
applied
sciences

Article

Hierarchical Active Tracking Control for UAVs via Deep
Reinforcement Learning

Wenlong Zhao , Zhijun Meng *, Kaipeng Wang, Jiahui Zhang and Shaoze Lu

����������
�������

Citation: Zhao, W.; Meng, Z.; Wang,

K.; Zhang, J.; Lu, S. Hierarchical

Active Tracking Control for UAVs via

Deep Reinforcement Learning. Appl.

Sci. 2021, 11, 10595. https://doi.org/

10.3390/app112210595

Academic Editor: Juan-Carlos Cano

Received: 13 October 2021

Accepted: 8 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
zhaowenlong@buaa.edu.cn (W.Z.); wangkaipeng105@buaa.edu.cn (K.W.); zhangjiahui@buaa.edu.cn (J.Z.);
zy1705218@buaa.edu.cn (S.L.)
* Correspondence: mengzhijun@buaa.edu.cn

Abstract: Active tracking control is essential for UAVs to perform autonomous operations in GPS-
denied environments. In the active tracking task, UAVs take high-dimensional raw images as input
and execute motor actions to actively follow the dynamic target. Most research focuses on three-stage
methods, which entail perception first, followed by high-level decision-making based on extracted
spatial information of the dynamic target, and then UAV movement control, using a low-level
dynamic controller. Perception methods based on deep neural networks are powerful but require
considerable effort for manual ground truth labeling. Instead, we unify the perception and decision-
making stages using a high-level controller and then leverage deep reinforcement learning to learn
the mapping from raw images to the high-level action commands in the V-REP-based environment,
where simulation data are infinite and inexpensive. This end-to-end method also has the advantages
of a small parameter size and reduced effort requirements for parameter turning in the decision-
making stage. The high-level controller, which has a novel architecture, explicitly encodes the spatial
and temporal features of the dynamic target. Auxiliary segmentation and motion-in-depth losses are
introduced to generate denser training signals for the high-level controller’s fast and stable training.
The high-level controller and a conventional low-level PID controller constitute our hierarchical active
tracking control framework for the UAVs’ active tracking task. Simulation experiments show that
our controller trained with several augmentation techniques sufficiently generalizes dynamic targets
with random appearances and velocities, and achieves significantly better performance, compared
with three-stage methods.

Keywords: unmanned aerial vehicle; deep reinforcement learning; visual active tracking

1. Introduction

Unmanned aerial vehicles (UAVs) are becoming an ideal platform to execute dirty and
dangerous tasks, due to their high agility and low cost. Perception and control are the two
key modules of autonomous UAVs. Without these, UAVs cannot derive rich information
from the complex environment, make proper decisions and behave correctly. Autonomous
perception and smart control are always topics of interest in the UAV community.

In this paper, we focus on the active tracking task of UAVs. Active tracking for a dy-
namic target is a fundamental function for UAVs to perform monitoring and anti-terrorism
operations in GPS-denied environments. This specific task requires both autonomous
perception to determine the location of the dynamic target and control to actively track the
target, which can be transferred and generalized to more difficult autonomous tasks.

Most research considers the active tracking task to be three separate subproblems,
namely, perceive first, make movement decisions based on the target’s estimated position,
and then control the UAV dynamics [1–4]. In the perception stage, early research used
traditional computational vision techniques, such as filtering in HSV space and the Hough
transform, to detect objects with certain colors or shapes. Later research used hand-crafted

Appl. Sci. 2021, 11, 10595. https://doi.org/10.3390/app112210595 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6929-9141
https://doi.org/10.3390/app112210595
https://doi.org/10.3390/app112210595
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210595
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210595?type=check_update&version=1

Appl. Sci. 2021, 11, 10595 2 of 21

features, such as SIFT [5] and SURF [6], to detect more random objects. Recent research
combines a convolutional neural network (CNN)–based object detector [7–10] and a passive
tracker [11–15] to obtain the bounding box of the target of interest. In the decision-making
stage, control methods, such as proportional integral derivative (PID), calculate high-level
action commands based on the coordinates of the bounding box’s center and relative
changes in the bounding box’s height. PID is also usually used to control UAVs’ low-
level dynamics. However, training the CNN-based visual perception module requires
considerable effort for ground truth labeling, and the parameter tuning process for the
high-level decision-making module may cause unexpected damage to UAVs.

Reinforcement learning (RL) holds promise for automated learning perception and
control simultaneously. RL has several applications in the UAV community. Omar et al.
used RL to learn an aggressive trajectory tracking controller for UAVs [16]. Manan et
al. applied RL to teach UAV vision-based guidance tasks [17]. Riccardo et al. achieved
autonomous landing on the deck of an unmanned surface vehicle, using RL [18]. Through
trial and error, model-free deep RL can learn complicated high-level control policies for
UAVs, which maps visual observations to action commands directly. This end-to-end
solution trains perception and control concurrently for UAVs’ active tracking task in the
virtual environment and overcomes the problems encountered by three-stage methods.
Luo et al. [19] used the ConvNet-LSTM network as the high-level policy network, which
performs well in different active tracking scenarios but does not focus on the UAV domain
and cannot transfer directly without considering the dynamic properties of the UAV. Li
et al. [20] proposed a hierarchical control system that uses the policy network trained by
deep RL as the high-level decision-making layer and the PID controller as the low-level
command execution layer. However, the system does not consider the speed of the dynamic
target and the action space, and a relative position offset may cause volatile behaviors that
cannot be precisely tracked by the PID controller. Moreover, additional features (quadrotor
altitude, linear velocity, orientation, and angular velocity) must be included as a part
of the decision-making layer input to achieve stable flight. In this paper, we propose a
novel hierarchical control framework for UAVs’ active tracking task. This framework uses
the neural-based end-to-end perception and decision-making method for the high-level
control module and the traditional control method for the low-level control module. Unlike
the above methods that do not consider the UAV dynamics and target speed, all these
factors are taken into account in this framework. The main contributions of this paper are
summarized as follows:

1. We develop a novel and interpretable neural architecture for the high-level controller
to derive the spatial and temporal latent features of the dynamic target and output
continuous tracking speed commands directly. This compact architecture reduces the
number of parameters of the high-level controller.

