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Abstract: Distraction while driving occurs when a driver is engaged in non-driving activities. These
activities reduce the driver’s attention and focus on the road, therefore increasing the risk of accidents.
As a consequence, the number of accidents increases and infrastructure is damaged. Cars are now
equipped with different safety precautions that ensure driver awareness and attention at all times.
The first step for such systems is to define whether the driver is distracted or not. Different methods
are proposed to detect such distractions, but they lack efficiency when tested in real-life situations. In
this paper, four machine learning classification methods are implemented and compared to identify
drivers’ behavior and distraction situations based on real data corresponding to different behaviors
such as aggressive, drowsy and normal. The data were randomized for a better application of the
methods. We demonstrate that the gradient boosting method outperforms the other used classifiers.

Keywords: machine learning; driver behavior; classification; ANN; logistic regression; random forest

1. Introduction

The increasing number of vehicles in the world raises the issue of traffic and road
safety. Enhancing road safety and reducing accident numbers is now a high priority for all
governments. The lack of concentration of drivers on the road or driver distraction are the
major causes of these accidents. Despite the fact that the driving task requires continuous
attention to be paid to the road and the surrounding vehicles, drivers are usually distracted
by other activities such as answering a phone call, looking at a billboard, chatting, eating,
talking with passengers and radio calibration. In addition, distraction may be the result of
a stressful situation that induces an abnormal driving behavior. Stressful situations are now
very common and are due to impaired driving, traffic jam, excessive workload, personal
problems, etc. Distraction situations due to stress can be reflected in driver behavior, which
can be represented by an aggressive driving, a lane departure or hard, repetitive braking.
Moreover, the mental and medical states of a driver impact their driving behavior. If a
driver is sick or very tired, this may lead to drowsy driving.

It is estimated that in the USA, 14% of the total number of traffic crashes reported by
the police in 2018 was due to a distracted driver, while the number of fatal crashes due to
distracted drivers amounted to 8% [1]. It is also important to note that of a total of 2841
reported fatalities with a distracted driver in 2018 by the police in the USA, 61% involved
the driver’s loss of concentration, 21% involved passengers, 14% involved pedestrians
and 3% involved cyclists [1]. This directly shows that distracted drivers pose a major hazard
to themselves as well as people in their vicinity. In order to avoid such incidents, efforts
have been made to ensure drivers’ constant awareness utilizing different approaches and
prediction techniques [2]. As a matter of fact, car manufacturers have already implemented
different detection techniques that monitor and predict driver behavior in the hope of
increasing total vehicle safety [2]. Such systems tend to be costly and encumbering due
to the multitude of variables and needed sensors, as well as potential ethical and privacy-
related aspects. The magnitude of processed information is introducing new constraints
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regarding the system time response and computational power consumption put in place
by manufacturers or regulations [3]. Hence, finding the best processing method needed to
process all of this information is a major issue.

In this paper, we investigate an efficient classification method based on the machine
learning approach that can be utilized for driver behavior and distraction detection. There-
fore, different classification methods are applied on a set of data recorded from real driving
tests and compared together in order to define the most efficient among them. The fol-
lowing section presents a summary of the driver distraction factors and detection and
classification methods. Section 3 presents the data description and analysis. The proposed
classification methods are presented in Section 4. Then, the simulation results and com-
parison are detailed and discussed in Section 5. Finally, a conclusion and future works are
proposed to enhance road safety.

2. Driver Behavior Overview

This section presents an overview of the factors affecting drivers’ behavior, driver
behavior sensing methods and driving behavior classification models.

2.1. Factors Affecting Drivers’ Behavior

While driving, a driver’s behaviors change when the driver is engaged in other,
non-driving activities. This causes risks in terms of road safety as the drivers should
be fully concentrated on their driving task. A driver in a distracting situation will most
probably fail to respond to hazards and/or to anticipate them. Driver distraction has been
classified by several researchers into two categories: internal and external distractions.
Internal distraction can happen when the driver is eating, chatting and using entertainment
systems. External distraction occurs when a driver looks at the outside of their vehicle
as well as roadside advertising panels. Another classification presented in the literature
classifies driver distraction into different types: most commonly auditory, biomedical,
cognitive and visual. Auditory distraction happens when a driver is disturbed by a sound
that breaks their concentration and focus on the road. This can be due to music, listening to
the radio or chatting with other passengers [4]. Biomedical or physical distraction occurs
when drivers are not controlling the steering wheel because their hands are used to answer
a call, eating or adjusting vehicle settings [5]. Cognitive distraction is related to the driver’s
mind. This is represented by a reduction of the driver’s awareness and concentration
on the road. It can be due to mental pressure or personal/financial issues [6–8]. Visual
distraction occurs when the driver’s eyes are off the road. This can happen when the driver
is adjusting a GPS address or looking at a billboard on the roadside [9]. A combination of
these distraction factors will affect the driver’s behavior and will lead to very dangerous
driving situations [10].

