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Abstract: Nowadays, people choose to travel in their leisure time more frequently, but fixed prede-
termined tour routes can barely meet people’s personalized preferences. The needs of tourists are
diverse, largely personal, and possibly have multiple constraints. The traditional single-objective
route planning algorithm struggles to effectively deal with such problems. In this paper, a novel
multi-objective and multi-constraint tour route recommendation method is proposed. Firstly, Ar-
cMap was used to model the actual road network. Then, we created a new interest label matching
method and a utility function scoring method based on crowd sensing, and constructed a personal-
ized multi-constraint interest model. We present a variable neighborhood search algorithm and a
hybrid particle swarm genetic optimization algorithm for recommending Top-K routes. Finally, we
conducted extensive experiments on public datasets. Compared with the ATP route recommendation
method based on an improved ant colony algorithm, our proposed method is superior in route score,
interest abundance, number of POIs, and running time.

Keywords: crowd sensing; multi-constraint; route recommendation; multi-objective

1. Introduction

With the rapid development of Internet technology in recent years, the explosive
growth of information has increased the burden of retrieving personally interested in-
formation and content. The birth of recommended technologies can help people acquire
the resources in which they are interested more efficiently. Given the potentially huge
returns, major companies such as Google, Amazon, and Taobao, to just name a few, have
produced sophisticated and advanced recommender systems and technologies for effec-
tively marketing their products to users. In comparison, due to many factors affecting
tourism routes, such as the complex information of real-time traffic flow, weather, and user
preferences [1–4], the recommendation of tourist routes is far less mature [5,6].

Due to the usefulness and the inherent complexity of the route recommendation
problem, various types of recommendation methods have been proposed. From the
perspective of this research work, route recommendation methods can be classified in
terms of the number of objectives, the number of points of interest (POIs), and the presence
of user constraints, even though there may be other dimensions with which to categorize
the existing methods.

From the perspective of the optimization objectives, the existing methods can be
divided into single-objective recommendation and multi-objective recommendation ones.
Single-objective recommendation only focuses on the aspect of user requirements, and uses
path planning algorithms to find the optimal Top-K routes [7,8]. Kurashima et al. [7] incor-
porated user preferences and location information into probabilistic behavior model by
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combining the topic model and the Markov model, and proposed a personalized route rec-
ommendation method which takes the optimization of user preferences as a single objective.
Wang et al. [8] combined the merits of A* search algorithms and deep learning to solve the
personalized route recommendation problem. It can automatically learn the cost functions
without handcrafting heuristics, but it can only complete the route recommendation with a
single objective. Multi-objective route recommendation has been a hot topic in recent years.
Many travel route recommendations are by nature multi-objective problems, composed of
multiple conflicting or interacting objectives at the same time. For example, a tourist might
want to visit as many scenic spots as possible but spend as little as possible. These two
objectives are apparently conflicting. Currently, multi-objective evolutionary algorithms are
mainly used to solve the problem of multi-objective optimization problems, but the research
on route recommendation is far less mature [9,10]. Zuo et al. [9] proposed a multi-objective
recommendation model which optimizes two conflicting performance metrics termed
accuracy and diversity. Wang et al. [10] proposed a multi-objective evolutionary algorithm
that aims to find a set of trade-off solutions by optimizing two objective functions simulta-
neously, which can balance accuracy with unpopular items. Zhou et al. [11] proposed a
biobjective bilevel programming model to optimize road charging efficiency and the total
cost of vehicle emissions, which applied a nondominated sorting genetic algorithm to solve
the above two optimization problems. The traditional solutions still use single-objective
models in tour route recommendations, so they cannot meet the needs of users. From the
perspective of the spatial scale of the tourist routes recommended, the existing methods can
be divided into micro-scale route recommendation within a specific scenic spot (i.e., single
POI) and recommendation of multiple scenic spots on the macro scale (i.e., multiple POIs),
which is more complicated than the single-POI scenarios. Wang et al. [8] algorithmically
processed multiple sub-attractions of a scenic spot on a microscopic scale to recommend
the optimal route for tourists. Due to the constraints of the area of the attraction, tourists’
queuing at the scenic spots becomes a very important concern, so it is recommended to
score the most efficient walking distance to the scenic route. Pop et al. [12] proposed
a route choosing behavior method of crossroads based on the genetic algorithm, which
uses a new fitness function computation method. Yu et al. [13] recommended serialization
routes for multiple attractions in a city on a macro-scale. From the perspective of whether
constraints are present, the existing methods can be divided into recommendations based
on user preference constraints [1,4,7,13–15] and recommendations without user preference
constraints. The constraints in route recommendation depend on the characteristics of
the point of interest and the individual needs of the user, such as travel expenses, time,
and transportation. In addition, effective and accurate evaluations of POIs can make the
constraints better meet the needs of users. By collecting the historical data of users in social
networks, using the theory of crowd sensing can complete the evaluation of each POI more
comprehensively and accurately [16–18].