2. End-to-end mapping from raw images to the high-level decision is trained via deep
RL in the virtual environment based on V-REP [21]. We also leverage PyRep [22]
to accelerate the simulation speed and run parallel environments for faster data
collection. The simulation data are inexpensive, and no effort for ground-truth
labeling is needed.

3. To further accelerate the training process, we adopt auxiliary segmentation and
motion-in-depth losses, which can generate denser training signals.

4. Augmentation techniques are applied in the virtual environment to increase the
robustness of the trained controller.

In our experiment, the proposed hierarchical control framework and auxiliary losses
can effectively decrease the training time. The quadrotor with a trained high-level control
module and low-level PID control module can adapt to the dynamic target with random
colors, paths, and speeds in the UAVs’ active tracking task.

Appl. Sci. 2021, 11, 10595 3 of 21

2. Preliminary Considerations
2.1. Markov Decision Process

In the RL problem, the interaction process between the agent and the environment
is usually modeled as a Markov decision process (MDP) [23]. The MDP can be denoted
as M = (S, A, P, ρ0, r, γ), where S is the state space, A is the action space, P(St+1 = s′ |
St = s, At = a) : S× A× S → [0, 1] is the probability of transitioning into state s′ upon
taking action a in state s, r(s, a) : S× A → R is the immediate reward associated with
taking action a in state s, γ ∈ [0, 1) is the discount factor and defines the horizon of the RL
problem, and ρ0 : S→ [0, 1] is the initial state distribution.

Given the MDP M and a parameterized policy πθ : S→ A, the agent interacts with
the environment following the trajectory τ:

τ = (s0, a0, r1, s1, · · · , sT) (1)

where s0 ∼ ρ0, st ∼ P(· | st−1, at−1), at ∼ πθ(· | st), rt = r(st, at) and T is the horizon
length.

The goal of the deep RL problem is to identify an optimal policy π∗θ that maximizes
the expected discounted return:

J = Eτ

[
T−1

∑
t=0

γtrt

]
(2)

2.2. Proximal Policy Optimization Algorithm

Policy gradient methods in RL are sensitive to hyperparameters, such as the policy
update step. If the policy is updated in an unfavorable direction, the policy will be worse
when using the sampled experiences in the next update iteration.

Trust region policy optimization (TRPO) [24] avoids significant and destructive policy
parameter changes with a KL divergence constraint δ on the size of the policy update at
each iteration:

maximize
θ

Êt

[
πθ(at |st)

πθold
(at |st)

Ât

]
subject to Êt

[
KL
[
πθold (· | st), πθ(· | st)

]]
≤ δ

(3)

where Ât is an estimator of the advantage function at timestep t and θold represents the
parameters of the policy before the update. TRPO approximates Equation (3) by linear
objective and quadratic constraints and then solves it with the conjugate gradient algorithm.

Schulman et al. [25] proposed the proximal policy optimization (PPO) algorithm to
further simplify TRPO.

PPO denotes the probability ratio as rt(θ):

rt(θ) =
πθ(at | st)

πθold(at | st)
(4)

and proposes a new objective as follows:

LClip(θ) = Êt

[
min

(
rt(θ)5Ât, clipobj

)]
clipobj = clip(rt(θ), 1− ε, 1 + ε)Ât

(5)

where ε is a hyperparameter that clips the moving rt in the range [1− ε, 1 + ε].
The minimum of the clipped objective clipobj is taken as the final objective, which

restricts large policy updates. PPO has been demonstrated to work well on a collection
of benchmark tasks, including simulated robotic locomotion and Atari game playing [25],
and is one of the most powerful model-free deep RL algorithms.

Appl. Sci. 2021, 11, 10595 4 of 21

2.3. Generalized Advantage Estimation

To reduce variance in policy gradient methods, Schulman et al. [26] proposed the
generalized advantage estimator (GAE) as follows:

ÂGAE(γ,λ)
t =

∞

∑
l=1

(γλ)lδV
t+l

=
∞

∑
l=1

(γλ)l(rt + γV(st+l+1)−V(st+l))

(6)

GAE is a general form of the following two advantage estimators:

Ât := δt = rt + γV(st+1)−V(st) (7)

Ât :=
∞

∑
l=0

γlδt+l =
∞

∑
l=0

γlrt+l −V(st) (8)

Equation (7) is biased but has low variance, while Equation (8) is unbiased but has
high variance, due to the sum of many terms. GAE unifies these two advantage estimators
and balances between the bias and the variance for advantage estimation by parameter
λ ∈ (0, 1). Equations (7) and (8) are the specific cases of Equation (6) when λ = 0 and
λ = 1, respectively.

3. Methodology
3.1. Hierarchical Control Framework

In the active tracking task, quadrotors use only the raw images captured by the
onboard camera to execute proper subsequent actions. Since the raw images are very
high-dimensional observations, designing an effective controller for quadrotors manually
is challenging. Instead, we build a neural network controller and train it via deep RL. In
theory, this learning method can map raw images to quadrotor motor commands directly.
However, the deep RL method suffers from the problems of exploration and local optimality.
Training such a complicated policy is not easy, even with sufficient interaction data between
the quadrotor and the environment.

We propose a hierarchical controller framework, as shown in Figure 1, to solve this
dilemma. This framework consists of two-level policy layers. In the high-level policy
layer, the neural RL controller outputs the desired speed commands for the quadrotor,
given three sequential raw images [Ot−2, Ot−1, Ot] as inputs. This high-level RL controller
perceives the features of the dynamic target and makes high-level decisions to follow it.
The high-level decisions consist of the desired linear speed along the head direction Vf b
and the desired yaw speed Vyaw. In the low-level policy layer, the PID controller is used
to track high-level decisions under the current altitude and speed and then outputs the
desired motor commands [u1, u2, u3, u4] for the quadrotor. This hierarchical framework
enables us to focus on the learning of a high-level RL controller without concern for the
low-level dynamic control of the quadrotor.