2.2. Driving Behavior Sensing Methods

Several sensing modalities have been used in the literature to identify driving behav-
ior. They have been classified into three types of data: vehicle control data, visual data
and physiological data [10]. In the vehicle control data type, the identification is based on
vehicle dynamics data such as the supervision of the steering wheel, the pedal position or
the throttle hold rate [11,12]. Several researchers have proposed steering wheel patterns to
detect driver behavior. They stated that distracted drivers tend to increase the distance with
the leading vehicle or tend to drive faster than normal [13]. Others proposed steering wheel
metrics to detect abnormal behaviors [14], such as the standard deviation of the steering
wheel angle, the steering wheel reversal rate [15], the high frequency of steering [16] and
the steering entropy [17,18]. In the visual data type, the driver behavior is deduced from
images and videos of the driver’s facial expressions [19,20], the movements of the eye ball
[21–26], head movements [27–30] and body movements [31]. In the physiological data

type, a driver’s abnormal behavior is detected by analyzing brain activity signals and their
heart rate. These signals are used to detect the major distraction factor, which is driver



Appl. Sci. 2021, 11, 10562 3 of 19

fatigue [32,33]. Physiological data can now be acquired using nano sensors embedded in
human bodies [34,35].

2.3. Driving Behavior Classification Methods

Several methods and techniques have been used in the literature to detect abnormal
driver behavior, such as artificial neural networks, gradient boosting machine [36], dynamic
Bayesian network, logic regressions, support vector machine and various machine learning
methods: decision tree, random forest, k-NN, SVM and Naive Bayes [37–40]. They have
been used to detect the physiological and visual attributes to identify and to propose
distraction reduction techniques. Some of these methods were used to detect the vehicle
dynamics to determine abnormal driving situations, such as the double-class classifier
based on Gaussian mixture model [41] and hidden Markov models to simulate driver
behavior based on car following, lane changes and pedal orientation [42]. Naive Bayes
(BN) has also been used to predict driver behavior based on preliminary collected data [43].
Driver behavior is detected based on vehicle velocity and steering wheel data using many
sensors including a GPS unit, cameras and ranging sensors (ultrasonic and laser sensors)
to monitor the turning patterns of the steering wheel and recognize lane and acceleration
patterns. The data are compared to reference data reflecting a normal driving condition to
detect abnormal driver behavior [44–46].

3. Data Description and Analysis

In this paper, a large dataset, called UAH-DriveSet, obtained from six different drivers
and vehicles, is used for driving behavioral analysis [47]. The data were created by
Romera et al. [47] to include three different driving behaviors: normal, drowsy and ag-
gressive. Furthermore, two different types of roads, motorway roads and secondary roads,
were used to record the data. As a result, a data set with more than 500 min of naturalistic
driving time was recorded, in which raw and processed sensor data were included together
with video recordings of the trips. This data set is represented in 3.2 GB of recorded data
encompassing video recordings, sensory data (raw data) and processed data. For more
simplicity, the features built for the final data were a simplification of the raw data [47]
with a much richer relation to the classes of normal, drowsy and aggressive behaviors.
More details about data features and comparisons are presented in the next subsections.

3.1. Breakdown of Data Set

In the modern world, the types of roads, level of traffic and other parameters describ-
ing drivers environment are highly varied. Building a model which encompasses all these
conditions, to be able to read into a driver’s mental state, can be quite challenging. To be
able to read into subtle details that distinguish a person with heavy eyes driving through a
lonely path from another cutting through traffic while providing similar features is one
example of many such cases. Therefore, a model has been proposed where limitless data
sets of different driver environments can be constantly added and the algorithms proposed
can consistently learn and adapt for use in the real world. The original data set has been
classified into two example data sets of drivers traversing through Motorways and Sec-
ondary roads with lesser traffic and restricted lane width. These pathways have each been
driven through by six different drivers providing diversity in our data bank. Furthermore,
each of these data sets have further been classified into two models which focus on the
car, its orientation with the road and the overall traffic in the driver environment. Select
features have been picked which have a high correlation with the target data set. A search
for consistency along with encouraging results would be the primary focus of our models
for varied driver environments and traversing roads.