In general, the optimization problem solving involved in the tour route recommenda-
tion is complicated, and it is often necessary to find an optimal or a sub-optimal solution
in a huge search space. The route optimization in our research work is similar to the TSP
problem, but there lies an important difference: as the locations of tourists change, the
attraction weight of users to each POI will change; that is, the weight of the edge will
change dynamically with the locations of tourists [19–21]. Although dynamic program-
ming and backtracking methods can be used to mitigate the high time complexity caused
by exhaustive solutions, those methods cannot be directly applied to the multi-constrained
route recommendation problem, because they cannot find the optimal solution in multiple
objective functions with conflicts. In order to solve the problem of personalized recommen-
dation of tourism routes under multiple objects and constraints, our work focuses on how
to efficiently recommend multi-objective and multi-constrained tourism routes which are
still effectively in line with user preferences.

The contributions of this paper are summarized as follows. Firstly, given the short-
comings of multi-POI route recommendation research and the difficulty of quantifying
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user preference constraints, a multi-objective and multi-constraint model is proposed that
optimizes the obstacles and time fluctuations of urban road networks in the real world so
as to establish an accurate model. Secondly, based on the theory of crowd sensing theory,
we quantify the scores and distributions of POIs on tourism routes, and calculate the
popularity of scenic spots by weighting. Finally, we propose a novel multi-objective and
multi-constraint route recommendation method based on crowd sensing. The performance
of our proposed method has been evaluated on publicly available datasets, and it was
promising.

The remainder of the paper is organized as follows. We describe several typical tour
route methods, the POI scoring mechanism, and the route constraint model in Section 2. We
give a detailed introduction of problem definition, and propose a novel score mechanism
based on crowd sensing method and a multi-constraint model in Section 3. In Section 4,
we present a multi-objective variable neighborhood search optimization algorithm, which
can realize Top-K route recommendation efficiently. We present a performance comparison
of our algorithm with the well-known ATP algorithm and provide the evaluation results
in Section 5. In Section 6, the paper is summarized, and the future research directions
are described.

2. Related Work
2.1. Tour Route Recommendation

Due to the complexity of traditional shortest path solutions for tourism routes, some re-
searchers [2,5] use the improved A* algorithm to find the shortest paths. Boonsri et al. [22,23]
employed the Dijkstra algorithm and Yen’s algorithm to generate the shortest path of
the specified graph. The path generated by the above work was only for the shortest
time or distance, and did not take into account the individual needs of users. Therefore,
many researchers consider users’ preferences as an important factor in tourism routes.
Kotiloglu et al. [7] proposed an FFTS framework to solve the problem of user-specific
multi-time-window tour route recommendation. In addition, an iterated tabu search al-
gorithm has also been proposed which uses a greedy constructive heuristic algorithm
based on serial insertion to generate a feasible initial solution, and generates a set of routes
that meet the requirements from the must-see attractions and optional spots. However,
the iterative mechanism led to a longer running time and higher algorithmic complexity.
Zheng et al. [8] proposed a four-step heuristic algorithm for personalized one-day travel.
First, the algorithm encodes the route; then it uses the improved greedy algorithm to
construct the initial route, and employs a genetic algorithm and a differential evolution
algorithm to optimize the route. Finally, the generated route is evaluated and iterated
repeatedly within the set threshold. In addition, by adding tourist fatigue to the user
preferences model and taking the time window as the influencing factor of attractions,
it provides a selection strategy for different groups of people for route recommendation.
Cao et al. [24] proposed a keyword-aware optimal route search system (KORS) covering
multiple types of POIs, which provides users with the service of querying POIs to generate
optimal routes, but KORS is unable to generate a route that matches preferences for users
who know little about a city’s information. Luan et al. [25] proposed a maximal-marginal-
relevance-based personalized trip recommendation method that can recommend travel
itineraries to users according to their preferences in an acceptable time. In addition, an
ant-colony-optimization based trip planning algorithm named ATP was developed to
balance trip quality and computational complexity. However, the above recommendation
algorithm can only recommend single-target routes, and cannot help solve the problem of
multi-objective and multi-constrained tour route recommendation.