[��−�,��−�,��]

V-REP

RL controller

Desired motor command
[��, ��, ��, ��]

Desired speed command
[���,����]

Hierarchical control framework

��

Figure 1. Hierarchical control framework for the quadrotor active tracking task.

Appl. Sci. 2021, 11, 10595 5 of 21

3.2. Simulator Set-Up and Augmentation

Due to the data inefficiency issue of model-free RL, extensive interaction data with the
environment are necessary to improve the high-level RL controller through trial and error.
We cannot afford to train our RL controller for quadrotors in the real world. Instead, we
set up a simulation environment where the quadrotors can gain infinite and high-fidelity
training data.

Based on the virtual robot experimentation platform (V-REP) [21], we build an RL
training environment for the quadrotor’s active tracking task, as shown in Figure 2. In this
environment, three main entities exist: a quadrotor equipped with a camera, an IMU and
an altitude ranging sensor, and a dynamic person (the target) walking along a path from the
beginning to the end. The camera is tilted down 30 degrees relative to the horizontal plane.
The quadrotor uses sequential images from the camera as the observation and decides the
desired speed commands using the RL controller to follow the dynamic target. Then, the
quadrotor uses the IMU and altitude ranging sensor to obtain the current velocity and
height information and applies the desired motor commands to track the desired speed
commands while maintaining its altitude via the PID controller. Next, the environment
returns the reward function and the next observation. At the initialization of each training
episode, the target people will be in front of the quadrotor.

Figure 2. V-REP based virtual training environment for the quadrotor’s active tracking task.

To enhance the generalizability of our trained RL controller to various domains, we
adopt several environmental augmentation methods as follows.

1. Visual randomization: We divide the appearance of the target person into five parts—
hair, skin, shirt, trousers, and shoes. Then, we change the color of each part at every
timestep, which is helpful to learn the dynamic target’s more essential features rather
than simply memorizing the colors.

2. Speed randomization: To learn an RL controller that is less sensitive to the target’s
velocity, we change the walking speed of the target person at every timestep in the
interval [0, Vtarget] uniformly.

3. Path randomization: To increase the robustness of the RL controller to the gestures
and relative position of the target, we randomly sample n control points between
the beginning and the end of the path and then generate a smooth trajectory using
a B-spline for every training episode. The target person will follow the random
trajectories under control.

The simulation speed is the main concern when training with data-driven model-free
RL methods. However, the original Python remote API of V-REP is not sufficiently fast.
To accelerate the training process, we leverage PyRep [22] to break this data generation
bottleneck. PyRep is built on top of the V-REP and can provide a flexible API and significant

Appl. Sci. 2021, 11, 10595 6 of 21

acceleration. Moreover, the simulation environments are easy to parallelize, implying that
several workers can be used to interact with different environments at the same time and
accelerate the training even further.

3.3. RL Controller Architecture

The neural RL controller is an actor–critic style architecture, as shown in Figure 3.
Given the sequential images [Ot−2, Ot−1, Ot] as observations, the actor network and the
critic network share the perception layer, which consists of the spatial and temporal feature
encoders. This shared perception layer is designed to extract the spatial and temporal
features of the dynamic target. The rest of the actor network and the critic network calculate
the continuous normalized desired speed commands [V̄f b, V̄yaw] and the estimated value
of the observation, respectively.

Concate lantent features and
their differences

FC

FC

Spatial Features Encoder
Decision-making

and
Value-fitting Layer

Shared Convolutional Attention Module
��−�

��−�

��

Temporal Features Encoder

× ×

channel
attention

spatial
attention

-

-

segmentation loss

Conv2D

motion-in-depth loss

��−�

��−�

��

∆��−�

∆��

��

��

�

Figure 3. Architecture of the end-to-end perception and high-level decision-making RL controller.

This end-to-end perception and control method maps the high-dimensional raw
images to the high-level actions directly. The mapping is learned via deep RL in the
virtual environment, which saves the effort typically required for ground-truth labeling for
perception learning and parameter tuning for simultaneous perception and control. The
layers with a specific function improve the interpretability of the RL controller.

3.3.1. Attention-Based Spatial Feature Encoder

In the active tracking task, the quadrotor should first know the location of the dynamic
target. To reduce the computational cost of the RL controller, a compact neural network
architecture with powerful representational capacity is necessary. We leverage the con-
volutional block attention module (CBAM) [27], which consists of a 1D channel attention
module and a 2D spatial attention module. The channel attention module focuses on ’what’
is meaningful in the input image, while the spatial attention module tends to know ’where’
informative parts are located. Given a raw image input, CBAM can help extract the spatial
information of our dynamic target of interest.

3.3.2. Feature Difference-Based Temporal Feature Encoder

For better adaptation to the target’s different velocities, not only the spatial features,
but also the temporal features of the dynamic target must be determined. A small optical
flow network is used to incorporate explicit temporal information of the dynamic target
in [28]. However, computing optical flow is still expensive, and we can encode the temporal
information more efficiently. Unlike the latent flow method in [29], which fuses raw
images and their differences directly, we focus on our target of interest and first extract the

Appl. Sci. 2021, 11, 10595 7 of 21

spatial features of three sequential raw images by the shared convolutional block attention
module and then concatenate the spatial features and their differences. A 2D convolution
layer processes these fused features further to extract the temporal information of the
dynamic target.

3.3.3. Decision-Making and Value-Fitting Layer

The spatial and temporal feature encoders constitute the final perception layer, which
encodes the spatial and temporal features of the dynamic target, followed by the standard
RL actor–critic architecture. We adopt two fully connected (FC) layers for decision-making
and value fitting. The value-fitting layer estimates the value function of the observation.
The decision-making layer computes the mean of the continuous high-level actions ~µa =
[a1, a2]

T . In the training stage, the high-level actions are sampled from the following:

[V̂f b, V̂yaw]
T ∼ ~µa +N (0, Σ) (9)

where Σ is the diagonal covariance matrix. The Gaussian noise is helpful for exploration.
Then, the high-level actions are clipped into the range to be normalized:

V̄f b = clip(V̂f b,−1, 1)
V̄yaw = clip(V̂yaw,−1, 1)

(10)

The details of the RL controller’s network architecture are presented in Appendix A.