3.2. Data Sets for Application of Machine Learning Models

Based on the early work provided by Romera et al. [47], the information used to create
the classification models focuses on features that give a high correlation with our target
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classification set. Two sets of data were referenced to run the different models [47]: “lane
detection” with a set of 214,151 sample points and “traffic status” with a set of 46,542
sample points corresponding to the motorway class. Using the available data, two different
feature sets were constructed, in which the first one, lane detection, focused on the position
and orientation of the car of interest. The second feature set, traffic status, related to the
car’s environment. Both features sets are described as follows:

1. Lane detection

(a) Timestamp (seconds);
(b) Position of car relative to lane center (X) (meters);
(c) Orientation of car relative to lane curvature (phi) (degrees);
(d) Lane width (Width_road) (meters);
(e) Driver state of mind (status) (0 = normal, 1 = aggressive, 2 = drowsy).

2. Traffic status

(a) Timestamp (seconds);
(b) Distance to car ahead in nearest lane (Dist_vehicle) (meters);
(c) Time for impact with nearest car (Impact_time) (seconds);
(d) Number of vehicles in the same frame (Num_vehicles);
(e) GPS speed (GPS_speed) (km/h);
(f) Driver state of mind (0 = normal, 1 = aggressive, 2 = drowsy).

The data were collected from six different drivers [47] for each of the above sets and
corresponding to the motorway class to compare the results from each of the models and
search for consistency in the results. Then, the data were randomized before analyzing
and applying any machine learning classifiers. The initial data that were in the order of
“normal”, “drowsy” and “aggressive” sets were shuffled to ensure that the models provided
a good representation of their performance for more practical, varied test sets.

3.3. Feature Comparison, Profiling and Analysis

To address the dimension problem, Romera et al. [47] proposed a way to track the lane
marking based on rear camera images instead of using the whole image datasets. In this
section, a feature comparison is performed to improve the types of features used to create
the classification models.

3.3.1. Feature Comparison

First, a pair-plot is performed to carry out a correlation of the parameters. Distinct
characteristics in each of the data sets [47] based on the status of the driver can be ob-
served. The comparison between characteristics of the “lane detection” set is carried out as
shown below.

(a) As can be seen in Figure 1, there is a distinct relation between the “aggressive” and
“drowsy” target variables with the inclination of the car to the lane centre. It can
be noticed that there is an unexpected positioning of the car in the lane center for
“drowsy” cases.

(b) The car orientation relative to the lane curvature seems to be opposite for several
“aggressive” and “drowsy” cases. Given the number of cases, the clear distinction
between the two target variables gives explicit information to work with.

(c) Next, regarding the comparison between the status and width of the road, while it
is clear that the number of cases of drivers being aggressive seems to increase with
either narrow roads or—even more so—wide roads, the number of cases showing
an increase among drowsy drivers is relatively significant.
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Figure 1. Feature comparison of “lane detection” dataset.

Next, a comparison between the characteristics of the “traffic detection” set is pre-
sented.

(a) As can be seen in Figure 2, the distance from the nearest car does not appear to affect
the drowsy cases, which can be explained from the even spread. However, the cases
of aggressive driving are split between those with little distance, causing drivers
to possibly make dangerous maneuvers, and those having a significant distance
between cars, encouraging them to race.

(b) The above characteristics can also be observed with cases where the time of impact
between the car of concern and the car in front is considered. With a reduced time
of impact, drivers seem to opt for the same choice of driving normally.

(c) As the number of vehicles increases, the likelihood of drivers going at a controlled,
normal pace seems to be implied from the relation between the number of vehicles
and the type of driving.

(d) The GPS speed can be most easily interpreted, with an extremely high pace more
often than not suggesting aggressive driving. The roads and their corresponding
speed limits may be something to be considered in the future with respect to this
parameter.
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Figure 2. Feature comparison of “traffic detection” dataset.

3.3.2. Profiling

The profiling of features used for the listed models includes a complete description
of the parameters and the value spread. The Pandas profiling library has been used for
feature profiling and has also been adopted for the motorway roads class.

3.3.3. Analysis

A complete description and analysis of each of the features in both “lane detection”
and “traffic status” was carried out. These were used to control the parameters during the
machine learning algorithms based on their relevance to the target status.

4. Proposed Classification Methods

A large panel of classification methods have been used to model driver behavior in
the literature. An extensive survey shows that most of these methods utilize statistical
regression algorithms in order to classify different states of drivers based on a set of
data representing certain physical aspects. Among these classification methods, we can
recognize probabilistic, hierarchical or clustering algorithms. In this section, we discuss
some of the commonly used algorithms and methods for driver behavior detection.
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4.1. Logistic Regression

Since the late 1980s, the logistic regression algorithm has witnessed rising interest with
increased utilization in research. It is well suited for applications whose main objective
is to analyze categorical outcome variables. Logistic regression is usually used to obtain
binary regression models where the output is either “0” or “1”. It is a simple approach
utilized when the desired outcome is binary [48].