2.2. POI Scoring Mechanism

The development of location-based social networks (LBSNs) has produced a wealth of
historical information related to users, such as geographical locations and user preferences.
Many studies [9,13,26–28] have utilized the check-in data generated by social tools, such
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as Foursquare, Flicker, and Facebook, or photo data with geo-tagged information, as a
scoring basis to generate personalized tour routes based on user preferences. However,
when utilizing a simple popularity score as the basis for recommendations, the produced
routes cannot adequately satisfy the personal interests of users. Some researchers [29,30]
have computed the matching degree between user preferences and POIs and utilized
collaborative filtering to predict POIs that users may be interested in and generate tour
routes based on user preferences. Su et al. [31] leveraged crowd sourcing and utilized
the knowledge of domain experts to solve complex route recommendation problems.
Luo et al. [32] proposed a crowdsourcing-based route recommendation algorithm that
utilizes existing route mining algorithms and candidate routes generated by map service
providers, which employs domain knowledge to obtain the route and fits user’s preferences.
All of the above work utilizes the popularity of POIs, or user preferences, or domain
experts to recommend routes, and thus cannot comprehensively measure the objective and
subjective scores of attractions. An objective and reasonable measure of the popularity of
POI is the basis for resolving tour route recommendations.

2.3. Route Constraint Model

When considering user preferences, some researchers proposed various constraints,
such as time constraints, cost constraints, distance constraints, and open time constraints
of attractions [33]. Kotiloglu et al. [7] adopted the Euclidean distance, which ignores the
obstacles of the real-world urban road network, so that the errors generated in the route
recommendation are relatively large. Chen et al. [4] proposed a two-stage personalized
travel planning algorithm named TripPlanner, which combines Foursquare data and taxi
trajectory data based on social network data. It can provide three types of constraints: time,
must-see, and meal time. In addition, the system takes the opening hours of POIs and the
travel times between POIs into account. However, in TripPlanner, the POIs to be added
only need to meet the open time to join the candidate route; it fails to consider the fact that
users must arrive before the POIs is opened. Bao et al. [30] took into account the travel time
of scenic spots, the travel times between scenic spots, and so on, but they did not consider
the costs and the number of scenic spots desired. Therefore, it is also not possible to
recommend a personalized tour route for the user that way. Luan et al. [25] considered not
only time and cost, but also POI diversity in the design of their tour route recommendation
model. Therefore, it features better performance in diversity of recommended routes.
As the constraints model has a great influence on the accuracy of recommended routes,
it is very important to establish a complete multi-constraints model for tourism route
recommendation.

3. Preliminaries
3.1. Problem Definition

Definition 1 (User preference tag set). Different users have different preferences. For ex-
ample, user u1 likes gardens, historical buildings, and monuments; user u2 loves distinctive
areas, memorials, and attractions of city parks. Define the user ud’s preference tag set as LUd ={

LUd
1 , LUd

2 , LUd
3 , · · · , LUd

p

}
.

Definition 2 (Attractions label set). Similarly to the user interest tag set, the attraction ai tag
set is LAi =

{
LAi

1, LAi
2, LAi

3, · · · , LAi
q

}
. The attraction tag has a certain relevance to the user

interest tag.

Definition 3 (Target Set). The target set provided by the user ud is Objd = {objd
1
, objd

2
, objd

3
, · · · ,

objdx }, Objd is determined by the user and the route attribute. Targets can be route costs, route
times, route scores, and more.
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Definition 4 (Route Set). Route =
{

rt1, rt2, rt3, · · · , rty
}

is the route set generated by the
route recommendation algorithm. In this paper, the recommended route is displayed in front of
the user in the form of TOP-K. In addition, the types of attributes contained in each route are
represented by RL, such as route score, route time, route cost, and number of route attractions,
where ∀rty ∈ Route, Objd ⊆ RL.

Definition 5 (Route Network). The starting point of user ud and attractions constitute an
undirected graph G〈v, w〉, where v is the attraction set and w is the edge set where the attractions
are connected to each other. Each node contains multiple attributes, such as ID, latitude, longitude,
and score. Although w can be expressed by Euclidean straight-line distance, it is quite different from
the actual urban road. Therefore, we build a network dataset and use ArcMap to generate an OD
matrix, which obtains all edges in the undirected graph with real road network distance. Therefore,
the problem of this paper can be abstracted into finding K optimal travel routes from G〈v, w〉 that
satisfy users’ multiple constraints and recommending them to users.

3.2. Score Mechanism

In order to quantify the attractiveness of scenic spots to different tourists, we introduce
the interest tag matching score, the comprehensive crowd sensing scores, and the distance
dynamic score, which can be used as the input for generating route of recommendation
algorithm.

3.2.1. Interest Tag Matching Score

Taking the scenic spot as an example, suppose the user ud sets his own preferences
to P tags, such as monuments, historical buildings, museums, and temples, and the total
number of target attractions is m, thereby establishing a Boolean matrixRwith dimensions
m ∗ n. Since each attraction has its own unique label, we match the tag set owned by
attraction ai according to the order of interest tags listed by the user. If a certain tag LAi

q
of attraction ai is in the tag set LUd of the user ud, the matrix element value is set to 1,
and otherwise 0. After the matching is completed, the ratio of the total number of matrix
elements with matrix element value 1 and the number of elements of user ud’s interest tag
set is calculated, thereby obtaining the interest matching score GI

i of the user ud for the
attraction ai.