3.4. Reward Engineering

Figure 4 shows the aerial view and abstraction of the training environment. The y-axis
is set to the head direction of the quadrotor, and the x-axis is set from the quadrotor’s right
to left. The coordinate of the target in this quadrotor’s body frame is denoted as (dx, dy);
then, the yaw angle ϕ and distance ρ between the target and quadrotor can be calculated
as follows:

ϕ = arctan(dx/dy)

ρ =
√

dx2 + dy2 (11)

We want the quadrotor to follow the target at a fixed distance ρd while being oriented
toward the target; thus, the following naive reward function is proposed, which encourages
ρ = ρd and ϕ = 0:

r = α1 exp(−
∣∣∣∣ρ− ρd

β1

∣∣∣∣) + α2 exp(−
∣∣∣∣ ϕ

β2

∣∣∣∣) (12)

where α1 > 0, α2 > 0, β1 > 0, β2 > 0 are tunable hyperparameters. β1, β2 control the
gradient of the first and second parts of the exponential reward function, respectively, and
α1, α2 are their coefficients of combination.

3.5. Auxiliary Segmentation and Motion-in-Depth Loss

While the RL controller’s architecture is designed to have a powerful spatial and
temporal representational capacity, the RL controller is still difficult to properly train using
the model-free RL method since the input state is so highly dimensional; this training
process is very data inefficient. Moreover, the perception layer in the RL controller may
not learn the correct spatial and temporal features of the dynamic target guided by such a
highly abstract reward signal.

To accelerate the training process and build a good representation of the perception
layer in the RL controller, supervised learning is combined with the RL method. Addition-
ally, two auxiliary losses are added in the training process, namely, the segmentation loss
and the motion-in-depth loss. Then, supervised learning assists the RL training process by
training additional auxiliary losses. The auxiliary losses introduced can generate denser
signals that facilitate the learning of spatial and temporal representations.

Appl. Sci. 2021, 11, 10595 8 of 21

Target

Quadrotor

𝜑

𝑥

𝑦
𝑑𝑥

𝑑𝑦

𝜌

Figure 4. An aerial view of the quadrotor and dynamic target in the training environment.

3.5.1. Auxiliary Segmentation Loss

In the spatial features encoder, the output latent features are supposed to represent the
spatial information of the dynamic target in our design. To provide denser training signals,
we add the auxiliary segmentation loss after the convolutional block attention module, as
shown in Figure 3.

The output map of the convolutional block attention module is denoted as Zn, and the
ground-truth segmentation map is denoted as Gn given input On, where Zn is followed by
the sigmoid activation function σ to predict the probability map Pn for each pixel in Zn:

pn
ij = σ(zi,j) =

1
1 + exp(−zi,j)

for (i, j) ∈ Zn (13)

Then, the auxiliary segmentation loss is the binary cross-entropy between the predicted
probability pn

i,j and ground truth gn
i,j for each pixel in Zn:

LSeg =−
t

∑
n=t−2

1
|Pn|

∑
(i,j)∈Pn

gn
ij log pn

ij +
(

1− gn
ij

)
log
(

1− pn
ij

) (14)

where gn
i,j ∈ {0, 1}, and 1 corresponds to the target class, while 0 corresponds to the

background class.

3.5.2. Auxiliary Motion-in-Depth Loss

The temporal feature encoder in the RL controller is designed to encode the temporal
information of the dynamic target. The temporal information should contain the change
in the dynamic target’s position that is parallel to the quadrotor’s camera view plane and

Appl. Sci. 2021, 11, 10595 9 of 21

the relative depth change of the dynamic target that is vertical to the quadrotor’s camera
view plane. Among these, the depth change feature is more difficult to extract since the
input resolution is set to be small for faster training, and the occupied resolution of the
dynamic target is even smaller. To learn the dynamic target’s position change vertical to
the quadrotor’s camera view plane, we need to introduce some auxiliary training signals
at the end of the velocity perception layer.

For a dynamic target, suppose that the length projected on the image plane and the
depth from the camera center at timestep t are lt and dt, respectively. We can denote the
optical expansion s between two timesteps as ti, tj, which indicates the relative scale change
of the dynamic target as follows:

sj
i =

lj

li
(15)

We can also denote the motion-in-depth τ between two timesteps ti, tj, which indicates
the relative depth change of the dynamic target as follows:

τ
j
i =

dj

di
(16)

Interestingly, the motion-in-depth is the reciprocal of the optical expansion [30], indi-
cating that they are unified and can both represent the vertical position change information
of the dynamic target. Because the motion-in-depth is easier to calculate, we choose to
adopt auxiliary motion-in-depth loss as the additional training signal for the velocity
perception layer, as shown in Figure 3.

In [30], the motion-in-depth τ is calculated as the ratio between the depth of corre-
sponding points over two frames as follows:

τ
j
i =

d
(
xj
)

d(xi)
(17)

where xi represents the occupied pixels of the dynamic target at the first frame and xj
represents the correspondence of xi at the second frame.

We further simplify the calculation of motion-in-depth by ignoring the pixel matching
over two frames for fast training:

τ̂
j
i =

d
(
yj
)

min d(yi)
(18)

where yi and yj are the occupied pixels of the dynamic target over two frames at timesteps
ti and tj, respectively. Due to the condition for training episode termination in our setting
(listed in Section 4.1.1), the dynamic target is always in view of the quadrotor at training
time, and

[
d
(
yj
)
, d(yi)

]
can be obtained directly in V-REP; thus, τ̂

j
i is always available

during training.
The output map of the velocity perception layer is denoted as W, and the motion-in-

depth map over timestep t− 2 and t is denoted as τ̂t
t−2. We resize τ̂t

t−2 as M to be the same
size as W and then calculate the auxiliary motion-in-depth loss as follows:

LDep =
1
|W| ∑

(i,j)∈W

∥∥log mi,j − wij
∥∥2

2 (19)

where mi,j and wi,j are the pixels of M and W, respectively.
Note that we skip frame t − 1 because the motion-in-depth over two contiguous

frames can be too small to guide the learning process effectively.

