
(D/mm) SDR(D/t) Burst Pressure

(Ps/MPa)

P1200-1 1800 45.9 1200 26 3.66
P1200-2 1800 36.7 1200 33 2.90
P1200-3 1800 29.4 1200 41 2.32
P1200-4 1800 23.5 1200 51 1.85
P630-1 1200 30.0 630 21 4.61
P630-2 1200 24.1 630 26 3.69
P630-3 1200 19.3 630 33 2.92
P630-4 1200 15.4 630 41 2.29
P315-1 800 15.0 315 21 4.61
P315-2 800 12.1 315 26 3.64
P315-3 800 9.7 315 33 2.91
P315-4 800 7.7 315 41 2.26
P160-1 800 7.7 160 21 4.58
P160-2 800 6.2 160 26 3.64
P160-3 800 4.9 160 33 2.86
P160-4 800 4.0 160 41 2.33

The burst test was conducted under room temperature according to ASTM D1599-18
standard. The testing equipment used to apply sustained internal pressure on the PVC
pipes is shown in Figures 9 and 10. Before the test, both ends of the PVC pipe were blocked
by test fixtures. The tie bar connected two end closures with a bolt and sealed each side
of the PVC pipe with O-rings. Before pressurization, the prepared pipes were placed in a
burst basin at the prescribed water temperature for 6 h. Then, the switch was turned on
and started filling the pipe with water at 23 ◦C. The pressurizing device was composed of
a PLC-controlled pressurizing pump, a water pressure sensor, and a feeding system. The
pressurizing rate was controlled by water flow, and the pressurization accuracy reached up
to 0.01 MPa. Lastly, we linked the water inlet to the water pump with a high-pressure hose
and injected water to increase the internal pressure of the PVC pipe until it ruptured. The
internal pressure value of the pipe was obtained by the pressure gauge installed at the end
closure. Two strain gauges were attached to the outer wall of the pipe to monitor the strain
change during the pressurization process.
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4. Finite Element Modeling
4.1. Tool Geometry and Mesh

As a mature commercial FEA software, ABAQUS was used in the simulation of the
pipelines subjected to internal pressure. Therefore, a total of 16 pressurized pipe models
with four diameters were established for theoretical accuracy verification. The pipe size
used in the numerical simulation was the same as the pipe size in the experiment. In
the piping material settings, the power exponential constitutive model introduced in the
theoretical analysis was used for FE analysis due to the tested stress–strain relations. The
PVC material parameters are provided in Table 1, which were obtained according to the
uniaxial tensile test.

For model meshing, a coarse grid was applied along the axial direction and a fine grid
was employed along the radial direction. This meshing method was chosen due to the more
drastic changes in pipe stress along the wall thickness direction. During the burst testing
process, the pipe wall, made of elastoplastic material, will expand in a wide range; therefore,
the elastic–plastic and large-deformation finite element model was used in the finite
element model. The completely fixed constraints (U1 = U2 = U3 = UR1 = UR2 = UR3 = 0)
were imposed on both ends of the pipe. The established PVC pressure piping model of
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P1200-1 and the grid meshing are shown in Figure 11. An eight-node continuum element
(C3D8R) was adopted in the meshing while the number of elements and nodes were 132,480
and 150,696, respectively.
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4.2. Definition of Burst Pressure

When determining the failure pressure of a pipeline according to the pressure–strain
curve, there are usually the following three criteria: the twice elastic slope (TES) criterion,
the zero slope (ZS) criterion and the tangent intersection (TI) criterion. The twice elastic
slope (TES) criterion is a practical criterion, which is specified in ASME Boiler and Pressure
Vessel Code Section VIII Div 2 [37]. As a graphical method, the burst pressure was obtained
through plotting a straight line from the origin with twice the slope of the initial elastic
response, that is, tan φ = 2 tanθ. The ultimate internal water pressure load Pb,TES expresses
the value of the ordinate of the intersection point. The zero slope (ZS) criterion, as illustrated
in Figure 12b, was proposed by Gerdeen [38]. The ultimate internal water pressure load
Pb,ZS is obtained when the load–strain curve has a nonzero slope.
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Figure 12. Criteria for the pipe burst pressure.