3.2.2. Crowd Sensing Scores

1. Crowd Sensing Social Score. Generally speaking, the evaluation of netizens reflects
the reputation and characteristics of the attractions to a certain extent. The rating
of the scenic spot ai is represented as NA

i , and the rating of the user uj’s interest the
attraction ai is rij, which is synthesized by ratings and text reviews. Then, the crowd
sensing social score of the attraction is expressed as follows:

GA
i =

Ni
∑

y=1
rij

NA
i
× lg(NA

i + 1) (1)

In this paper, the same quantitative method is used to obtain the group intelligence
perception social scores GH and GR of hotels and restaurants. Min-max standardiza-
tion processing is performed to standardize the score.

2. Crowd Sensing Location Score. According to statistical analysis, the distribution of
attractions is closely related to the location distribution of restaurants and hotels.
The total number of restaurants and hotels around the scenic spot represents its
popularity to some extent. Based on this reasoning, the number of restaurants and
hotels distributed within a given radius centered on the attraction is used as the
attraction location score. Assume that the number of restaurants in the radius R of
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the attraction ai is NR
i , and the number of hotels is NH

i . The crowd sensing location
score in radius r of scenic spot ai is as follows:

GL
i =

NR
i

∑
t=1

GR
t

NR
i
× lg(NR

i + 1) +

NH
i

∑
t=1

GH
t

NH
i
× lg(NH

i + 1) (2)

3. Comprehensive Crowd Sensing Score. As the interest tag matching score contains the
user’s personal preference information, the comprehensive crowd sensing score is
obtained from the user rating and POI geographic location. By combining the social
score and location score of crowd sensing, the comprehensive crowd sensing score of
scenic spot ai is obtained, which is represented as:

GP
i = α

2GA
i GL

i
GA

i + GL
i
+ (1− α)GI

i (3)

where α is weight parameter to balance the crowd sensing score and interest tag
matching score.

4. Distance Dynamic Score. In order to introduce the influence of dynamic space-time
on the accessibility of tourists, the space-time accessibility value between users and
attractions is defined as:

GD
i = −eλ

Di
Vk µ (4)

where λ is the distance attenuation coefficient; Di is the average road network distance
from other attractions to the scenic spot ai; Vk represents the driving speed of the
car, which determined by the road level; and µ is the weight. According to the
comprehensive crowd sensing score GP

i of the scenic spot ai and the time-space
accessibility value of the attraction, the metric GS

i of the user-selected scenic spot ai in
the recommendation algorithm is expressed as follows.

GS
i = θGP

i + (1− θ)GD
i (5)

3.3. Multi-Constraint Model

In tour route recommendation, users often give some specific requirements, including
a travel time limit, a cost limit, and so on. These requirements reflect the personalized
needs of users. Based on this, we propose a multi-constraint model, which consists of three
parts: time constraint, cost constraint, and route attribute constraint.

1. Time Constraint. Let Ps
d be the starting position of user ud and Ts

d be the departure
time. The distance between attractions ai and aj is T(ai, aj). The user’s arrival time at
the first attraction is marked T(Ps

d , a1). The arrival time at scenic spot aj is denoted as
Tarr

j , and the total travel time spend by the user is denoted by Tsum
d . Then, scenic spot

aj is added to the tour route. The time constraint model should be satisfied as follows:
Tve

j + Tv
j + T(aj, Pe

d) ≤ Tsum
d

Tve
j − Tarr

j ≥ Tv
j /2

Tb
j ≤ Tarr

j

(6)

where Tb
j denotes the opening time of aj, Tve

j denotes the tour end time of aj, Tv
j

denotes the recommended visiting time for aj, and the minimum play time should
meet half of the recommended visiting time in our model. T(aj, Pe

d) is the time from
the last attraction aj to the destination Pe

d via the recommended route.
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2. Cost Constraint. The sum of POI consumption in the recommended route of the visitor
should be less than or equal to the upper limit given by the user, which represented as:

n

∑
j=1

Cj ≤ Csum
d (7)

3. Multi-objective constraints. Considering the user’s target preference, objd is a collec-
tion of goals given by the user ud, which can be expressed as:

∃V(rtv, objdw) = min⊕max{V(rtv, objd
w)|rtv ∈ Route, objdw ∈ Objd} (8)

where V(·) is the route attribute value under the specified target.
4. Multi-Constraint Model. By considering all the above three constraints, the multi-

constraints model of the overall tourism route is obtained as follows.