Appl. Sci. 2021, 11, 10595 10 of 21

With both auxiliary segmentation and motion-in-depth losses, the total loss for the
updating policy is the following:

LTotal = LCLip + CSegLSeg + CDepLDep (20)

where CSeg > 0 and CDep > 0 are tunable hyperparameters.

4. Experiments
4.1. Training
4.1.1. Environment Settings

The V-REP-based simulator is set up for the active tracking task. The observed state
of the quadrotor is three sequential raw images st = [Ot−2, Ot−1, Ot] with a resolution of
64 × 64. Given the observed state st, the RL controller outputs the normalized desired
speed commands, which consist of the linear velocity along with the head direction V̄f b ∈
[−1, 1] m/s and the yaw speed V̄yaw ∈ [−1, 1] rad/s. Then, the normalized desired speed
commands are scaled to the final desired speed commands:

Vf b = C f bV̄f b

Vyaw = CyawV̄yaw
(21)

where the scales C f b and Cyaw are set to be 0.8 and 0.1, respectively.
The final desired speed commands are tracked by the PID controller while maintaining

the altitude at 2 m. The desired distance between the quadrotor and the target ρd is 3 m.
At the start of each training episode, the quadrotor is 3 m behind the dynamic target

(virtual person), and the dynamic target is in the center of the quadrotor’s view. The
target’s end position is set to be 10 m away from the starting position. During the training,
the visual, speed, and path randomization augmentation techniques in Section 3.2 are
applied. The maximum speed of dynamic target Vtarget is 0.5 m/s, and the number of
sampled control points between the target’s start and end positions n is 8. When one of the
following conditions is satisfied, the current training episode is completed, and the next
training episode can begin:

1. The dynamic target is out of the view of the quadrotor.
2. The distance between the target and the quadrotor is out of the interval of [2, 4] m.
3. The target reaches its end position.

4.1.2. Implementation Details

We use the model-free algorithm PPO with auxiliary losses to train our active tracking
RL controller. The modified PPO algorithm is summarized in Algorithm 1. Adam [31] is
used for optimization of the RL controller. The hyperparameters for the reward function,
modified PPO algorithm, and optimizer are listed in Table 1. Our algorithm is implemented
by Pytorch [32].

Algorithm 1: PPO with auxiliary losses.

1 for iteration=1,2,. . . do
2 for actor=1,2,. . . , N do
3 Run policy πθold in the environment for T timesteps;
4 Compute advantage estimates Â1, . . . , ÂT using Equation (6);

5 Calculate the total loss LTotal using Equation (20);
6 Optimize LTotal wrt θ, with K epochs and minibatch size M ≤ NT;
7 Update policy θold ← θ ;

Appl. Sci. 2021, 11, 10595 11 of 21

Table 1. Hyperparameters in our implementation.

Hyperparameter Value

Number of actors N 2
Horizon T 2048

Adam stepsize 5× 10−5

Num. epochs 2
Minibatch size 640

Discount γ 0.99
GAE parameter λ 0.98

Clipping ε 0.2
Auxiliary loss coefficient CSeg 1.0
Auxiliary loss coefficient CDep 0.05

Reward coefficient α1 0.5
Reward coefficient α2 0.5
Reward coefficient β1 0.5
Reward coefficient β2 0.5

4.1.3. Ablation Studies in the Learning Process

We train our RL controller for the active tracking task through trial and error in the
customized V-REP-based environment. We also perform ablation studies to evaluate the
importance of the proposed auxiliary losses and the hierarchical control framework. Two
groups of experiments are compared:

1. The proposed hierarchical active tracking controller framework, which uses the RL
controller for perception and high-level decision-making, and the PID controller is
used for low-level dynamic control.

2. The end-to-end active tracking controller framework, which maps raw image obser-
vations to a UAV’s motor commands directly.

In each group, four additional experiments are also compared:

1. Training with auxiliary segmentation and motion-in-depth loss.
2. Training with auxiliary segmentation but without motion-in-depth loss.
3. Training without auxiliary segmentation but with motion-in-depth loss.
4. Training without auxiliary segmentation and motion-in-depth loss.

The learning curves of all experiments are presented in Figure 5. All experiments
in the end-to-end active tracking control learning group, as shown in Figure 5a, cannot
achieve notable progress during the learning process, indicating that learning the direct
mapping from high-dimensional observations to low-level motor commands is extremely
complicated. With the hierarchical control framework, the learning of an active tracking
controller is much more efficient, as presented in Figure 5b. We can observe that training
with auxiliary segmentation and motion-in-depth loss can converge quickly and achieve
good asymptotic performance. The performance of training with only one of the two
auxiliary losses suffers from the problem of weak stability. Training without any auxil-
iary losses is relatively data inefficient and cannot achieve good performance within 105

training episodes.
Therefore, the proposed hierarchical control framework and auxiliary losses can

improve the data efficiency of model-free RL and must be introduced in the quadrotor’s
active tracking task to achieve good and stable performance.

4.2. Simulation Results
4.2.1. Comparison with Baselines

To highlight the effectiveness of our hierarchical active tracking controller, we compare
our controller and two baseline controllers in the unseen scenario, as illustrated in Figure 6.

Appl. Sci. 2021, 11, 10595 12 of 21

The path of the dynamic target is fixed, and the distance between the start and the end
positions is increased from 10 m to 25 m.

0.0 0.2 0.4 0.6 0.8 1.0
Episode ×105

0

100

200

300

400

500

600

700

A
ve

ra
ge

d
To

ta
lR

ew
ar

d

w/ L Seg, w/ L Dep

w/ L Seg, w/o L Dep

w/o L Seg, w/ L Dep

w/o L Seg, w/o L Dep

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Episode ×105

0

100

200

300

400

500

600

700

A
ve

ra
ge

d
To

ta
lR

ew
ar

d

w/ L Seg, w/ L Dep

w/ L Seg, w/o L Dep

w/o L Seg, w/ L Dep

w/o L Seg, w/o L Dep

(b)

Figure 5. Comparison of the learning curves with different control frameworks and auxiliary losses.
(a) Learning curve of the end-to-end active tracking controller with or without auxiliary losses.
(b) Learning curve of the hierarchical active tracking controller with or without auxiliary losses.

