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Abstract: With advancements in photoelectric technology and computer image processing technol-
ogy, the visual measurement method based on point clouds is gradually being applied to the 3D
measurement of large workpieces. Point cloud registration is a key step in 3D measurement, and its
registration accuracy directly affects the accuracy of 3D measurements. In this study, we designed a
novel MPCR-Net for multiple partial point cloud registration networks. First, an ideal point cloud
was extracted from the CAD model of the workpiece and used as the global template. Next, a deep
neural network was used to search for the corresponding point groups between each partial point
cloud and the global template point cloud. Then, the rigid body transformation matrix was learned
according to these correspondence point groups to realize the registration of each partial point cloud.
Finally, the iterative closest point algorithm was used to optimize the registration results to obtain
the final point cloud model of the workpiece. We conducted point cloud registration experiments
on untrained models and actual workpieces, and by comparing them with existing point cloud
registration methods, we verified that the MPCR-Net could improve the accuracy and robustness of
the 3D point cloud registration.

Keywords: point cloud registration; template point cloud; multiple partial point cloud; deep learning

1. Introduction

Technical advances and market competition have pushed manufacturing companies to
offer larger and more precise machine parts. This trend calls for 3D measurement systems
with higher measuring efficiency and accuracy [1,2]. The visual measurement method
based on point cloud data has the advantages of possessing high measurement speed and
accuracy, and no contact with the workpiece; thus, it has gradually been applied to the 3D
measurement of large workpieces.

3D point cloud reconstruction involves obtaining a series of partial point clouds of a
workpiece under multiple poses using a 3D measuring device and then fusing these point
clouds to generate a complete 3D point cloud of the workpiece [3,4]. The accuracy and
reliability of 3D reconstruction directly affect the accuracy of the measurement.

A key step in point cloud 3D reconstruction is establishing a partial or global recon-
struction model of the workpiece through a series of processing steps such as point cloud
denoising, point cloud registration, and surface reconstruction. The purpose of point cloud
registration is to move point clouds with different poses to the same posture through rigid
body transformation to eliminate the misalignment between pairwise point clouds [5].

In the field of 3D reconstruction, the vast majority of point cloud registration methods
concern multiple partial point cloud registration [6], the basic principle of which is to
reduce or eliminate the cumulative error of the 3D reconstruction by minimizing the
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registration error between partial point clouds under multiple poses, thereby improving
the reconstruction accuracy. However, traditional point cloud registration methods, such
as the turntable method [7] and the labeling method [8], are handcrafted methods with
disadvantages such as low efficiency, high requirements for equipment accuracy, and
missing point clouds in labeled areas.

With the development of deep learning technology and a greater number of publicly
available datasets for point cloud models, many scholars have attempted to use deep
learning methods to achieve point cloud registration and verify its effectiveness through
experiments. However, to reduce computational complexity and improve the efficiency of
3D reconstruction, the existing deep learning-based point cloud registration methods often
degenerate the multiple partial point cloud registration problem into a pairwise registration
problem [9]. Then, by optimizing the relative spatial pose between the pairwise partial
point clouds, the final reconstruction model of the workpiece is constructed based on the
pairwise registration results.

However, due to the camera pose and environmental limitations, it is often impossible
to ensure a sufficient overlap area between the pairwise point clouds. If the relationship
between the partial point clouds and the overall structure of the workpiece is ignored,
only the registration of partial point clouds is performed. This will increase the difficulty
of point cloud registration, reduce the registration accuracy, and increase the final 3D
reconstruction error.

The following are the remaining gaps in point cloud registration algorithms that need
to be addressed:

1. Some algorithms require the structures of pairwise point clouds to be the same. If the
geometric structures of the pairwise point clouds are quite different, the registration
accuracy will decrease;

2. Some algorithms can complete the registration of two partially overlapping point
clouds through partial-to-partial point-cloud registration methods. However, these
methods rely on the individual training of specific partial data of the point cloud to
establish the correspondence point relationship between the pairwise point clouds.
Moreover, the registration accuracy is very sensitive to changes in the points.

From the above analysis, it can be concluded that existing deep learning-based point
cloud registration methods can only be used for scene reconstruction and other occasions
with low accuracy requirements. They are not suitable for the 3D reconstruction of large
workpieces with high accuracy requirements. To solve this problem, we propose a multiple
partial point cloud registration network using a global template named MPCR-Net.

MPCR-Net was inspired by PointNet [10]. It uses deep neural networks to extract
and fuse the learnable features of partial point clouds and the global template point cloud.
It then trains the rigid body transformation matrix for partial point clouds to register
the correspondence partial point cloud to the global template point cloud and finally
forms a complete point cloud of the workpiece. In MPCR-Net, the partial point cloud has
the characteristics of a local geometric structure of the workpiece and is sampled by the
measuring device; the global template point cloud has the complete geometric structure of
the workpiece and is converted from the CAD model of the workpiece.

The key contributions of our work are listed as follows:

1. A multiple partial point cloud registration method based on a global template is
proposed. Each partial point cloud is gradually registered to the global template in
patches, which can effectively improve the accuracy of the point cloud registration.

2. A clipping network for the global template point cloud, TPCC-Net (clipping network
for template point cloud), was designed. In TPCC-Net, the features of partial point
clouds and the global template point cloud are extracted and fused through a neural
network, and the correspondence points of each partial point cloud are cut out from
the global template point cloud. Compared to the existing registration algorithm
based on deep learning, this method can reduce the correspondence point estimation
error and improve registration efficiency.
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3. A parameter estimation network for rigid body transformation, TMPE-Net (parameter
estimating network for transformation matrix), was designed. The learnable features
of a partial point cloud and its correspondence points generated through the TPCC-
NET were extracted through a neural network, and the parameters of the rigid body
transformation matrix were estimated to minimize the learnable feature gap between
the partial point cloud and the global template point cloud.