The theoretical limit water pressure loads of the pipe are derived based on plasticity
and small deformation assumptions, while the actual burst pressure of the pipe is obtained
by ductile failure in pipe safety accidents. The ductile failure also occurs in experimental
tests, which means that strain hardening and large deformation need to be considered
in the analysis. An alternative criterion was the tangent intersection (TI) method, which
determines the burst pressure as the intersection of the initial elastic and final plastic
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responses of the load–strain curve, as shown in Figure 12c. Therefore, the TI method was
applied to determine the pipeline failure pressure.

5. Result Analysis
5.1. Burst Test Results

As mentioned above, 16 PVC pipe specimens were subjected to a burst test. A typical
sample failure rupture is shown in Figure 13. P630-1, P315-1, and P160-1 exhibited typical
ductile failure characteristics; cracks appeared on the pipe wall and propagated to the
nearby area, with major cracks extending along the axial direction of the pipe when the
internal water pressure increased. When the length of the crack in the P160-1 pipe reached
26.2 mm, the pipe leaked. An obvious shear lip was observed near the main fracture, and
there were no fragments on the outer wall in P160-1. Before the destruction of P630-1 and
P315-1, significant plastic deformation occurred and no cracks were observed in the pipe
wall. The failure showed almost ductile fracture, which is unique to the case of polymer
composite pipes with observed brittle failure from other studies [39].

There was a significant difference between the failure mode of P1200-1 and P315-1. As
shown in Figure 13, the P1200-1 specimen showed catastrophic failure without significant
expansion and deformation. The pipe broke into pieces, and a through crack appeared in
the pipe wall. The surface of the breach was flat and smooth. These failure characteristics
indicate that the failure mode of the P1200-1 pipe is a brittle failure.
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When a pipe is cooled at different temperatures, residual stress on the pipe wall will
be generated due to the different shrinkage rates of the inner and outer walls of the pipe,
which has a considerable impact on the internal pressure bearing performance of the pipe.
This feature becomes more pronounced when the pipe diameter and wall thickness increase.
A larger wall thickness causes a greater difference between the inner and outer shrinkage.
An excessive shrinkage rate leads to dimple fracture and defects, which may reduce the
burst pressure when the pipe wall is very thick and the temperature difference between
the inner and outer walls is large.

At the beginning of the test, the acquisition device was activated, and the pressure
and deformation data were collected by the sensor and transmitted to the computer
during the test pressurization. These monitoring data are drawn as curves such as burst
pressure, pressurized time, hoop strain, and radial displacement for 16 pipes as shown by
Figures 14–16, respectively.
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Three stages that can reflect the characteristics of the material are observed clearly
from the stress–strain curves shown in Figure 17. In the first stage, the strain of the pipe
wall and the internal water pressure increase linearly.

Three stages were observed from water injection and pressurization to pipeline rupture
according to Figure 14. In the first stage, also known as the elastic stage, the strain of the
pipe wall and the internal water pressure increase linearly. Then, the nonlinear relationship
between internal pressure and strain is observed and the expansion of the pipeline is
detected in the second phase. The last stage is the rupture phase. In this phase, the
strain increases rapidly while the water pressure remains constant, and the obvious radial
expansion occurs on the pipe wall. After a period of time, the pipe ruptures and fails.

The nominal pressure PN of the P1200-1 pipe was 1.0 MPa and the required minimum
burst pressure was 3.2 MPa according to the AWWA M23 standard. In this test, the burst
pressure of P1200-1 was 3.65 MPa, which far exceeded the limit specification.
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Three stages were observed from water injection and pressurization to pipeline rup-
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5.2. Analysis of Simulation and Test Results

Figure 18 illustrates the von Mises stress distribution of the numerical results during
pressurization. During the pressurization process, the elastoplastic behavior of the PVC
pipe was considered. From Figure 18, it is clear that the pipeline failure process in the
simulation experienced three stages like the burst test: initially, in the elastic phase, the
pipe remained cylindrical and no swell feature was detected. The first step is shown in
blue. Next, in the plastic phase, the shape of the tested pipe became an ellipse caused by
large deformation. It can be seen from the cloud diagram that the von Mises stress on the
pipe wall increased. Finally, in the rupture phase, the tested sample was broken into pieces
or cracks. The pipe wall is displayed in red with extreme stress. In addition, an extremely
obvious swelling appearance in the pipe can be noticed by the high stress concentration.
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The burst pressure results obtained by the experiment, theoretical analysis, and nu-
merical simulation are recorded in Table 3. Figure 19 illustrates the load–strain curves
obtained in the FE model and experiment. When analyzing the load–strain curve, the
simulation curve and test data show good consistency during the loading process. For
P1200-1, the maximum internal water pressure achieved a value of P = 3.66 MPa and
P = 3.58 MPa for the test data and simulation curves, respectively. The experimental and
numerical simulation values of P1200-2, P1200-3, and P1200-4 were 2.90 MPa, 2.32 MPa, and
1.85 MPa, and 2.82 MPa, 2.29 MPa, and 1.83 MPa, respectively. There are differences in the
material properties because of the manufacturing process and the impact of aging [40,41].
Figure 19 reveals that the increase in pipe wall thickness will increase the internal pressure
bearing capacity.