The framework of the baseline controllers is presented in Figure 7, which corresponds
to a three-stage method. The baseline controller obtains the bounding box of the dynamic
target, using the passive tracker, and calculates the desired speed commands to pull the
bounding box to the center of the image with a high-level PID controller. Then, the other
low-level PID controller is used to track the speed commands. We do not use DNN-based
passive trackers, such as SiamRPN [15], for the perception at baseline, considering that
they need additional training with manual ground-truth labeling and that their model
parameters are much larger than ours (the parameters of the backbond network ResNet-50
that are usually used in DNN-based trackers are 25.5 M, while the total parameters of our
end-to-end perception and high-level decision-making controller are only 0.4 M). Instead,

Appl. Sci. 2021, 11, 10595 13 of 21

two state-of-the-art passive trackers KCF [12] and MIL [13] are used as the perception
components of the baseline controllers.

Figure 6. The unseen test scenario.

[��−�,��−�,��]

V-REP

Desired motor command
[��, ��, ��, ��]

Desired speed command
[���,����]

Perception &
High-level Control

bounding box

Three-stage controller framework

Figure 7. The control framework of our baseline controllers.

In the test scenario, we apply different randomness to the color and speed of the
dynamic target. The results of the validation experiments are presented in Figure 8. The
bars show the results averaged over 10 episodes in the unseen test scenario. The delimiters
show the maximum and minimum performance. These results suggest that our method
achieves significantly better performance than the compared baseline methods under
different randomness conditions. The method that we propose is robust to the dynamic
target’s appearance and velocity. The failure of traditional passive trackers in a few steps
is probably due to the resolution of observations and the dynamics of the quadrotor. The
observation with dimension (64× 64) is large for the high-level RL controller, but it is still
not sufficiently informative for the passive tracker to update the bounding box precisely.
Moreover, the dynamics of the quadrotor and the observations are coupled. The movement
of the quadrotor is realized by changing its altitude, and then the target’s position in the
observation also changes, which complicates stable active tracking; however, our method
can deal with these problems.

4.2.2. Analysis of Simulation Results

The spatial and temporal feature encoders in the RL controller are designed to encode
the dynamic target’s spatial and temporal features, respectively. To evaluate these encoders,
we visualize the output actions of the RL controller for a test episode in the unseen scenario,
where the dynamic target changes its color and speed at every timestep.

Appl. Sci. 2021, 11, 10595 14 of 21

The mapping from the ground truth distance error δρ = ρ− ρd to the output normal-
ized linear velocity V̄f b is shown in Figure 9a. In general, the correlation between ρ and V̄f b
is positive, according to the fitting curve. However, the correlation is slightly weak, due
to the random velocities of the dynamic target. To maintain the dynamic target at a fixed
distance ρd, the quadrotor must change speed frequently. Figure 9b shows the mapping
from the yaw angle error δϕ = ϕ to the normalized yaw speed V̄yaw. We can observe that
when the dynamic target is to the right of the quadrotor (δϕ < 0), the RL controller tries
to force the quadrotor to yaw right (V̄yaw < 0). Similarly, the RL controller outputs the
command to yaw left when the target is to the quadrotor’s left. The mapping is almost
linear in the interval δϕ ∈ [−0.1, 0.1] rad and becomes saturated when beyond this interval.
We note some slow-down commands in the interval δϕ ∈ [0.1, 0.45] ∪ [0.6, 0.9] rad because
of the dynamic target’s rapid position change.

KCF + PID MIL + PID RL (Ours)
0

500

1000

To
ta

lR
ew

ar
d

KCF + PID MIL + PID RL (Ours)
0

500

1000

E
pi

so
de

L
en

gt
h

Fixed Color, Fixed Speed
Fixed Color, Random Speed

Random Color, Fixed Speed
Random Color, Random Speed

Figure 8. Comparison of different high-level controller for quadrotor’s active tracking tasks. All
controllers use additional PID for quadrotor’s dynamic control.

To illustrate the effectiveness of our controller’s temporal representation ability, we
visualize the sequences of desired speed commands in the test episode. The desired nor-
malized linear velocity V̄f b and the ground truth distance error δρ over time are presented
in Figure 10a. When the distance error δρ increases, the output V̄f b also increases. Similarly,
V̄f b decreases when δρ begins to drop. Moreover, the change in V̄f b can adapt to different
variation scales of δρ. These results indicate that the RL controller can obtain not only
the spatial features, but also the temporal feature of the dynamic target. We can draw a
similar conclusion from Figure 10b, which shows the sequences of ground-truth yaw angle
error δϕ and the desired normalized angular velocity V̄yaw. By comparing the change in δϕ
and V̄yaw in the range [0, 350] and the [350, 600] timestep, we observe that the correlation
between the change rates of δϕ and those of V̄yaw is positive.

To better understand the proposed RL controller, we sample three sequences with
a length of six timesteps during the test episode and then visualize the layers in the RL
controller and the corresponding action commands in Figures 11–13.

The dynamic target changes its appearance, position, and speed at every timestep,
as shown in Figures 11a, 12a and 13a. Given the sequence of raw observations, the RL
controller’s position perception layer can precisely segment the dynamic target from the
background, as presented in Figures 11b, 12b and 13b. The spatial information of the
dynamic target is extracted for further temporal sensing. The corresponding outputs of

Appl. Sci. 2021, 11, 10595 15 of 21

velocity perception layers Wt in Figures 11c, 12c and 13c are highly abstract and fuse the
spatial and temporal features of the dynamic targets. We observe that the RL controller
concentrates on the dynamic target when it vanishes in the quadrotor’s view; otherwise, it
concentrates on the overall information in the observation.

From timesteps t = 640 to t = 645, the dynamic target is to the left of the quadrotor,
and the RL controller yields the maximum yaw-left command to pull the target back to the
center of the view. From timesteps t = 720 to t = 725, the dynamic target is in front of the
quadrotor and accelerates, and the RL controller adjusts the yaw command V̄yaw slightly
to 0 and increases the linear speed command V̄f b to keep up with the dynamic target.
From timesteps t = 880 to t = 885, the target accelerates and moves to the quadrotor’s
right; then, the RL controller outputs the maximum V̄yaw and commands V̄f b to follow the
dynamic target.