2. Related Work
2.1. Classic Registration Algorithms

Classic registration algorithms for point clouds mainly include the iterative closest
point (ICP) algorithm [11,12], variants of ICP [13–19], and geometry-based registration
algorithms [20–24].

The ICP algorithm [11,12] represents a major milestone in point cloud registration
and is extensively applied in various ways. The essence of ICP is to minimize the sum
of the distances between correspondence points of pairwise point clouds using iterative
calculations, thereby optimizing the relative pose of the pairwise point clouds. When
the relative pose deviation of the pairwise point clouds is small, the algorithm is guar-
anteed convergence and can obtain an excellent registration result. Scholars have made
various improvements to the ICP algorithm to enhance registration efficiency [16] and
accuracy [17–19]. However, all ICP-style algorithms still rely on the direct calculation of
the closest point correspondences; moreover, they cannot dynamically adjust according to
the number of points and easily fall into local minima.

The workflow of geometry-based registration algorithms is as follows: calculate the
geometric feature descriptors between pairwise point clouds [25], determine the corre-
spondence relationship of the pairwise point clouds according to the similarity of the
descriptors, and calculate the optimal matrix for rigid body transformation between the
pairwise point clouds. Random-sample-consistency-based registration algorithms [20],
such as the sample consensus initial alignment (SAC-IA) [24], are the most widely used
geometry-based registration algorithms. In SAC-IA, the correspondence points are estab-
lished by calculating the local fast point feature histograms (FPFH) of the pairwise point
clouds, and registration is subsequently accomplished by minimizing the distance between
correspondence points. The algorithm can achieve invariance to the initial pose, and a
satisfactory registration result can still be obtained when the overlap in the pairwise point
clouds is low.

Unfortunately, the registration results of the geometry-based registration algorithms
mainly depend on the calculation accuracy of the geometric feature descriptors between
pairwise point clouds. It is necessary to manually adjust the calculation parameters involved
in the geometric feature descriptor, such as the neighborhood radius of the FPFH descriptor,
to minimize calculation errors and improve registration accuracy. This method consumes a
significant amount of time, and it is not easy to determine its optimal parameters.

2.2. Deep Learning-Based Registration Algorithms

Recent studies have shown that point cloud registration algorithms based on deep
learning have higher registration accuracy than classic point cloud registration algo-
rithms [26–30].

Charles et al. [10] proposed an end-to-end deep neural network (PointNet) that could
directly take point clouds as a network input. PointNet overcomes the shortcomings of
general deep learning methods that cannot effectively extract features from unstructured
point clouds, and it establishes a learnable structured representation method for unstruc-
tured point clouds. PointNet and its variants have been successfully applied in point cloud
classification, object detection [31], and point cloud completion tasks [32].

In point cloud registration tasks, some deep learning algorithms use the PointNet
architecture to obtain the learnable structural features of the unstructured point clouds,
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train rigid body transformation matrices for point cloud registration based on these features,
and obtain satisfactory point cloud registration results.

PointNetLK [33] is the first deep learning-based algorithm to use a learnable structured
representation method for point cloud registration. PointNetLK modifies the classical
Lucas and Kanade (LK) algorithm [34] to circumvent the inherent inability of the PointNet
representation to accommodate gradient estimates through convolution. This modified LK
framework is then unrolled as a recurrent neural network in which PointNet is integrated
to construct the PointNetLK architecture. However, PointNetLK and similar algorithms,
such as the DCP [35], DeepGMR [36], and PCRNet [37], work on the assumption that all
the points in the point clouds are inliers by default. Naturally, they perform poorly when
one of the point clouds has missing points, as in the case of partial point clouds.

Unfortunately, in actual point cloud 3D reconstruction tasks, it is rare for the geometric
structures of pairwise point clouds to be the same, especially for large workpieces. Each
raw point cloud collected by the measuring device can only map the local structure of
the workpiece.

A class of point cloud registration algorithms, PRNet [38] and RPM-Net [39], which
also contain the PointNet architecture, can handle partial-to-partial point cloud registration.
Their application range is wider than that of PointNetLK and other algorithms that can
only perform global point cloud registration. Unfortunately, these algorithms do not scale
well when the number of points increases. If the number of points of the pairwise point
clouds differs significantly, the estimation result of the rigid body transformation matrix
will fluctuate with the number of points, resulting in a decrease in registration accuracy.

Other deep learning-based algorithms, such as the DGR [40] and multi-view registra-
tion network [41], can use neural networks to filter out some outliers from the correspon-
dence points of pairwise point clouds, but these algorithms require a clear correspondence
between the pairwise point clouds.

3. MPCR-Net
3.1. Overview

Most existing deep learning-based partial-to-partial point cloud registration algo-
rithms iteratively perform registration between partial point clouds to realize the registra-
tion between multiple partial point clouds, before finally building a complete reconstruction
model of the workpiece. However, when the overlapping area between the pairwise par-
tial point clouds is small, the registration accuracy cannot be guaranteed, and a large
3D reconstruction error accumulates after the iterative registration of multiple partial
point clouds.

We propose MPCR-Net, a multiple partial point cloud registration network, which
uses a global template to improve the registration accuracy of a large workpiece. In this
network, the template point cloud extracted from a CAD model is used as the global
registration template, and multiple partial point clouds are gradually pasted onto the
global template; the relative poses of partial point clouds and the template point clouds
are subsequently optimized to obtain a fully registered point cloud of all the partial point
clouds. Compared with existing registration algorithms, the MPCR-Net can guarantee the
overlap rate between the pairwise point clouds (the partial point cloud can be approxi-
mately regarded as a subset of the template point cloud), thus reducing the registration
difficulty and error.