Figure 20 presents the correlation of the burst pressure calculated from Equation (15)
with simulation and experimental results. As shown in Figure 20, the predicted values
obtained from ASSY and FEM in this study are in good agreement with the ones that
appeared in the burst tests.

Table 3. Comparison of burst pressure results.

Pipe
Number

Test Value
(MPa)

Theoretical
Value (MPa) Error (%) FEM Value

(MPa) Error (%)

P1200-1 3.66 3.62 −1.09 3.58 −2.19
P1200-2 2.90 2.89 −0.34 2.82 −2.76
P1200-3 2.32 2.32 0.00 2.29 −1.29
P1200-4 1.85 1.85 0.00 1.83 −1.08
P630-1 4.61 4.50 −2.39 4.55 −1.30
P630-2 3.69 3.62 −1.90 3.67 −0.54
P630-3 2.92 2.89 −1.03 2.86 −2.05
P630-4 2.29 2.32 1.31 2.26 −1.31
P315-1 4.61 4.50 −2.39 4.58 −0.65
P315-2 3.64 3.62 −0.55 3.61 −0.82
P315-3 2.91 2.89 −0.69 2.87 −1.37
P315-4 2.26 2.32 2.65 2.24 −0.88
P160-1 4.58 4.50 −1.75 4.56 −0.44
P160-2 3.64 3.62 −0.55 3.61 −0.82
P160-3 2.86 2.89 1.05 2.83 −1.05
P160-4 2.33 2.32 −0.43 2.3 −1.29



Appl. Sci. 2021, 11, 10477 16 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 22 
 

pipe was considered. From Figure 18, it is clear that the pipeline failure process in the 
simulation experienced three stages like the burst test: initially, in the elastic phase, the 
pipe remained cylindrical and no swell feature was detected. The first step is shown in 
blue. Next, in the plastic phase, the shape of the tested pipe became an ellipse caused by 
large deformation. It can be seen from the cloud diagram that the von Mises stress on the 
pipe wall increased. Finally, in the rupture phase, the tested sample was broken into 
pieces or cracks. The pipe wall is displayed in red with extreme stress. In addition, an 
extremely obvious swelling appearance in the pipe can be noticed by the high stress con-
centration. 

  
Figure 18. Von Mises stress distribution during pressurization (P1200-1). 

The burst pressure results obtained by the experiment, theoretical analysis, and nu-
merical simulation are recorded in Table 3. Figure 19 illustrates the load–strain curves 
obtained in the FE model and experiment. When analyzing the load–strain curve, the sim-
ulation curve and test data show good consistency during the loading process. For P1200-
1, the maximum internal water pressure achieved a value of P = 3.66 MPa and P = 3.58 
MPa for the test data and simulation curves, respectively. The experimental and numeri-
cal simulation values of P1200-2, P1200-3, and P1200-4 were 2.90 MPa, 2.32 MPa, and 1.85 
MPa, and 2.82 MPa, 2.29 MPa, and 1.83 MPa, respectively. There are differences in the 
material properties because of the manufacturing process and the impact of aging [40,41]. 
Figure 19 reveals that the increase in pipe wall thickness will increase the internal pressure 
bearing capacity.  

0.00 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

P1200-1

P1200-2

P1200-3

P1200-4

P(
M

Pa
)

Strain (ε) 

Experimental test
Numerical simulation

 
Figure 19. Numerical and experimental stress–strain curves. Figure 19. Numerical and experimental stress–strain curves.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 22 
 

Table 3. Comparison of burst pressure results. 