−0.8 −0.6 −0.4 −0.2 0.0 0.2
Distance Error (m)

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

L
in

ea
rV

el
oc

ity
(m

/s
)

fitting curve: y =−0.11x4 −0.07x3

+0.40x3 +0.53x+0.65

original values

(a)

−0.50 −0.25 0.00 0.25 0.50 0.75
Yaw Angle Error (rad)

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

A
ng

ul
ar

V
el

oc
ity

(r
ad

/s
)

(b)

Figure 9. Visualization of the mapping from the state errors to the corresponding actions. (a) Mapping
from the ground truth depth error to the output normalized linear velocity. (b) Mapping from the
ground truth yaw angle error to the output normalized angular velocity.

Appl. Sci. 2021, 11, 10595 16 of 21

0 200 400 600 800 1000 1200
TimeSteps

−1.0

−0.5

0.0

0.5

1.0

D
is

ta
nc

e
E

rr
or

(m
)

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

L
in

ea
rV

el
oc

ity
(m

/s
)

δρ V̄ f b

(a)

0 200 400 600 800 1000 1200
TimeSteps

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Y
aw

A
ng

le
E

rr
or

(r
ad

)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

A
ng

ul
ar

V
el

oc
ity

(r
ad

/s
)

δϕ V̄yaw

(b)

Figure 10. Visualization of the sequences of the state errors and the corresponding actions. (a) Com-
parison of sequences for the ground truth distance error and the output normalized linear velocity.
(b) Comparison of sequences for the ground truth yaw angle error and the output normalized
angular velocity.

(a)

Figure 11. Cont.

Appl. Sci. 2021, 11, 10595 17 of 21

(b)

(c)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0
V̄

fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

(d)

Figure 11. Visualization of the layers and output commands in the RL controller given a sequence of raw observations from
timesteps t = 640 to t = 645. (a) Sequence of raw observation: O640 to O645. (b) The corresponding output of the position
perception layer: Z640 to Z645. (c) The corresponding output of the velocity perception layer: W640 to W645. (d) The final
commands of the RL controller V̄f b, V̄yaw.

(a)

(b)

(c)

Figure 12. Cont.

Appl. Sci. 2021, 11, 10595 18 of 21

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

(d)

Figure 12. Visualization of layers and output commands in the RL controller given a sequence of raw observations from
timesteps t = 720 to t = 725. (a) Sequence of raw observation: O720 to O725. (b) The corresponding output of the position
perception layer: Z720 to Z725. (c) The corresponding output of the velocity perception layer: W720 to W725. (d) The final
commands of the RL controller V̄f b, V̄yaw.

(a)

(b)

(c)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

−1.0−0.50.51.0

V̄yaw
(rad/s)−1.0

−0.5

0.5

1.0

V̄
fb

(m
/s

)

(d)

Figure 13. Visualization of layers and output commands in the RL controller, given a sequence of raw observations from
timesteps t = 880 to t = 885. (a) Sequence of raw observation: O880 to O885. (b) The corresponding output of the position
perception layer: Z880 to Z885. (c) The corresponding output of the velocity perception layer: W880 to W885. (d) The final
commands of the RL controller V̄f b, V̄yaw.

The sequence of action commands is shown in Figures 11d, 12d and 13d, and the
corresponding observations indicate that the RL controller for the active tracking task is
robust to a dynamic target with different appearances, positions, and speeds.

Appl. Sci. 2021, 11, 10595 19 of 21

5. Conclusions

In this paper, we propose a hierarchical control framework for UAVs’ active tracking
task. This framework combines the PID-based low-level controller with the high-level RL
controller. The RL controller consists of a novel perception layer and a standard actor–critic
layer, enabling end-to-end perception and high-level control with high-dimensional raw
images as input. The perception layer encodes the spatial and temporal features of the
dynamic target by the convolutional block attention module and spatial feature difference,
respectively. The auxiliary segmentation loss and motion-in-depth loss introduced are
essential for our RL controller’s fast and stable learning. No ground-truth labeling is
required in the learning process. Simulation experiments show that our method is effective
in the active tracking task and robust to a dynamic target’s appearance and velocity,
compared with conventional three-stage methods.

Further research should be devoted to the smooth RL controller, which outputs
energy-saving actions. More augmentation techniques should be introduced to achieve
stable tracking for various dynamic targets in complex environments and mitigate the
sim-to-real problem.

Author Contributions: Conceptualization, W.Z. and Z.M.; methodology, W.Z. and K.W.; software,
validation, formal analysis, W.Z. and J.Z.; writing—original draft preparation, W.Z.; writing—review
and editing, W.Z., S.L. and K.W.; visualization, K.W. and S.L.; supervision, project administra-
tion, funding acquisition, Z.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation (NSF) of China
(No. 61976014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this paper are available on request from the
first author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Architecture of the Network

The network architecture of the RL controller is detailed in Table A1, where Conv2a +
ReLU and Conv2b are shared in the channel attention module of the position perception
layer, and Plus2a, Plus2b and Plus2c are the outputs of the shared position perception layer
given the observations Ot, Ot−1, Ot−2, respectively. The parameters kernel_size, stride,
and padding are used for the height and width dimensions.

Table A1. Network architecture of the RL controller.

Layers Sub-Layers Specification Input Layer

Spatial
Features
Encoder

Channel
Attention
Module

Conv1a + ReLU + BN k = 3, s = 1, p = 1 Input image (64 ∗ 64 ∗ 3)
Avg-Pool / Conv1a + ReLU + BN
Max-Pool / Conv1a + ReLU + BN

Shared Conv2a + ReLU k = 1, s = 1, p = 1 { Avg-Pool, Max-Pool }
Shared Conv2b k = 1, s = 1, p = 0 Conv2a + ReLU

Sum / Shared Conv2b
Sigmoid / Sum

Plus1 / { Sum, Conv1a + ReLU + BN }

Spatial
Attention
Module

mean / Plus1
max / Plus1

Concat / mean, max
Conv3a k = 3, s = 1, p = 1 Concate
Sigmoid / Conv3a

Plus2 / { Plus1, Sigmoid }
Conv3b + Sigmoid k = 3, s = 1, p = 1 Plus2

Appl. Sci. 2021, 11, 10595 20 of 21

Table A1. Cont.