4.2. Artificial Neural Networks

Neural networks and other hierarchical algorithms such as deep learning and SVN
are widely used in situations dealing with a large set of data and variables. These methods’
main advantages are the adaptability of the model architecture towards any application
and the learning capability, which have led researchers to opt to use them in almost every
possible scenario. Inspired by the human brain and created to solve problems in the same
manner as human brains, the architecture of these methods is defined by the interconnection
of different neurons over different layers of hierarchy progressing from input data to the
desired outputs. Different versions of these algorithms exist or are being developed to
serve different objectives; i.e., recognizing hidden patterns, correlations between raw data,
classification and clustering and the possibility of creating dynamic models that are able to
adapt to time-variant situations [49–51].

4.3. Gradient Boosting Classifier

Among the ensemble techniques based on decision trees method, the gradient boost-
ing method is based on the competition-winning concept in which weak learners are
iteratively boosted by optimizing a loss function. Generally, this approach tends to focus
on observations that were difficult to predict in previous iterations and synthesizes an
ensemble of weak learners. This approach has the ability to generate a model by optimizing
a differential loss function. The gradient boosting classifier can be summarized by the
following elements [52–54].

• A loss function that depends on the problem type is formulated and used to create
the prediction model. Note that a logarithmic loss function will be used in the case of
building a classifier model. Besides, this boosting algorithm focuses on optimizing,
at each stage, the unexplained loss from prior iterations;

• As one of its basic elements, the gradient boosting classifiers use decision trees as a
weak learner to make predictions;

• Finally, the concept of additive models is used, in which trees are added one at a
time (add weak learners) while the existing trees in the model are not altered. Then,
a gradient descent procedure is used to minimize the loss function when adding trees.

The gradient boosting algorithm can be summarized by the following steps:

(a) Initialization:

f0(x) = γ
N

∑
i=1

L(yi, γ) (1)

(b) For m = 1, 2, . . . , M:

• For i = 1, 2, . . . , N:

rim = −[∂L(yi, f (xi))

∂ f (xi)
] f= fm−1 (2)

– Fit a regression tree to the targets rim giving terminal regions Rjm , j =
1, 2, . . . , Jm

– For j = 1, 2, . . . , Jm:

γjm = argminγ ∑
xi∈Rjm

L(yi, fm−1(xi) + γ) (3)
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fm(x) = fm−1(x) +
Jm

∑
j=1

γjm I(xjm) (4)

(c) Output:
f̂ (x) = fM(x) (5)

4.4. Random Forest Classifier

The random forest (RF) classifiers are considered to be one of the most powerful
ensemble classification techniques and are used frequently in the field of data science
for solving countless problems across many industrial areas [55,56]. The random forest
technique was first introduced by Breiman [55] to integrate an ensemble of randomized
decision trees in order to build a prediction model. As one of the ensemble methods,
the RF method relies on aggregating the results of an ensemble of decision tree estimators.
Generally, decision tree classifiers suffer from high variance, in which the rules obtained by
splitting the training data into two random parts to fit two decision trees are likely to be
different. To deal with this technical problem, an ensemble of randomized decision trees
is used to create parallel estimators; then, by averaging the decision trees, the variance
component of the obtained model can be minimized, which will eventually bring the
prediction close to an ideal model. Usually, the RF classifier concentrates on sampling
both variables and observations of training data to synthesize independent decision trees,
and then majority voting is applied to obtain a better classifier. The RF classifier can be
summarized as follows [55–57].

• First, M samples are selected from the training set using the bootstrapping algorithm;
• Next, NTree samples are composed to form NTree training sets and used to train NTree

parallel decision tree models, respectively;
• For each decision tree model, the best split is selected from the randomly selected

MTree feature subset. Note that no pruning of the decision tree is requested in the
splitting process, and the splitting process can only be stopped when all training
samples of each tree belong to the same class at the corresponding node;

• Finally, the results obtained by these NTree decision trees are combined to form one
random forest model for new data prediction. Note that the sensitivity, out of bag
(OOB) error, accuracy and specificity are statistical factors used to evaluate the per-
formance of the discrimination models of the random forest algorithm. More details
about these statistical factors can be found in [55].

5. Experimental Results and Comparison

The algorithms listed in Section 4 were run on both “lane detection” and “traffic status”
datasets. The machine learning models were run on a data set split into 70% for training
and 30% for testing. A clear distinction between the models is described in this section.
Due to the imbalanced data set, the following standard set of evaluation metrics was used
to evaluate the performance of the classifiers:

Accuracy: This is a common evaluation metric and is used to compare the four
different classification models. Generally, accuracy is used to determine how often the
predictions made are true and in favor of or against the event with respect to all the
instances of the event;

Precision: This parameter is used to determine the successful predictions from all
predictions made in favor of the event. It provides a variable to determine the ability to
successfully predict an event;

Recall: This metric is used to determine the successful predictions from all true
instances of the event. It provides a parameter to determine how true the made predictions
are in favor of an event with respect to all of its instances;

F1-score: This gives a weighted average of the precision and recall metrics. It is the
best metric for averaging out and balancing all the evaluation metrics as a whole;
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ROC curve: This provides a trade-off between the true positive rate (ratio of cor-
rect observations to total number of observations) and false positive rate (ratio of false
observations to total number of observations);

Macro and micro evaluation metrics: These are evaluation metrics that are widely
used when working with multi-class classification problems. Macro evaluation computes
the average of each class evaluation metric, such as precision. Micro evaluation focuses on
the data from each class and computes its metric with respect to the entire data.