Pipe Number 
Test 

Value<break/
>(MPa) 

Theoretical 
Value<break/>(

MPa) 
Error (%) 

FEM 
Value<break/

>(MPa) 
Error (%) 

P1200-1 3.66  3.62  −1.09  3.58 −2.19  
P1200-2 2.90  2.89  −0.34  2.82 −2.76  
P1200-3 2.32  2.32  0.00  2.29 −1.29  
P1200-4 1.85  1.85  0.00  1.83 −1.08  
P630-1 4.61  4.50  −2.39  4.55 −1.30  
P630-2 3.69  3.62  −1.90  3.67 −0.54  
P630-3 2.92  2.89  −1.03  2.86 −2.05  
P630-4 2.29  2.32  1.31  2.26 −1.31  
P315-1 4.61  4.50  −2.39  4.58 −0.65  
P315-2 3.64  3.62  −0.55  3.61 −0.82  
P315-3 2.91  2.89  −0.69  2.87 −1.37  
P315-4 2.26  2.32  2.65  2.24 −0.88  
P160-1 4.58  4.50  −1.75  4.56 −0.44  
P160-2 3.64  3.62  −0.55  3.61 −0.82  
P160-3 2.86  2.89  1.05  2.83 −1.05  
P160-4 2.33  2.32  −0.43  2.3 −1.29  

Figure 20 presents the correlation of the burst pressure calculated from Equation (15) 
with simulation and experimental results. As shown in Figure 20, the predicted values 
obtained from ASSY and FEM in this study are in good agreement with the ones that 
appeared in the burst tests.  

2.0 2.5 3.0 3.5 4.0 4.5 5.0
2.0

2.5

3.0

3.5

4.0

4.5

5.0

Tested value=Predicted value

 Theoretical value
 FEM value

Pr
ed

ic
te

d 
va

lu
e 

(M
Pa

)

Tested value (MPa)  
Figure 20. Correlation between predicted value and measured value. 

Root mean square error (RMSE), mean absolute error (MAE), maximum error (ME), 
and correlation coefficient (R2) were chosen as the model’s predictive ability evaluation 
indicators to verify the performance of the ASSY burst pressure prediction model pro-
posed in this paper. 

Figure 20. Correlation between predicted value and measured value.

Root mean square error (RMSE), mean absolute error (MAE), maximum error (ME),
and correlation coefficient (R2) were chosen as the model’s predictive ability evaluation
indicators to verify the performance of the ASSY burst pressure prediction model proposed
in this paper.

RMSE =

√[
1
N

N
∑

i=1
(yi − ỹi)

2
]

, MAE = 1
N

N
∑

i=1
|yi − ỹi|,

ME = max
1≤i≤N

|yi − ỹi|, R2 = SSR
SST = ∑N

i=1(ỹi−y)2

∑N
i=1(yi−y)2

(17)

where yi and ỹi are the tested value and predictive value obtained by various yield criteria.
Table 4 shows the statistical results of various models. As shown in Table 4, the RMSE,

MAE, and ME of the ASSY model and FEM approach were 0.05, 0.4, 0.11 and 0.04, 0.04,
and 0.08 respectively. The evaluation index values were sorted from small to large as
FEM < ASSY < von Mises < Tresca < TSSY, indicating the FEM model had the smallest
prediction error, followed by the ASSY model. This confirms that the FEM approach and
ASSY solution have a higher degree of coincidence, and the von Mises solution model is
better than the TSSY and Tresca solutions.
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Table 4. Statistical comparison of burst pressure prediction.

Evaluation
Indicators RMSE (MPa) MAE (MPa) ME (MPa) R2

ASSY solution 0.05 0.04 0.11 0.99960
FEM approach 0.04 0.04 0.08 0.99975
TSSY solution 0.78 0.77 1.05 0.99962
Tresca solution 0.28 0.27 0.45 0.99960

von Mises solution 0.22 0.21 0.26 0.99961

5.3. Discussion of Burst Pressure

In the burst pressure tests, 16 full size tests were carried out, and the burst pressures
of those specimens were obtained. However, the experiments data indicated that the burst
pressures decreased with increased SDR. Hence, theoretical approaches and various full
size experimental data of burst pressure for PVC pipes were compared in Figure 21. The
data from the 16 full size tests carried out in the experimental study were involved for
various SDR grades ranging from 21 to 51. It can be seen from Figure 21 that the same
trend of burst pressure derived from the four failure criteria was observed while the ASSY
solution was the closest to the test data. However, significant differences have also been
noticed in these methods; the TSSY overestimated the burst pressure of pipe and provided
the upper limit of burst pressure while the Tresca solution did just the opposite. Based
on other yield criteria such as Mises and ASSY, the burst pressure is between those two
approaches. In the comparison of Mises and ASSY results, ASSY results are closer to the
experimental test values.