MPCR-Net mainly comprises TPCC-Net and TMPE-Net. TPCC-Net uses a deep
neural network to extract and merge the features of a partial point cloud and the global
template point cloud; it then “cuts out” a correspondence partial template point cloud in
the global template point cloud. TMPE-Net merges the features of partial point clouds and
the correspondence partial template point clouds, then iteratively learns the optimal rigid
body transformation matrix.

As shown in Figure 1, the overall workflow of the MPCR-Net is as follows:
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1. Suppose there are n partial point clouds S1, . . . , Sn and a global template point cloud
T, S1, . . . , Sn and T are used as the inputs of TPCC-Net. In the TPCC-Net, the feature
matrices F(S1), . . . , F(Sn) of S1, . . . , Sn and F(T) of T are obtained through the point
cloud feature perceptron, respectively;

2. Global feature vectors ∅(S1), . . . ,∅(Sn) are obtained by pooling F(S1), . . . , F(Sn),
then the fusion features F1, . . . , Fn are obtained by splicing ∅(S1), . . . ,∅(Sn) and
F(T) [42];

3. Index features M1, . . . , Mn of F1, . . . , Fn are obtained through the index feature per-
ceptron, and the indexes M′1, . . . , M′n are obtained by normalizing, filtering, and
addressing M1, . . . , Mn. According to M′1, . . . , M′n, partial template clouds T′1, . . . , T′n
corresponding to S1, . . . , Sn respectively are cut out from T;

4. Partial template clouds and partial point clouds are input into the TMPE-Net in the
form of correspondence point groups

{(
S1, T′1

)
, (S2, T′2), . . . , (Sn, T′n)

}
. In the TMPE

-Net, the global feature vector
{(

∅(S1),∅
(
T′1
))

, (∅(S2),∅(T′2)), . . . , (∅(Sn),∅(T′n))
}

of
{(

S1, T′1
)
, (S2, T′2), . . . , (Sn, T′n)

}
is obtained from the point cloud feature perceptron

and the pooling layer, and each group of global feature vectors is spliced to obtain the
global fusion feature F′1, . . . , F′n;

5. The dimension of F′1, . . . , F′n is reduced through the transformation parameter percep-
tron and output the transformation parameter vectors Z1, . . . , Zn, and the rigid body
transformation matrixes G1, . . . , Gn are constructed according to Z1, . . . , Zn;

6. Rigid body transformations are performed on S1, . . . , Sn according to transforma-
tion matrices G1, . . . , Gn, and the above steps are repeated iteratively to calculate
G1, . . . , Gn until G1, . . . , Gn meet the stop condition C; then, all the iteration results
are combined to construct the optimal rigid body transformation matrix G′1, . . . , G′n;

7. G1, . . . , Gn is used to register S1, . . . , Sn to T, and the ICP algorithm optimizes the
registration results to obtain point clouds W1, . . . , Wn. W1, . . . , Wn are adjusted to
the same coordinate system and obtain a fully registered point cloud W ′ spliced by
W1, . . . , Wn. Subsequent 3D reconstruction tasks, such as surface reconstruction, can
be performed based on W ′.

3.2. TPCC-Net
3.2.1. Mathematical Formulation

Suppose that the index of a partial template point cloud T′i corresponding to the partial
point cloud Si in the global template point cloud T is M′i ; then

T′i = M′i ⊗ T i ∈ [1, n] (1)

where the operator ⊗ is used to represent the process of estimating T′i in T.
The symbol ∅ : RN×3 → RN×K represents the extraction operation of the global

features of a point cloud. For example, ∅(P) means to transform point cloud P into a
K-dimensional global feature vector.

Assuming that Si can be registered to T completely, then Si and T have similar global
features of the point cloud, that is:

∅(Si) ≈ ∅
(

RT′i + t
)

(2)

In Equation (2), R ∈ R3×3 and t ∈ RNy×3 are the rotation and translation matrices
used in the registration, respectively. The pose relationship between Si and T is uncertain
before registration, that is, the values of R and t are unknown; therefore, we temporarily
ignore the influence of R and t and use Equation (3) to establish a weaker condition to
relate Si to T′i :

∅(Si) ≈ ∅
(
T′i
)

(3)

that is,
∅(Si) ≈ ∅

(
M′i ⊗ T

)
(4)
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Equation (4) indicates that the point clouds T and Si input to the TPCC-Net are
linked together through the index M′i , and all correspondence points that are similar to the
features of Si can be determined from T. We assume that M′i can be calculated by operation
f (·); then:

M′i = f (∅(Si),∅(T)) (5)

The search for correspondence points is to learn the index M′i by training the TPCC-
Net and then cutting out the correspondence point set T′i of Si from the global template
point cloud T according to M′i . We consider estimating M′i by fusing the point cloud
features of T and Si.
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Figure 1. The network architecture of the MPCR-Net. 
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Figure 1. The network architecture of the MPCR-Net.

3.2.2. Network Architecture

TPCC-Net mainly includes a point cloud feature perceptron, pooling layer, and index
feature perceptron. The architecture of TPCC-Net is shown in Figure 2.
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Figure 2. The network architecture of the TPCC-Net.

The point cloud feature perceptron comprises of five convolutional layers of sizes
3–64, 64–128, 128–128, 128–512, and 512–1024. The main purpose of the point cloud feature
perceptron and pooling layer is to generate the feature matrix and global feature vector
of two input point clouds. The index feature perceptron consists of three convolutional
layers of sizes 2048–1024, 1024–512, and 512–256 and two fully connected layers of sizes
256–128 and 128–1. Its main purpose is to estimate the index vector for correspondence
point searching through dimensional transformation.

3.2.3. Working Process

TPCC-Net is divided into three main functional blocks. Taking the correspondence
point estimation process of Si as an example, the working process of TPCC-Net is as follows.