It should be noted that the dataset used in this paper is imbalanced in terms of the
output classes. Therefore, micro evaluation metrics would provide a better understanding
of the performance of the models.

5.1. Lane Detection Dataset

The model was run on all the samples from the parameters of the “lane detection”
dataset using each of the machine learning algorithms presented in the previous section.
The results are presented through the plots and the numerical outcomes observed from the
used evaluation metrics.

5.1.1. Logistic Regression Classifier

The model was run in Python with an initial focus on accuracy. The logistic regression
model from the “sci-kit library” was run on our data. A range of values for the parameters
“solver” and “C” (regularization parameter) was used to run the model. These values
were run in a loop to find the logistic regression model that was closest to ideal and its
corresponding parameter values for the dataset at hand. Once the preferred parameter
values were obtained (C = 0.5, solver = “lbfgs”), all the evaluation metrics of interest,
in addition to accuracy, were determined. The visual representation is shown in Figure 3.

Figure 3. Logistic regression simulation results: (a) precision–recall curve; (b) ROC curve.

It can be observed from Figure 3a that there is significant lack of consistency between
the precision–recall curves of each class. This seems to increase for class 0 (normal), while
it drops for classes 1 and 2 (aggressive and drowsy). This is more evident in Table 1.
The values also do not seem to show any pattern that can be used to reference future
test values.

The ROC curves in Figure 3b do not provide encouraging results either. The curve
approaches the diagonal and therefore points to a low performance.
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Table 1. Multi-class evaluation metrics with logistic regression classifier for lane detection.

Precision Recall F1-Score Support

Class 0 (normal) 0.44 0.67 0.53 40,320
Class 1 (aggressive) 0.55 0.03 0.05 35,752

Class 2 (drowsy) 0.53 0.69 0.60 42,206

Furthermore, it is clear that, in the breakdown of class-wise precision, recall and
F1-scores, the values of recall and F1-score for class 1 (aggressive cases) are very poor.
This is a significant anomaly. One would expect a model with poor scores to have either
under-fitting, in which case the class with the fewest data samples (aggressive) would
have poor metrics, or to have overfitting, in which case the class with maximum samples
(drowsy) would have poor metrics. This is not observed, which further highlights the poor
performance of this algorithm.

5.1.2. Gradient Boosting

The classifier ran the model through the data after adjusting certain parameters.
These parameters were specifically for the gradient boosting classifier used in Python.
The number of estimators and the learning rate were the parameters that were run over a
range of values, and the parametric values that gave the best accuracy results (number of
estimators = 400 and learning rate = 0.015) for the gradient boosting classifier on the data
were used to determine the remaining evaluation metrics.

The precision–recall curve and ROC curve exhibit very good representations of the
results. They are presented in Figure 4 and Table 2.

Figure 4. Gradient boosting simulation results: (a) precision–recall curve; (b) ROC curve.

Two characteristics stand out here: the classes have a consistency in their precision–
recall curves and their relation is almost linear, giving a good transition from high precision
to high recall. This therefore results in a good F1-score. More importantly, it is observed
that the lowest precision–recall curve and correspondingly lowest F1-score are found in
the aggressive class (class 1). This is understandable given the smaller set of samples in the
aggressive state.

The inclination of all the ROC curves in Figure 4b to the top left corner indicates a high
performance. This is supported by the area values for each ROC curve. The high scores in
each class also point to how well the algorithm has adapted to the different classes and
show encouraging results.
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Table 2. Multi-class evaluation metrics with gradient boosting classifier for lane detection.

Precision Recall F1-Score Support

Class 0 (normal) 0.56 0.65 0.60 40,320
Class 1 (aggressive) 0.57 0.40 0.47 35,752

Class 2 (drowsy) 0.65 0.71 0.68 42,206

The comparable precision, recall and F1-scores overall are very encouraging because
they point to a high likelihood of having avoided both under-fitting and over-fitting.

It can be further noticed that the scores are also consistent among each class. However,
the one anomaly that remains is the relatively low scores of recall and precision for class 1
(aggressive). They are still much improved compared to the results from logistic regression.
The lower scores in this class, as discussed above, most likely stem from the fewer sample
points that were available for this class.