Tve
j + Tv

j + T(aj, Pe
d) ≤ Tsum

d
Tv

j ≤ Tl
j

Tb
j ≤ Tarr

j ≤ Te
j − Tv

j /2
n
∑

j=1
Cj ≤ Csum

d

∃V(rtv, objdw)

(9)

4. Multi-Objective and Multi-Constraint Route Recommendation Algorithm

Aiming at the multi-constrained multi-objective tour route recommendation problem,
we propose a multi-objective variable neighborhood search optimization algorithm, named
MOVNS, which realizes Top-K route recommendation. The algorithm consists of two
components: variable neighborhood search algorithm (VNS) and hybrid particle swarm
genetic optimization algorithm (HPSG). The main idea of the algorithm is as follows. Firstly,
the VNS algorithm is used to generate the basic route satisfying the multi-objective and
multi-constraints of users as the initial population. On this basis, the HPSG algorithm is
used to optimize the basic route, and the Pareto optimal solution is obtained by using the
fast nondominated sorting algorithm [33]. Finally, the top routes are selected from the
Pareto optimal set and recommended to users.

4.1. Variable Neighborhood Search Algorithm

The VNS algorithm mainly consists of four major steps:

Step1. Divide the attractions set A into numN neighborhood sets, every of which contains
numA attractions. The sum value of attractions’ comprehensive crowd sensing score GP

i in
each neighborhood set is regarded as its weight; then, all numN neighborhood sets’ weights
are normalized by the random probability, where the probability sum of all neighborhood
sets is 1.
Step2. Select the neighborhood set to be searched in the way of roulette, and select the
POI as a candidate point to join the candidate route according to user’s target. The target
can be the highest route score or the largest number of route attractions. That is to say,
according to the previously selected POIs, continue to search for POIs that meet the user’s
requirements in the neighborhood until the end of the loop.
Step3. Divide the attractions set A into numN neighborhood sets randomly again. Can-
didate POIs that were added to the candidate route are used as references. In this way,
the rating values of attractions in each neighborhood set are dynamically changed, which
adjusts the neighborhood set’s weights. Thus, the selected probability of a neighborhood
set is updated.
Step4. Redo Step1 to Step3 f irstThreshold times; thus, the candidate route set can be
generated.

The details of the algorithm NVS are shown in Algorithm 1.
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Algorithm 1 Variable neighborhood search algorithm.

Input: A, res, numN, numR, obj, f irstThreshold
Output: Route // Route satisfying constraints in the first stage
1: while count < numR do
2: ngb← DivideRandomly(A, numN) // divide A into numN sets
3: StartProbability(A, ngb, res)
4: selectNgb← Roulette(ngb)
5: preLoc← SPO(A, res, ngb, selectNgb, obj) // Select POIs according to user’s targets
6: if preLoc ≥ 0 then
7: route← route + apreLoc and A← A− apreLoc
8: while iterator < f irstThreshold do
9: postLoc← PO(A, res, ngb, preLoc) //Update neighborhood set and select POIS

10: if postLoc ≥ 0 then
11: route← route + apostLoc
12: ChangeState(A) and preLoc← postLoc
13: end if
14: end while
15: end if
16: end while

The symbols and functions in Algorithm 1 are defined as follows. A is the attractions
set, res is the constraint provided by the user, numN is the number of neighborhoods,
numR denotes the number of recommendation routes, obj denotes the selected object by
the user, and f irstThreshold is the upper limit of iteration of the variable neighbor. The
function of DivideRandomly(A, numN) is to divide the attractions set A into N neighbor-
hoods randomly. The function of StartProbability(A, ngb, res) is to obtain the normalized
probability of each neighborhood with reference to the starting point. The function of
Roulette(ngb) is to apply roulette algorithm to select the neighborhood. The function
of SPO(A, res, ngb, selectNgb, obj) is to obtain the index of the POI with the maximum
score from set A according to the selected object. The function of PO(A, res, ngb, preLoc) is
to update the score, re-calculate the probability of each neighborhood, and re-select the
neighborhood that meets the user constraints through roulette algorithm dynamically. The
function of ChangeState(A) is to update attractions set A to be selected.

4.2. Hybrid Particle Swarm Genetic Optimization Algorithm

A conventional genetic algorithm can not be directly used to solve the proposed multi-
objective and multi-constraint Top-K personalized tour route recommendation. A hybrid
particle swarm genetic optimization algorithm using sequential crossover operator is
proposed in this paper. The algorithm crosses selected chromosomes with global extremum
randomly to realize the function of mutation, and the crossover operator is selected to
optimize the algorithm by using the mechanism of roulette. Secondly, according to the
multi-constraints model, a new route set is generated iteratively based on the candidate
route set generated by Algorithm 1. Finally, the Pareto optimal set is obtained by fast
nondominated sorting algorithm, and the Top-K tour route recommendation is realized.
The algorithm’s steps are shown in Algorithm 2.