1. Extract and fuse point cloud features

a. Suppose point clouds Si and T contain Nx and Ny data points, respectively, and
Nx < Ny. Input Si and T to the point cloud feature perceptron; it consists of
five multi-layered perceptrons (MLPs), similar to PointNet. The dimensions
of Si and T are both increased to 1024 after the convolution processing of
the point cloud feature perceptron. Afterward, generate the feature matrices
F(Si) ∈ RNy×1024 and F(T) ∈ RNx×1024 of Si and T. Weights are shared between
the MLPs used for Si and T.

b. Use the max-pooling function to downsample F(Si) to generate a global feature
vector ∅(Si) corresponding to Si.

c. Join ∅(Si) and F(T) to build a point cloud fusion feature Fi ∈ RNx×2048.

2. Construct the index vector

a. Input Fi to the indexed feature perceptron; the dimension of Fi is reduced to
one, and the index feature M ∈ RNx×1 is then output.

b. Use the Tanh activation function to normalize M to construct the index vector
M′ ∈ RNx×1.

3. Predict the correspondence points

a. Encode all data points in T to construct the index MT ∈ RNx×2.
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b. Filter out the first Ny elements close to zero from the index vector M′ ∈ RNx×1

to form the index element vector M′′ ∈ RNy×1.
c. Find the address of the above Ny elements in M′ to construct the index M′′′ ∈ RNy×2.
d. M′′′ ∈ MT , according to each index in M′′′ ; the elements corresponding to the

index in M′′′ are extracted from the global template point cloud T, and all the
extracted elements in T are combined to construct the estimated correspondence
point set T′i of Si in T. The correspondence point estimation process is shown
in Figure 3, where the purple part is the correspondence point set T′i .
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3.3. TMPE-Net
3.3.1. Mathematical Formulation

Suppose that Si can be fully registered to T through a rigid body transformation; then
the global features of the point clouds of Si and T′i are similar, where T′i is the corresponding
point set of T that is generated through TPCC-Net. Assuming that the rotation matrix and
the translation vector used in the rigid body transformation are R ∈ R3×3 and t ∈ RNy×3,
respectively, then:

∅(Si) ≈ ∅
(

RT′i + t
)

(6)

Assuming that R and t can be calculated by operation H(·), then

{R, t} = H
(
∅(Si),∅

(
T′i
))

(7)

Similar to PointNetLK [33], in the TMPE-Net, we directly estimate R and t by fusing
the point cloud features of T′i and Si, and further optimize R and t by iteration Si.

3.3.2. Network Architecture

As shown in Figure 4, TMPE-Net mainly includes a point cloud feature perceptron,
pooling layer, and transformation parameter perceptron. The architecture of the point
cloud feature perceptron is the same as that of TPCC-Net. The architecture of transfor-
mation parameter perceptron is also similar to that of TPCC-Net, which consists of three
convolutional layers of sizes 2048–1024, 1024–512, and 512–256, and two fully connected
layers of sizes 256–128 and 128–7. Its main function is to estimate R and t.
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3.3.3. Working Process

Taking the rigid body transformation of Si as an example, TPCC-Net works as follows:

1. Extract and fuse the global feature vector of point clouds

a. Input Si ∈ RNy×3 and its corresponding point set T′i ∈ RNy×3 into point cloud
feature perceptron; then, the dimensions of Si and T′i are both increased to 1024,
and the feature matrices F(Si) ∈ RNy×1024 and F(T′ i) ∈ RNy×1024 of Si and T′i
are generated. The weights of all convolutional layers in the point cloud feature
perceptron are shared for Si and T′i .

b. Use the max-pooling function to downsample F(Si) and F
(
T′i
)

to construct the
global feature vectors ∅(Si) ∈ R1×1024 and ∅

(
T′i
)
∈ R1×1024 that correspond

to Si and T′i , respectively.
c. Join ∅(Si) and F

(
T′i
)

to build a global fusion feature Fi ∈ RNx×2048 of the
point clouds.

2. Construct the parameter vector

Input F′i to the transformation parameter perceptron and the dimension of F′i is
reduced to seven; then, output the transformation parameter vector Z ∈ R1×7.

3. Estimate the rigid body transformation

In TMPE-Net, we estimate the rigid body transformation matrix through iterative
training, and the process is as follows:

Suppose that the rigid body transformation matrix has been iteratively calculated m
times, and parameter vector Zj can be obtained in the j-th (j ∈ [1, m]) iteration. Assuming
that Zj =

[
a0 a1 a2 a3 a4 a5 a6

]
, we use the first four elements (a0, . . . , a3) in Zj

to construct the rotation matrix Rj [43]:

Rj =

 a0
2 + a1

2 − a2
2 − a3

2 2(a1a2 − a0a3) 2(a1a3 + a0a2)
2(a1a2 + a0a3) a0

2 + a2
2 − a1

2 − a3
2 2(a2a3 − a0a1)

2(a1a3 − a0a2) 2(a2a3 + a0a1) a0
2 + a3

2 − a1
2 − a1

2

 (8)

We then use the last three elements (a4, . . . , a6) in Zj to construct the translation
vector tj:

tj =
[

a4 a5 a6
]

(9)

The rigid body transformation matrix estimated in one iteration is Gj =
{

Rj, tj
}

.
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Suppose that the input partial point cloud of the j-th iteration is ([Si])j, and Gj is the
corresponding estimated rigid body transformation matrix for ([Si])j. Use Gj to perform a
rigid body transformation on ([Si])j to form a new partial point cloud ([Si])j+1, and use �
to represent the rigid body transformation operation.

([Si])j+1 = Gj � ([Si])j (10)

Input ([Si])j+1 to TMPE-Net for the (j + 1)-th iteration and output the rigid body
transformation matrix Gj+1. Then, the difference ∆G between the results of two consecutive
iterations is calculated.