The high micro-average precision-recall score, in Figure 4b, helps us to understand
that the model has performed well on such an imbalanced data in term of sample points
per class.

5.1.3. Random Forests

For this classifier, the parameters used to maximize the output accuracy were criterion,
class_weight, max_depth and min_samples_leaf. The model random forest classifier from
the Anaconda distribution of Python was run over a range of values for each parameter in
individual loops. A plot was made in each case to observe the values for each parameter
that provided a high accuracy without overfitting the data. The final set of values used for
the parameters of the classifier was as follows: criterion is “Entropy”, class_weights are 0
to 0.5 and 1 to 0.5, max_depth is 5 and min_samples_leaf is 5. The corresponding results
are presented in Figure 5 and Table 3.

Figure 5. Random forests simulation results: (a) precision–recall curve; (b) ROC curve.

Similar to the precision–recall curve of gradient boosting, there is a continuous re-
lationship for the metrics of all three classes, and the curves seem to approach linearity.
The steep drop in precision with increase in recall is one characteristic that stands out
as unfavorable. The instability should preferably be avoided. As can be observed in
Figure 5a, the precision–recall curves for all classes individually as well as for the whole
dataset show a poor trade-off between precision and recall. An encouraging score for one
metric provides a poor score for the other metric.
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Table 3. Multi-class evaluation metrics with random forest classifier for lane detection.

Precision Recall F1-Score Support

Class 0 (normal) 0.53 0.64 0.58 40,320
Class 1 (aggressive) 0.62 0.20 0.31 35,752

Class 2 (drowsy) 0.56 0.78 0.65 42,206

The random forest model also provides a consistent set of precision, recall and F1-
scores, leading to a decrease in the possibility of both under-fitting and over-fitting.

The class-wise scores are also encouraging. However, it can be observed that there is a
significant variation in the metrics across the different classes. There is also a significant
drop in recall and F1-scores for class 1 (aggressive).

5.1.4. Neural Networks

The model was run with deep neural networks, making use of 2 hidden layers with
24 units in each layer for the first test and 48 units per layer in a second test. The “Adam”
optimizer was used and the algorithm was run with batches of 40 in a range of 10–50
epochs. The “relu” function was used for the hidden layers and the “sigmoid” function
was used for the output layer.

The overall classifier model’s accuracy is never greater than 0.30. Multiple epochs,
varied numbers of layers and multiple other parameters run independently as well as
together provide an accuracy of 0.3 at best. The vast and yet highly varied data sets with
different sample count result in an overall poor result.

5.1.5. Results Comparison

To compare the performance of the classifiers used, and taking into consideration the
nature of the imbalanced data set, all metric values in the previous tables are combined
into a single overall score for each classifier.

Generally, there are several ways to obtain a single performance score for each classifier.
In our case, the overall accuracy, which is the ratio between the true predictions made by
classifiers over the overall instances, is initially used to evaluate each classifier and obtain
the best parameters for each. Another important score is the macro score, which represents
a simple arithmetic mean value (in which equal weights are given to all classes) of the
scores of each class. It is also used to evaluate the performance of all algorithms. Moreover,
the Weighted score can be useful to compare the performance of the of the classifiers used,
where this metric weights the score of each class using the number of its samples. Lastly,
the micro score is also used to perform the comparison. The micro score considers all the
samples from each class and determines the performance score rather than the average
of the scores from each class as in the case of macro scores. This is particularly useful to
determine the performance of a model on imbalanced datasets such as the one considered
in this paper.

Table 4 shows that the gradient boosting algorithm outperforms ANN, RF and LR
classifiers. This is due to its flexibility and efficiency in using clone decision trees, where all
scores of this algorithm are greater than the other classifiers.

The gradient boosting algorithm has the ability to provide a certain consistency across
all classes. On the other hand, the ANN classifier has the worst accuracy results, as all of its
metric scores are less than 0.3 (30%). The RF classifier shows acceptable accuracy compared
to the logistic regression classifier, where all metric scores are greater than 50%.
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Table 4. Lane detection—results comparison.

Logistic Regression Gradient Boosting Random Forests Neural Networks

Accuracy 0.48 0.60 0.56 0.30
Micro Precision 0.48 0.60 0.56 0.30

Micro Recall 0.48 0.60 0.56 0.30
Micro F1-score 0.48 0.60 0.56 0.29

Macro Precision 0.51 0.59 0.57 0.30
Macro Recall 0.46 0.59 0.54 0.28

Macro F1-score 0.39 0.58 0.51 0.27
Weighted Precision 0.50 0.60 0.57 0.30

Weighted Recall 0.48 0.60 0.56 0.29
Weighted F1-score 0.41 0.59 0.52 0.28

5.2. Traffic Status Dataset

The model was run on all the samples from the parameters of the “traffic status”
dataset using each of the machine learning algorithms discussed. The results are presented
through the plots and the numerical outcomes observed from the used evaluation metrics.