Note that the candidate recommendation routes are generated using the VNS algo-
rithm. Then, the particles, i.e., tour routes, are encoded, and the individual extremum and
global extremum are found based on the idea of particle swarm optimization. Roulette
method is used to select two parents, tempRoute and anotherRoute; then it crosses the two
parents with a certain probability and selects the offspring according to the fitness. Next,
we cross the offspring and the global extremum gBestRoute with a certain probability, i.e.,
mutation. Then the system judges whether the final offspring meets the user’s constraints,
calculates the fitness of the particles, determines whether to accept the new chromosome
and replicate it, iterates secondThreshold times, and generates numR routes under a single
objective. Finally, for each object, the routes generated by hybrid particle swarm opti-
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mization algorithm are merged, and the Pareto optimal set is obtained by using a fast
nondominated sorting algorithm.

The symbols and functions in Algorithm 2 are defined as follows. The symbolic defini-
tions for A, res, and obj are the same as in Algorithm 1. secondThreshold is the upper limit of
iteration of Algorithm 2 in the search stage, route denotes the candidate route set generated
by the variable neighborhood search algorithm. The function of InitPBestRoute(Route, obj)
is to initialize the individual extremum based on user objects. The function of FindPBestLoc
(pBestRoute, obj) is to find global extremum subscripts. The function of Roulette (pBestRoute)
is to obtain two parents for crossing by the roulette algorithm. The function of Crossover
(tempRoute, anotherRoute) is to select two paternal chromosomes for crossover. The function of
Mutation(tempRoute, gBestRoute) is to cross a temp chromosome with a global extremum
as a variation. The function of CalFitness(A, tempRoute, obj) is to calculate the particle
fitness and select the fitness according to obj. The function of Update (Route, tempRoute,
pBestRoute, fitness, curPar, obj) is to update the particle. If the fitness is high, it is accepted;
otherwise, it is discarded. The function of Merge(Route) is to merge the route solutions
based on each user object. The function of FNS(Route′) is to use fast non-dominated sorting
algorithm to obtain the Pareto optimal set.

Algorithm 2 Hybrid particle swarm genetic optimization algorithm.

Input: A, res, Route, obj, secondThreshold
Output: TopKRoute // recommended route in the second stage
1: pBestRoute← InitPBestRoute(Route, obj)
2: gBestLoc← FindPBestLoc(pBestRoute, obj)
3: if gBestLoc ≥ 0 then
4: gBestRoute← pBestRoute[gBestLoc]
5: while iterator < secondThreshold do
6: tempRoute← Roulette(pBestRoute)
7: anotherRoute← Roulette(pBestRoute)
8: if Route[curPar] > 0 then
9: tempRoute← Route[curPar]

10: end if
11: list← Crossover(tempRoute, anotherRoute)
12: list← Mutation(tempRoute, gBestRoute)
13: if Judge(A, res, list) = f alse then
14: Start a new iteration
15: end if
16: f itness← CalFitness(A, tempRoute, obj)

17:
Update(Route, tempRoute, pBestRoute,
f itness, curPar, obj)

18: if gBestLoc ≥ 0 then
19: gBestRoute← pBestRoute[gBestLoc]
20: end if
21: end while
22: end if
23: Route′ ← Merge(Route)
24: TopKRoute← FNS(Route′)

4.3. Algorithm Complexity Analysis

The complexity of the proposed MOVNS algorithm mainly involves executing the
algorithms of VNS and HPSG. Suppose the number of attractions is n. The complexity of
VNS is mainly divided into numN neighbors from scenic spots. The complexity of this part
is O(An), where A is a constant. Next is the complexity of iteratively generating neighbors
and sifting out numR routes, which is O( f irstThreshold ∗ numR). The total complexity
of these two parts is O( f irstThreshold ∗ numR + An). The HPSG algorithm consists of
the following parts: The complexity of finding the best parent is O(BnumR), where B
is a constant. Then it iteratively generates the complexity of single-objective candidate
routes in numR seed routes, which is O(secondThreshold ∗ numR). Finally, the complexity
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of generating Top-K recommended routes by FNS sorting algorithm is O(numR lognumR
2 ).

Hence, the complexity of HPSG is O(secondThreshold ∗ numR + BnumR + numR lognumR
2 )

and the complexity of the whole algorithm is O( f irstThreshold ∗ numR + secondThreshol ∗
numR + BnumR + numR lognumR

2 +An)

5. Experiment
5.1. Experimental Datasets

Our experimental datasets were derived from two major domestic portal sites, Ctrip
and Dianping. The scenic spot data comes from Ctrip, which has attributes of name, rating,
opening time, type, recommended playing time, and so on. We have collected real data
from 200 scenic spots, 8171 restaurants, and 2528 hotels in Beijing before August 2017,
which were used for our experiments [34].