∆G = ‖Ḡj
(
Ḡj+1

)−1 − I‖ (11)

In Equation (11), Ḡj ∈ R4×4 and Ḡj+1 ∈ R4×4 are the exponential mapping of Gj and
Gj+1 respectively, which refer to the rigid body transformation matrix of two consecutive
iterations. ‖ · ‖ represents the sum of squares of all elements of the matrix.

Set the minimum rigid body transformation threshold HG and the maximum number
of iterations HN , and terminate the iterative training when ∆G ≤ HG or the current iteration
number N ≥ HN . We assume that TMPE-Net performs m iteration calculations according
to these conditions. Combine the rigid body transformation matrices from each iteration to
obtain the final trained rigid body transformation matrix G′.

If the total number of iterations is m, the final estimate G′ can be computed during the
iterative loop:

G′ = G1 ⊗ G2 ⊗ . . .⊗ Gm = {R1 × R2×, . . .× Rn, t1 + t2+, . . . + tm} (12)

In Equation (12), ⊗ represents the combined operation of all the iterated rigid body
transformation matrices. The iterative estimation process of the rigid body transformation
matrix is shown in Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 25 
 

We then use the last three elements ( 4 6,...,a a ) in jZ  to construct the translation 

vector jt : 

[ ]4 5 6jt a a a=  (9) 

The rigid body transformation matrix estimated in one iteration is { }= ,j j jG R t . 

Suppose that the input partial point cloud of the j-th iteration is [ ]( )i j
S , and jG  is 

the corresponding estimated rigid body transformation matrix for [ ]( )i j
S . Use jG  to 

perform a rigid body transformation on [ ]( )i j
S  to form a new partial point cloud 

[ ]( ) 1i j
S

+
, and use   to represent the rigid body transformation operation. 

[ ]( ) [ ]( )+1i j ij j
S G S=   (10) 

Input [ ]( ) 1i j
S

+
 to TMPE-Net for the (j + 1)-th iteration and output the rigid body 

transformation matrix +1jG . Then, the difference GΔ  between the results of two 
consecutive iterations is calculated. 

( ) 1

+1= j jG G G I
−

Δ −
 (11) 

In Equation (11), 4 4
jG

×∈  and 4 4
+1jG

×∈  are the exponential mapping of jG  and 

+1jG  respectively, which refer to the rigid body transformation matrix of two consecutive 

iterations. ⋅  represents the sum of squares of all elements of the matrix. 

Set the minimum rigid body transformation threshold GH  and the maximum 

number of iterations NH , and terminate the iterative training when GG HΔ ≤  or the 

current iteration number NN H≥ . We assume that TMPE-Net performs m  iteration 
calculations according to these conditions. Combine the rigid body transformation 
matrices from each iteration to obtain the final trained rigid body transformation matrix 
G′ . 

If the total number of iterations is m , the final estimate G′  can be computed during 
the iterative loop: 

{ }1 2 1 2 1 2, , + +, +m n mG G G G R R R t t t′ = ⊗ ⊗ ⊗ = × × ×    (12) 

In Equation (12), ⊗  represents the combined operation of all the iterated rigid body 
transformation matrices. The iterative estimation process of the rigid body transformation 
matrix is shown in Figure 5. 

 [ ]( )1iS

 iT ′

TMPE-Net

 +

Rigid Body  
Transforming  [ ]( )2iS

Rigid Body 
Transforming  [ ]( )i m

S

 +

TMPE-Net

...

... 1G  2G  mG

{ }1 2 1 2 1 2, , + +, +m m mG G G G R R R t t t′ = ⊗ ⊗ ⊗ = × × ×  

 +

TMPE-Net

 
Figure 5. The iterative estimation of rigid body transformation. 

  

Figure 5. The iterative estimation of rigid body transformation.

3.4. Loss Function

TPCC-Net uses the loss function Loss1 to maximize the registration performance (i.e.,
the total number of correspondence points between the partial point clouds in the global
template point cloud). In TMPE-Net, the loss function Loss2 is the summation of two
terms Lossa and Lossb. The objective of Lossa is to minimize the difference between the real
rigid body transformation matrix g and the estimated rigid body transformation matrix
G′ between the partial point clouds and corresponding partial template point clouds. The
target of Lossb is to minimize the difference between the global feature vectors of the partial
template point clouds T′1, . . . , T′n and partial point clouds S1, . . . , Sn.

The mean square error (MSE) [44] is used to express the above loss function as follows:{
Loss1 = ‖NTPCC − Ny‖F
Loss2 = Lossa + Lossb = ‖G′ − g‖F + ‖∅(T′)−∅(S)‖F

(13)
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where ‖ · ‖F represents the MSE between the internal elements calculated; ∅(T′) and ∅(S)
represent the global feature vectors of the point cloud T′ and S, respectively; NTPCC is
the number of correspondence points correctly estimated by the TPCC-Net in the global
template point cloud, and Ny is the number of points in the partial point cloud.

3.5. Training
3.5.1. Preprocessing of Training Data

The original data used for training was the ModelNet40 [45] dataset, which contains
12468 CAD models in 40 categories. We randomly designated 20 categories of models as
the training set and the other 20 categories of models as the test set. The creation process of
a global template point cloud and a partial point cloud is illustrated in Figure 6.
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For each original point cloud in ModelNet40, the global template point cloud was
obtained through voxel grid downsampling [46,47], consisting of 1024 data points.

The process of creating a partial point cloud was as follows:

1. Each initial partial point cloud contained 568 data points, which were “cut” from a
global template point cloud using the farthest point sampling (FPS) [42] algorithm.

2. Gaussian noise of 0.0075 level to the initial partial point cloud was added to simulate
the deviation of the coordinate value between the scanned data point and the data
point in the global template point cloud under noisy conditions.

3. 284 outlier noise points were randomly added to the initial partial point cloud to
simulate the disturbance of the scanned point cloud structure by environmental noise
and sensor error. This increased the structural difference between the initial partial
point cloud and the template point cloud.