5.2.1. Logistic Regression

The algorithm was run on a range of values for the parameters “solver” and “C”
(regularization parameter), similarly to the “lane detection” dataset. These values were run
in a loop to find the most ideal logistic regression model and its corresponding parameter
values for the dataset at hand.

Once the preferred parameter values were obtained (C = 0.5, solver = “lbfgs”), all
the evaluation metrics of interest in addition to accuracy were determined. The visual
representation is shown in Figure 6.

Figure 6. Logistic regression simulation results: (a) precision–recall curve; (b) ROC curve.

Similar to what is noted in the precision–recall curves of the “lane detection” dataset,
the curves across all three curves are highly inconsistent and varied. However, in Figure 6a,
precision–recall curves consistent with the amount of data in each class are observed. It
is also observed that the aggressive class (class 1) shows a varied precision–recall curve
compared to the other two classes.

The low ROC curve suggests the likelihood of the normal class data having been
overfit with a much larger sample ratio to the remaining two classes.

The overall metric scores are consistent on an overall scale as well as across the
different classes (Table 5). However, the scores are low. The model does not seem to
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provide a highly encouraging classification system. The normal class metrics as observed
in the ROC curve show poor results relative to the drowsy and aggressive classes.

Table 5. Multi-class evaluation metrics with the logistic regression classifier for traffic status.

Precision Recall F1-Score Support

Class 0 (normal) 0.49 0.40 0.44 7840
Class 1 (aggressive) 0.56 0.58 0.57 6394

Class 2 (drowsy) 0.55 0.63 0.59 7652

5.2.2. Gradient Boosting

A similar process to that followed with the “lane detection” data was carried out
with the “traffic status” data to obtain nearly ideal values for the parameters “number
of estimators” and “learning rate” in the gradient boosting classifier. Both numeric and
graphical results are presented in Figure 7 and Table 6.

Figure 7. Gradient boosting simulation results: (a) precision–recall curve; (b) ROC curve.

Promising results from precision–recall curves can be observed, with a high average
precision–recall curve for all three classes combined as well. The precision–recall curve
for class 1 (aggressive) is understandable given the smaller set of sample points. We also
observe that the micro-average precision–recall curve score is high, giving a good indication
of how the algorithm has adapted to a multi-class model well.

Similar inferences can be made from Figure 7b. The ROC curves, except class 1
(aggressive), are high and approach the extreme top left. The comparable ROC curve scores
illustrate the robustness of the algorithm across various classes.

Table 6. Multi-class evaluation metrics with gradient boosting classifier for traffic status.

Precision Recall F1-Score Support

Class 0 (normal) 0.63 0.62 0.62 7840
Class 1 (aggressive) 0.86 0.62 0.72 6394

Class 2 (drowsy) 0.62 0.77 0.69 7652

The model is highly consistent across all classes and on average with highly encourag-
ing metric scores. There are different numbers of data samples in each class; despite this,
the model seems to provide consistent and much improved metrics.
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5.2.3. Random Forests

The same set of parameters was used for the random forest classifier, and the final
values for each that give the best results were also the same as for the “lane detection”
dataset. The results are listed and plotted in Table 7 and Figure 8.

Figure 8. Random forests simulation results: (a) precision–recall curve; (b) ROC curve.

The results are very similar in characteristics to those obtained with the “lane detection”
dataset. We obtained encouraging metric curves but with linear relations that were slightly
too steep, as observed in Figure 8a. The class 1 curve is quite different from the others.
In Figure 8b, it can be noticed that the ROC curve area is average. The curves are inclined
to the extreme top left at the middle, which is preferred, but the variation is too steep and
short lived. Here again, the ability of the model to be able to provide consistent results has
to be questioned.

Table 7. Multi-class evaluation metrics with random forest classifier for traffic status.

Precision Recall F1-Score Support

Class 0 (normal) 0.61 0.52 0.56 7840
Class 1 (aggressive) 0.88 0.56 0.68 6394

Class 2 (drowsy) 0.55 0.79 0.65 7652

The random forest metrics above suggest good results as well, but they are quite varied
in terms of the precision, recall and F1-score, giving different levels of performance. It can
also be noted that the performances across the classes are also quite unevenly distributed.