Normally, nominal stress is used as the primary parameter of materials for safety
assessment. Therefore, to directly address the role of the yield criteria solution, we analyzed
the corresponding equivalent stress σe and hoop stress σθ in burst pressure solutions. The
equivalent stress and hoop stress can be expressed as

(σe)b = (
k
2
)

n
σt
′, (σθ)b = 2(

k
2
)

n
σt
′ (18)

k =


1, for Tresca criteria
2/
√

3, for Mises criteria
1/2 + 1/

√
3, for ASSY criteria

4/3, for TSSY criteria

(19)
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The strain hardening exponent is a key parameter that affects stress. Figures 22 and 23
show the variation of equivalent stress and hoop stress determined from Equations (18) and (19).
The hoop stress was greatly affected by the yield criterion; however, when it comes to
equivalent stress, a relatively smaller effect can be observed. In Figures 22 and 23, both
stresses decreased with the increase of the hardening index value and equivalent stress and
the hoop stress obtained by ASSY and von Mises criteria was between the four yield criteria.
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6. Conclusions

In this study, the ASSY criterion, a new multiaxial yield criterion based on the average
shear stress, was proposed and a theoretical prediction method was derived for PVC pipe
burst pressure based on the ASSY yield criterion. Moreover, a series of PVC pipe burst tests
and numerical simulations were implemented to verify the proposed theoretical model.
Furthermore, the sensitivity of parameters such as strain hardening exponent to burst
pressure was discussed by comparing the ASSY solution with the approach determined by
the Tresca, TSSY, and von Mises criteria.

Based upon the theoretical prediction and experimental and FE verification, the
primary conclusions can be summarized as follows:

(1) The comparison between the theoretical value of the ASSY approach with the ex-
perimental and numerical results confirmed that the burst pressure solution-based
ASSY can fit test data for PVC pipes well and is more applicable and accurate than
other criteria.
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(2) The test data revealed that the ASSY approach exhibited excellent performance in
evaluating PVC pipe burst pressure. The TSSY approach and Tresca criterion provided
an upper and lower bound, respectively, while they overestimated or underestimated
burst pressure to a certain extent.

(3) The theoretical value of water burst pressure was reduced with increasing strain
hardening exponent n-value, while it increased with increasing SDR. The equivalent
stress and the hoop stress derived from the four theoretical solutions showed a similar
tendency. However, a significant discrepancy among them can be recognized.

Consequently, we are convinced that the ASSY approach proposed in this study can
be applied as a practical tool for evaluating the PVC pipe bursting pressures.
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Nomenclature

b Material parameter ỹi Predictive value
C Material parameter α The tensile and compression strength ratio
D Pipe mean diameter β Material parameter
D0 Initial diameter σ′ Uniaxial true stress
E Young’s modulus σA Equivalent stress based on ASSY
k Coefficient determined by yield criterion σc Compressive strength
K Strengthening coefficient σe Equivalent stress
L Pipe length σM Equivalent stress based on Mises
n Strain hardening index σt Uniaxial engineering tensile strength
Pi Internal pressure σt

′ Uniaxial true tensile strength
PA Burst pressure based on ASSY σT Equivalent stress based on Tresca
Pb,TES Burst pressure determined by TES criterion σTS Equivalent stress based on TSSY
Pb,TI Burst pressure determined by TI criterion σr The radial stress
Pb,ZS Burst pressure determined by ZS criterion σθ The hoop stress
PM Burst pressure based on the von Mises yield criterion σz The axial stress
PN The nominal pressure of pipe σy The yield strength
Ps Tested burst pressure ε′ Uniaxial true strain
PT Burst pressure based on the Tresca yield criterion εt

′ Uniaxial true tensile strain
PTS Burst pressure based on TSSY εt Uniaxial engineering strain
t Wall thickness εr The radial stress
t0 Initial wall thickness εθ The hoop stress
yi Tested value εz The axial stress
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