5.2. Experimental Setup

Although tour route recommendation algorithms have been intensively studied,
there have been few research efforts on multi-objective and multi-constrained tour route
recommendations. To the best of our knowledge, only the ATP algorithm [25] can achieve
multi-objective Top-k route recommendation. The ATP algorithm adopts the ant colony
optimization method to obtain an approximately optimal solution which can balance trip
quality and computational complexity. Therefore, we only choose the ATP algorithm to
compare with our proposed MOVNS in this paper.

The experiment was run on a workstation with a 3.4 GHz Core i7 processor, 16 GB
of memory, and a Windows 10 operating system. The radius of crowd sensing location
score was set to 2 km. The default value of balance parameter α in the comprehensive
crowd sensing score was set to 0.5, and θ was set to 0.5. In the MOVNS algorithm, the
default value of numN is 4, numR is 100, the iteration number f irstThreshold is 100, and
secondTheshold is 2000.

The running time, route scores, interest abundance (IA), and number of POIs in route
were used to measure the performance of the comparison algorithms. Route score refers
to the total score of each POI in the recommendation route. A high score indicates a good
quality route. IA is a comprehensive evaluation index for recommended routes, including
the travel time, the route score, the number of POIs, and the type number of scenic spots.
The number of POIs refers to the number of POIs included in the recommendation route,
which is of great significance to measure whether the route recommendation algorithm is
reasonable. The running time is an important index with which to measure the efficiency
of the algorithm. From the perspective of the quality of recommendation routes, we used
route score, interest abundance, and the number of POIs en route to measure. From
the perspective of the running efficiency of the algorithms, we used the running time
to measure the efficiency of the comparison algorithms. Therefore, the advantages and
disadvantages of each algorithm were analyzed. The specific mathematical definition of IA
denoted by Φ in this paper is as follows.

Φ =


√

KS
T ·

M
∑

i=1
GPA

i ×
(Mup−M)

MMbest Mbest < M
√

KS
T ·

M
∑

i=1
GPA

i ×
1
M M ≤ Mbest

(10)

where T represents the total route time, M represents the number of attractions included
in the route, Mbest is the best number of scenic spots in the recommended route, K is the
number of types of attractions included in the route, and S is the proportion of labels of all
attractions in the recommended route that match user-provided interest labels.
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5.3. Experimental Results
5.3.1. Sensitivity Analysis

This section focuses on the sensitivity study of the balance coefficient α between crowd
sensing score and interest tag matching score, the balance coefficient θ between space-time
accessibility value and the comprehensive crowd sensing score of scenic spots, the number
of neighborhoods numN, the number of iterations f irstThreshold of the VNS algorithm,
and the iteration number secondThreshold of the HPSG algorithm in our proposed MOVNS
method. We analyze the effects of their values on the performance of the MOVNS algorithm.

As shown in Figure 1a, the IA reached a superior value when α was between 0.1
and 0.5; the best performance was when α reached 0.5. From Figure 1a, we can see that
the balance coefficient was α about 0.5 to reach the optimum. The results show that the
mechanism of crowd sensing can effectively improve the recommendation performance of
tour routes.

As is depicted in Figure 1b, when θ was between 0 and 0.4, the IA was on the rise and
reached its maximum at 0.4. IA remained stable when θ was greater than 0.5. The results
indicate that the space-time accessibility value can enhance the recommendation effect on
the performance of recommendation and improve recommendation efficiency when θ is in
[0.4,1].

(a) (b) (c)

(d) (e) (f)

Figure 1. The influences of parameters on the MOVNS algorithm. (a) The influence of parameter α on IA. (b) The influence
of parameter θ on IA. (c) The influence of neighborhood number on IA. (d) The influence of parameter f irstThreshold on IA.
(e) The influence of parameter secondThreshold on IA. (f) The influence of particle number on IA.

Figure 1c shows that when the number of neighborhoods was 2, 4, or 5, the IA was
higher. With the increase in the number of neighborhoods, the IA fluctuated and decreased.
Therefore, the number of neighborhoods should not be set too high. We set it to four in
this experiment.

As shown in Figure 1d, when the number of iterations f irstThreshold of VNS increased
to 10, the IA reached the optimum and began to converge. The experimental results show
that VNS has good convergence.
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According to Figure 1e, when the number of iterations secondThreshold in HPSG was
less than 600, the IA tended to increase, but its range was large and very unstable. As the
iterations increased to 2000, the IA became much more stable than before. From Figure 1f,
it can be seen that the IA fluctuated and converged when the number of particles was
greater than 60, and reached the optimal state.