4. A random rigid body transformation matrix was created, through which the initial
partial point cloud was subjected to random rotation transformation (±45◦ around
each Cartesian coordinate axis) around the origin of the coordinate and a random
translation transformation (±0.5 unit along each Cartesian coordinate axis) to obtain
the partial point cloud.

3.5.2. Training Method

TPCC-Net and TMPE-Net were trained using transfer learning [43]. First, TPCC-Net
was trained separately to obtain the optimal network model parameter Pa, which means
that TPCC-Net using parameter Pa would perform the best on the test set. Then, using the
model parameter Pa as the pre-training model of TMPE-Net, the rigid body transformation
matrix between the correspondence point set and the partial point cloud was iteratively
trained and evaluated in the test set. Finally, the optimal network model parameter Pb of
TMPE-Net was obtained.

4. Experiments
4.1. Experimental Environment

The software and hardware specifications used in the experiment are shown in
Table 1.
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Table 1. Experimental environment.

Environment Configuration

Software

Operating system Windows 10
Deep learning framework Pytorch 1.8.1 + CUDA 11.0 + cuDNN
Programming language Python 3.8.3

Point cloud processing library Open3D

Hardware
CPU

Memory
Intel(R) Core(TM) i5-9400F

16 GB
Graphics card Nvidia GeForce GTX 1070 8 GB

4.2. Experiments Based on Untrained Models

We used untrained models in ModelNet40 to carry out correspondence point estima-
tion and registration experiments, and explored the influence of correspondence points
estimation accuracy, point cloud registration accuracy, and registration efficiency.

4.2.1. Evaluation Criteria for Experiments

1. Estimation accuracy

The estimation accuracy of correspondence points refers to the proportion of corre-
spondence points correctly estimated by the algorithm during the experiment to the actual
number of correspondence points. Taking MPCR-Net as an example, the estimation process
of TPCC-Net is as follows:

Suppose the point clouds input into the network are partial point cloud A and global
template point cloud B, and the point number of B is NB. Encode data points in B and
extract the index addresses MTrue ∈ RNx×2 of all correspondence points of A and B. Input
A and B to TPCC-Net to estimate the index address MES ∈ RNx×2. Count the number of
elements that are the same in MTrue and MES, and denote it as NES. The actual number
of correspondence points is equal to NB; thus, the estimation accuracy of correspondence
points of TPCC-Net is:

P1 =
NES
NB

(14)

2. Registration error

Rigid body transformation is composed of translation and rotation transformations.
The registration error is subdivided into rotation and translation transformation errors.
The registration error is calculated as follows:

Suppose the actual rotation angle of the partial point cloud relative to the template
point cloud in the three Cartesian coordinate axis directions is R = {α, β, γ}, and the
actual translation distance is t = {d0, d1, d2}. Input the global template point cloud and the
corresponding point set of the partial point cloud in the global template point cloud into
TMPE-Net and estimate the parameter vector Z =

[
a0 a1 a2 a3 a4 a5 a6

]
.

Elements a0, . . . , a3 in Z represent the four parameters for the quaternion rotation
matrix. The rotation Euler angles in the three directions corresponding to the parameter
vector can be obtained according to the relationship between the quaternion rotation matrix
and the Euler angle rotation matrix:

R′ =


α′

β′

γ′

 =


arctan 2(a0a1+a2a3)

1−2(a1
2−a2

2)

2arcsin(a0a2 − a3a1)

arctan 2(a0a3+a1a2)
1−2(a2

2−a3
2)

 (15)

Calculate the mean absolute error ∆R between R′ and R:

∆R =
|α′ − α|+ |β′ − β|+ |γ− γ′|

3
(16)
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∆R is the rotation transformation error of TMPE-Net.
Elements a4, a5, a6 in Z represents the translation distance t′ = {a4, a5, a6} of the

partial point cloud relative to the template point cloud in the three directions estimated by
TMPE-Net, and the average absolute difference ∆t between t′ and t is calculated as follows:

∆t =
|a4 − d0|+ |a5 − d1|+ |a6 − d3|

3
(17)

∆t is the translation transformation error of TMPE-Net.

3. Evaluation of work efficiency

We consider the correspondence point search between partial point clouds and the
template point cloud as the preparation stage for the point cloud registration, and the
total time of the correspondence point estimation and rigid body transformation matrix
calculation (registration) is used to measure the efficiency of the point cloud registration.

4.2.2. Correspondence Point Estimation

We used deep learning-based algorithms such as MPCR-Net, PRNet, and RPM-Net,
which have correspondence point estimation and point cloud local registration functions,
to carry out the correspondence point estimation experiments.

In the experiment, each global template point cloud contained 1024 data points and
was sampled from each original point cloud model in the ModelNet40 dataset through the
voxel grid downsampling [44–46] algorithm. The process of creating a partial point cloud
was as follows:

1. Using the FPS algorithm, the initial partial point cloud was sampled from the global
template point cloud according to a sampling ratio of 0.05 to 0.95; the sampling ratio
refers to the ratio of the data volume of the initial partial point cloud to the global
template point cloud.

2. The initial local point cloud was rotated by 20◦ around the three Cartesian coordinate
axes with the coordinate origin as the center and translated 0.5 units along the three
coordinate axes to obtain the local point cloud.

Taking the chair model in the ModelNet40 dataset as an example, its creation process
of the global template point cloud, the initial partial point cloud, and the partial point
cloud is shown in Figure 7, where the correspondence point estimation experiment was
carried out under the condition that the proportion of correspondence points was 0.5. The
green part is a global template point cloud that contained 1024 data points, the orange part
is the initial partial point cloud that contained 512 data points sampled from the template
point cloud at a sampling ratio of 0.5, and the blue part is the partial point cloud obtained
after the initial partial point cloud was rotated and translated.