5.2.4. Neural Networks

The starting network parameters were the same as those used for the “lane detection”
dataset. The number of epochs and batch sizes were varied over the same range. Similar
results to those observed with the “lane detection” dataset could be observed, with the
overall model accuracy not exceeding 0.29. In addition, multiple epochs, a varied num-
ber of layers and multiple other parameters including the activation functions were run
independently as well as together in loops, providing an accuracy at best of 0.29. The vast
and yet highly varied data sets, with different sample numbers, result in poor overall
results again.
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5.2.5. Result Comparison

Similarly to the results obtained using the lane detection dataset, the gradient boosting
algorithm outperformed all other classifiers, where its micro precision score reached 0.67
(67%) as indicated in Table 8. Moreover, the ANN classifier provided the worst accuracy
results, where all of its metric scores were less than 0.3 (30%). Again, the RF classifier
shows improvements compared to the lane detection dataset results and provides an
acceptable accuracy compared to the LR classifier with metric scores of more than 63%.
The logistic regression classifier did not perform better than GB and RF classifiers, yet it
shows some accuracy improvements compared to the lane detection dataset results and
provides acceptable metric scores (more than 53%). The focus on micro scores is in keeping
with the need for a metric that accounts for imbalanced datasets.

Table 8. Traffic status—results comparison.

Logistic Regression Gradient Boosting Random Forests Neural Networks

Accuracy 0.54 0.67 0.63 0.29
Micro Precision 0.54 0.67 0.63 0.29

Micro Recall 0.54 0.67 0.63 0.26
Micro F1-score 0.54 0.67 0.63 0.25

Macro Precision 0.53 0.70 0.68 0.29
Macro Recall 0.54 0.67 0.63 0.27

Macro F1-score 0.53 0.68 0.63 0.25
Weighted Precision 0.53 0.69 0.67 0.29

Weighted Recall 0.54 0.67 0.63 0.28
Weighted F1-score 0.53 0.67 0.63 0.25

5.3. Overall Results—Discussion

Overall, the accuracies of GB, RF and LR classifiers increased for the “traffic status”
dataset. Generally, despite the fact that some differences may exist, the two sets of data
describe a set of features that are connected to each other. The “lane detection” dataset
focuses more on the features of the targeted car relative to the road. On the other hand,
the “traffic status” dataset describes features relating the target (car of interest) with its
surrounding vehicles/objects. As a result, the second dataset provides a rich and diverse
set of data to determine the state of mind of the driver. In conclusion, although the obtained
results are not the same, the models built based on these datasets gave consistent results,
particularly the gradient boosting algorithm.

Despite the use of imbalanced samples for each class (aggressive, normal and drowsy),
the gradient boosting algorithm provides consistent and encouraging results with both
datasets across all classes. This helps in further substantiating the robustness of the model
with various types of data set features. A level of consistency is observed.

The authors in [47] employed all features in one single model with the entire data. This
also provides a probabilistic result with the possibility for the driver to be normal, drowsy
or aggressive. On the other hand, two feature sets and their corresponding models were run
for robustness. The results obtained in this paper provide a clear classification for each set
of features. The driver is classified as being in only one out of normal, drowsy or aggressive
states. In terms of classification metrics, the accuracies of both models are comparable.

Further research can be built on the improvement of the datasets. Even though the
models were run separately on the datasets, consistent results were provided by these
models. It should be noted that the two datasets use features that have a high correlation
with the target classes. Combining these two datasets and other, more similar datasets
could help in providing more concrete classification results. Moreover, the results from
various datasets could be used to obtain a weighted percentage of the likelihood of the
prediction being true. A concrete value could then be allotted to the driver being in an
aggressive, drowsy or normal state of mind.
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Furthermore, the model results were obtained from motorways road data. Adding
other diverse types of roads, such as secondary roads and their corresponding features,
could be used to set up a large database. This would result in a better account of the
robustness of the model on various roads, including other factors.

6. Conclusions

In this paper, classification, machine learning and artificial intelligence methods are
used to classify driver behavior. Two sets of data were considered: lane detection and
traffic status. These data were collected from six different driver behaviors classified into
three states: normal, drowsy and aggressive. They were randomized for a better analysis
and application of the machine learning models. Logistic regression, gradient boosting,
random forest and neural networks results were presented for the two sets. They showed
relatively good performance, accuracy and precision, considering the high complexity of
the imbalanced data. The obtained results demonstrate that the gradient boosting method
outperforms the other used classifiers.

A comprehensive analysis of features from the data set and their relevance to clas-
sifying the state of mind of the driver is a key contribution of this work. These features
were distributed across two sets and can further be extended to other feature sets of larger
and more varied data. The model allows for continuous improvement with increased data.
The results also provided a clear distinction in comparison to the probabilistic approach
applied in [47].

Following these achievements, and in order to improve our classification results,
additional factors will be taken into account, such as the road speed limit and the mental
workload. In addition, a hybrid classification system based on the combination of multiple
methods will be proposed.
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