5.3.2. Comparative Experiments on Different Metrics

This section compares our MOVNS algorithm with the multi-objective constraint route
recommendation algorithm ATP, proposed by Luan [25]. The running time, route scores,
IA, and number of scenic spots produced by MOVNS were compared ten times in each
experiment with ATP.

Figure 2a shows that the running time of MOVNS was about 1 s, which was much less
than that of ATP. Figure 2b shows that the IA index of the proposed algorithm fell in the
range [0.15, 0.2], which is higher than that of ATP. Figure 2c shows that the recommended
route score of MOVNS ranged in [3.6, 3.9]. Compared with ATP, the route score of MOVNS
algorithm was higher. As shown in Figure 2d, ATP generated routes consisting of up to
six scenic spots, which cannot meet the needs of users to visit more scenic spots within a
limited time. MOVNS is more flexible in the number of scenic spots recommended by the
route. The time complexity of ATP algorithm compared in our paper is O(RNKn), where
R is the total number of iterations, N is the total number of ants, K is the number of POIs
in the dataset, and n denotes the number of elements in the POI set. The ATP algorithm is
higher in time complexity compared with our proposed algorithm. In addition, the ATP
algorithm is a route recommendation algorithm based on ant colony optimization, and
its pheromone update is a positive feedback process which rapidly expands the initial
pheromone difference, so it can easily fall into a local optimum and fail to reach the global
optimal. The advantage of the algorithm proposed in our paper is generating globally
diverse solutions conforming to constraints through the first stage of the variable nearest
neighbor algorithm. In addition, it makes the diversity of solutions better, and does not
easily fall into local optima through cross-variations of the genetic algorithm.

(a) (b)

(c) (d)

Figure 2. Performance comparison between MOVNS and ATP. (a) Running time comparison. (b) AI
comparison. (c) Route score on comparison. (d) Number of scenic spots comparison.
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5.3.3. Comparative Experiments with Multiple Objectives

We set four objectives for the algorithm, namely, user cost, play time, route score, and
number of scenic spots; and compare the route score and number of scenic spots of the
TOP-K Pareto optimal set produced by MOVNS and the routes generated by ATP. The
experiments showed that MOVNS outperforms ATP. The value of K in this experiment
was set to 10. As Pareto’s optimal set can balance multiple objectives, it reached a higher
score for routes and a higher number of scenic spots; see Figure 3.

5.3.4. Tourist Route Simulation Experiment

This experiment assumed the user’s interest preferences and targets, and used ArcGIS
to simulate the routes generated by ATP and MOVNS to compare the effectiveness of
the recommendations. As shown in Figure 4, our proposed algorithm has better route
planning and scenic spot recommendation quality when setting multiple objectives. The
main findings are as follows. Firstly, MOVNS achieved shorter travel distance, and there
was almost no bypassing. The route arrangement is reasonable, which shows that the
dynamic distance score plays a very good regulating role. Secondly, the types of scenic spots
recommended by MOVNS are much richer than those of ATP, which indicates that the idea
of crowd sensing method can provide better decision support for tourists. Finally, under
the multi-objective and multi-constraint settings, the route recommended by MOVNS is
more in line with the real needs of users.

(a) (b)

Figure 3. Comparison of TOP-K route recommendations. (a) Route Score. (b) Number of scenic
spots.

(a) (b)

Figure 4. Comparison of route simulation. (a) ATP route. (b) MOVNS route.
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6. Conclusions

We proposed a multi-objective and multi-constrained travel route recommendation
algorithm. It uses the idea of crowd sensing to get the social and location scores of scenic
spots, and calculates the matching similarity between the user’s labels and POI labels, and
incorporates the user’s personal space-time accessibility value into the above score. Based
on the multi-constraints model, the MOVNS method includes the variable neighborhood
search algorithm and a hybrid particle swarm genetic optimization algorithm, which is
designed to recommend the optimal tour route to meet the user’s personalized needs. The
experimental results of the algorithm proposed in our paper on a real dataset of Beijing
showed that it is better than the ATP algorithm in terms of scores for the recommended
routes, interest abundance, and number of POIs in the route, so our proposed approach has
a better recommendation effect. Moreover, our proposed algorithm is more efficient than
ATP in running time. However, our proposed algorithm also has some problems, such as
slow convergence and complex parameter settings. The explainability of recommendation
results is very important for applications to recommender systems. Therefore, we plan to
study how to construct the semantic model of tourism POIs by using a knowledge graph,
and further construct the tour route recommendation method based on a knowledge graph,
so as to enhance the loyalty and satisfaction of users.
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