Taking the chair model as an example, when the proportion of correspondence points
was 0.5, the accuracy of estimation of MPCR-Net, PRNet, and RPM-Net algorithms are
shown in Figure 8, where green parts are the global template point clouds, and purple
parts are the correspondence points estimated by three algorithms, respectively.

The distribution of these estimated correspondence points and the initial partial point
cloud (Figure 8c) in the global template point cloud were compared. The closer two
distributions are, the more correspondence points are correctly estimated, and the higher
the estimation accuracy p of the correspondence point estimation.

Under the condition that the proportion of correspondence points was 0.05 to 0.95,
estimation experiments were performed on all models in the test set. Then, the average
estimation accuracy of the correspondence point of the three algorithms was calculated.
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Figure 8. Accuracy of correspondence point estimation: (a) TPCC-Net, p = 0.90; (b) PRNet, p = 0.51;
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As shown in Figure 9, the average estimation accuracy of the corresponding points
of the three algorithms increased as the proportion of correspondence points increased.
However, as the proportion of correspondence points decreased, the accuracy gap between
PRNet, RPM-Net, and MPCR-Net gradually widened. When the proportion of correspon-
dence points was 0.95, the estimation accuracies of the correspondence points of the PRNet
and RPM-Net were 26.0% and 8.0% lower than that of MPCR-Net, respectively, and when
the proportion of correspondence points was 0.05, the estimation accuracies of correspon-
dence points of PRNet and RPM-Net were 86.9% and 91.2% lower than that of MPCR-Net,
respectively. This indicates that compared to the PRNet and RPM-Net algorithms, the
MPCR-Net algorithm proposed in this paper can effectively improve the estimation accu-
racy of the correspondence point, especially when the proportion of correspondence points
is low.
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correspondence points.

4.2.3. Point Cloud Registration

To explore the influence of the proportion of correspondence points on the accuracy
of point cloud registration, we used the MPCR-Net, PRNet, and RPM-Net algorithms to
perform point cloud registration experiments.

The point cloud registration results of three algorithms on the chair model in the
ModelNet40 dataset when the proportion of correspondence points is 0.5 are shown in
Figure 10. The green parts are the template point cloud, and the red parts are the positions
of the partial point cloud after registration by the three algorithms. R and t represent
the calculation error of the rotation angle and the translation distance of each algorithm,
respectively; the smaller the values of ∆R and ∆t are, the higher is the accuracy of point
cloud registration.
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(c) RPM-Net ∆R = 21.7◦, ∆t = 0.328.

Under the condition that the proportion of correspondence points was 0.05 to 0.95,
the registration experiment was performed on all models in the test set, and the average
registration errors of the three algorithms were calculated. Figure 11a, b show the average
calculation error of the rotation angle, and the average calculation error of the translation
distance, respectively. The average calculation error of the rotation angle of the MPCR-
Net is 23.8–72.8% smaller than that of the PRNet and 27.1–77.6% smaller than that of the
RPM-Net. The average calculation error of the translation distance of the MPCR-Net is
27.0–90.9% smaller than that of the PRNet and 30.2–94.3% smaller than that of the RPM-Net.
This indicates that the registration accuracy of the MPCR-Net is higher than that of the
other two algorithms, especially when the proportion of correspondence points is low.
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Figure 11 shows that average calculation errors of the rotation angle and the translation
distance are negatively correlated with the proportion of correspondence points, indicating
that the point cloud registration accuracy decreases as the proportion of correspondence
points decreases. This is because the coordinate information of the correspondence points
directly participates in the calculation of the rigid body transformation matrix in the point
cloud registration. Since the average estimation accuracy of the correspondence points of
PRNet and RPM-Net is significantly lower than that of MPCR-Net, the average registration
accuracy is also lower than that of MPCR-Net.

When the proportion of correspondence points changes from 0.95 to 0.05, the average
calculation errors of the rotation angle of the MPCR-Net increase by 13.6◦, whereas the
calculation errors of PRNet and RPM-Net increase by 29.7◦ and 31.6◦, respectively. Simul-
taneously, the average calculation error of the translation distance also changes similarly.
This indicates that, compared to the PRNet and RPM-Net algorithms, the MPCR-Net
algorithm is more robust to changes in the number of correspondence points. When the
correspondence point is low, the MPCR-Net algorithm can still maintain a high registration
accuracy and effectively register two point clouds with a large difference in the amount
of data.

4.2.4. Work Efficiency

As shown in Figure 12, under the condition that the proportion of correspondence
points was 0.05 to 0.95, the average values of the total time for estimating the corre-
spondence points and calculating the rigid body transformation matrix using the three
algorithms for all models in the test set was recorded. Then, the values were used to
measure the efficiency of the point cloud registration of the three algorithms.

Figure 12 shows that as the proportion of correspondence points increases, the average
time of each algorithm rises; this is because the number of point cloud data to be processed
increases. Furthermore, as the proportion of correspondence points increases, the time-
consuming growth rate of the MPCR-Net is slightly lower than that of the PRNet and
RPM-Net. This is because the MPCR-Net dynamically adjusts the iterations based on
the rigid body transformation matrix difference calculated by two consecutive iterations.
As the proportion of correspondence points increases, the iterations required to obtain
the optimal rigid body transformation matrix gradually decrease, thereby reducing the
time consumption.
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spondence points.

4.3. Experiments with Actual Workpieces

We used the MPCR-Net to perform a point cloud registration experiment on actual
workpieces and then generated the surface reconstruction models. Then, we evaluated
the point cloud registration accuracy by detecting the deviations between surface recon-
struction models and actual digital models. Finally, we compared with other point cloud
registration algorithms, such as PR-Net and RPM-Net, to verify the effectiveness and
advancement of MPCR-Net.

4.3.1. Data Sampling and Processing

Actual workpieces used in the reconstruction experiment were the egg-shaped pres-
sure hulls [47], which were tailor-welded using multiple stainless steel plates with a
thickness of 2 mm. All the egg-shaped pressure hulls were numbered a–i sequentially,
as shown in Figure 13. The overall dimensions of the egg-shaped pressure hull ‘a’ are:
long-axis L = 256 mm and short-axis B = 180 mm; the egg-shaped coefficient S = 0.69. The
CAD model and the global template point cloud of the shell ‘a’ are shown in Figure 14.
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Figure 14. CAD model and global template point cloud of the hull ‘a’: (a) CAD model; (b) Global
template point cloud.

As shown in Figure 15, the process of obtaining partial point clouds of the hull ‘a’ is
as follows:

1. Paint the surface of the hull; place the painted hull on the rotating table and ensure
that the 3D scanner is aligned with the geometric center of the hull.

2. Control the rotating table to rotate the hull to a certain angle.
3. Use the 3D scanner to scan the hull and obtain its partial point cloud under the

initial angle.
4. Repeat steps b and c to obtain partial point clouds S2–S7 of the hull at certain angles.

The partial point clouds obtained are shown in Figure 16.
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Compared to the CAD model, the actual digital model includes machining errors. The
generation process of the actual digital model of the hull ‘a’ is shown in Figure 17, and the
details are as follows:
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1. Paste labels on the surface of the painted hull ‘a’.
2. Using scan steps similar to the process of obtaining partial point clouds of the egg-shaped

pressure hull, obtain partial point clouds V1–V7 of the hull at angles A1–A7, respectively.
3. In the measurement software Optical RevEng 2.4, which is provided by the 3D scanner

manufacturer, use the turntable method and the label method to register point clouds
V1–V7, and use the ICP algorithm to fine-register the registration point clouds.

4. Continuously adjust the fine registration point clouds manually according to the
measurement results to make the registration point clouds closer to the hull.

5. Perform surface reconstruction on the manually adjusted point clouds to obtain the
actual digital model (Figure 17b) of hull ‘a’.
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Figure 17. Scanning scene photo of the hull ‘a’ and generate the actual digital model: (a) Scanning
scene; (b) Actual digital model.

4.3.2. Analysis of Registration Accuracy of Multiple Partial Point Clouds

Taking the egg-shaped pressure hull ‘a’ as an example, use MPCR-Net to register
all the partial point clouds to the global template point cloud and the ICP algorithm to
optimize the registration results. Then generate the full registered point cloud. Figure 18
shows the full registration point cloud (Figure 18a) and its surface reconstruction model
(Figure 18b) of hull ‘a’.
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Figure 18. The final 3D reconstruction results: (a) Full registered point cloud; (b) Surface reconscheme
19. Cloud maps of contour deviation of hulls a–i calculated by MPCR-Net.

The above method is used to generate surface reconstruction models of all egg-shaped
pressure hulls a–i, and the registration accuracies can be indicated by detecting the surface
contour deviation between surface reconstruction models and actual digital models. The
contour deviation cloud maps of hulls a–i are shown in Figure 19; the smaller the deviation,
the higher the registration accuracy.
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Figure 19. Cloud maps of contour deviation of hulls a–i calculated by MPCR-Net.

The maximum positive deviation, maximum negative deviation, and the area ratio
exceeding the distance tolerance ±0.5mm of the surface contour between the surface
reconstruction model and the actual digital model are denoted as indicators A, B, and
C, respectively.

MPCR-Net, PRNet, and RPM-Net algorithms were used to perform surface recon-
struction experiments on all egg-shaped pressure hulls a–i, and indicators A, B, and C were
used to evaluate the reconstruction accuracy of three algorithms. The results are presented
in Figure 20.
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Figure 20. Registration accuracy of MPCR-Net, PRNet, and RPM-Net on hulls a–i.

As shown in Figure 20, the smaller the values corresponding to indicators A, B, and C
are, the higher the registration accuracy is. Each bar represents the average registration
accuracy of each algorithm under different indicators for hulls a–i, and each error bar
indicates the distribution range of the indicator on hulls a–i.

For indicator A, the average maximum positive deviation of the MPCR-Net was 17.6%
smaller than that of PRNet and 27.1% smaller than that of RPM-Net. For indicator B, the
average maximum negative deviation of MPCR-Net is 18.2% smaller than that of PRNet
and 28.0% smaller than that of RPM-Net. For indicator C, the area ratio exceeding the
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distance tolerance of MPCR-Net is 32.1% lower than that of PRNet and 42.4% lower than
that of RPM-Net. In summary, the performance of MPCR-Net for the accuracy indicators A,
B, and C is better than that of PRNet and RPM-Net, indicating that MPCR-Net can provide
higher registration accuracy for actual workpieces.

5. Conclusions

We designed a multiple partial point cloud registration network based on deep learn-
ing, called the MPCR-Net. MPCR-Net uses the global template point cloud converted
from the CAD model of the workpiece to guide the registration of partial point clouds. All
partial point clouds are registered to the global template point cloud through TPCC-Net
and TMPE-Net in MPCR-Net, forming a fully registered point cloud of a workpiece. This
can effectively reduce errors in multiple partial point cloud reconstruction.

Experiment results demonstrated that MPCR-Net has the following advantages:

1. Using a global-template-based multiple partial point cloud registration method can
fully guarantee the overlap rate between each partial point cloud and its correspond-
ing partial template point cloud, thereby reducing the registration error and improv-
ing the point cloud reconstruction accuracy.

2. Searching for correspondence points between partial point clouds and the global
template point cloud through TPCC-Net does not require separate training for specific
local data of point clouds, thereby effectively reducing the correspondence point
estimation error.

3. The rigid body transformation matrix parameters in the registration are estimated
through TMPE-Net, and estimation results are robust to changes in data points. It
eliminates the shortcomings of other algorithms that cannot effectively register two
point clouds with significant differences in the amount of data.
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