Layers Sub-Layers Specification Input Layer

Temporal
Features
Encoder

Sub1 / { Plus2a, Plus2b }
Sub2 / { Plus2b, Plus2c }

Concat / { Plus2a, Sub1,
Plus2b, Sub2, Plus2c }

Conv4a + ReLU k = 8, s = 3, p = 0 Concate
Conv4b + Tanh k = 8, s = 1, p = 0 Conv4a + ReLU

Flatten + Fc1 + ReLU 128 Conv4b + Tanh

Decision-making
Layer

FC2a + ReLU 64 Flatten + Fc1 + ReLU
FC2b + ReLU 64 FC2a + ReLU
FC2c + Tanh 2 FC2b + ReLU

Value-fitting
Layer

FC3a + ReLU 32 Flatten + Fc1 + ReLU
FC3b 1 FC3a + ReLU

Conv: Convolution, BN: Batch normalization, ReLU: Rectified linear unit,
FC: Fully connected, Sub: Subtraction, k: kernel_size, s: stride, p: padding

References
1. Dang, C.T.; Pham, H.T.; Pham, T.B.; Truong, N.V. Vision based ground object tracking using AR.Drone quadrotor. In Proceedings

of the 2013 International Conference on Control, Automation and Information Sciences (ICCAIS), Nha Trang City, Vietnam, 25–28
November 2013; pp. 146–151. [CrossRef]

2. Pestana, J.; Sanchez-Lopez, J.; Campoy, P.; Saripalli, S. Vision based GPS-denied Object Tracking and following for unmanned
aerial vehicles. In Proceedings of the 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics, Linköping,
Sweden, 21–26 October 2013. [CrossRef]

3. Mondragón, I.F.; Campoy, P.; Olivares-Mendez, M.A.; Martinez, C. 3D object following based on visual information for
Unmanned Aerial Vehicles. In Proceedings of the IX Latin American Robotics Symposium and IEEE Colombian Conference on
Automatic Control, Bogota, Colombia, 1–4 October 2011; pp. 1–7. [CrossRef]

4. Boudjit, K.; Larbes, C. Detection and implementation autonomous target tracking with a Quadrotor AR.Drone. In Proceedings of
the 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France, 21–23 July
2015; Volume 2, pp. 223–230.

5. Lowe, D. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

6. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. In Proceedings of the Computer Vision—ECCV 2006,
Graz, Austria, 7–13 May 2006; Leonardis, A., Bischof, H., Pinz, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417.

7. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

8. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [CrossRef] [PubMed]

10. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. Lect. Notes
Comput. Sci. 2016, 9905, 21–37. [CrossRef]

11. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2544–2550. [CrossRef]

12. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2015, 37, 583–596. [CrossRef] [PubMed]

13. Babenko, B.; Yang, M.H.; Belongie, S. Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal.
Mach. Intell. 2010, 33, 1619–1632. [CrossRef] [PubMed]

14. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H.S. Fully-Convolutional Siamese Networks for Object Tracking.
In Computer Vision—ECCV 2016 Workshops; Hua, G., Jégou, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016;
pp. 850–865.

15. Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High Performance Visual Tracking with Siamese Region Proposal Network. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8971–8980. [CrossRef]

16. Shadeed, O.; Hasanzade, M.; Koyuncu, E. Deep Reinforcement Learning based Aggressive Flight Trajectory Tracker. In
Proceedings of the AIAA Scitech 2021 Forum, Online, 11–15 January 2021.

http://doi.org/10.1109/ICCAIS.2013.6720545
http://dx.doi.org/10.1109/SSRR.2013.6719359
http://dx.doi.org/10.1109/LARC.2011.6086794
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/CVPR.2010.5539960
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263
http://dx.doi.org/10.1109/TPAMI.2010.226
http://www.ncbi.nlm.nih.gov/pubmed/21173445
http://dx.doi.org/10.1109/CVPR.2018.00935

Appl. Sci. 2021, 11, 10595 21 of 21

17. Siddiquee, M.; Junell, J.; Van Kampen, E.J. Flight test of Quadcopter Guidance with Vision-Based Reinforcement Learning. In
Proceedings of the AIAA Scitech 2019 Forum,San Diego, CA, USA, 7–11 January 2019.

18. Polvara, R.; Sharma, S.; Wan, J.; Manning, A.; Sutton, R. Autonomous Vehicular Landings on the Deck of an Unmanned Surface
Vehicle using Deep Reinforcement Learning. Robotica 2019, 37, 1867–1882. [CrossRef]

19. Luo, W.; Sun, P.; Zhong, F.; Liu, W.; Zhang, T.; Wang, Y. End-to-End Active Object Tracking and Its Real-World Deployment via
Reinforcement Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 1317–1332. [CrossRef] [PubMed]

20. Li, S.; Liu, T.; Zhang, C.; Yeung, D.Y.; Shen, S. Learning Unmanned Aerial Vehicle Control for Autonomous Target Following.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018;
pp. 4936–4942.

21. Rohmer, E.; Singh, S.P.N.; Freese, M. V-REP: A versatile and scalable robot simulation framework. In Proceedings of the
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1321–1326.
[CrossRef]

22. James, S.; Freese, M.; Davison, A. PyRep: Bringing V-REP to Deep Robot Learning. arXiv 2019, arXiv:1906.11176.
23. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ,

USA, 1994.
24. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the 32nd

International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1889–1897.
25. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347.
26. Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage

estimation. arXiv 2015, arXiv:1506.02438.
27. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
28. Amiranashvili, A.; Dosovitskiy, A.; Koltun, V.; Brox, T. Motion perception in reinforcement learning with dynamic objects. In

Proceedings of the Conference on Robot Learning, Zürich, Switzerland, 29–31 October 2018; pp. 156–168.
29. Shang, W.; Wang, X.; Srinivas, A.; Rajeswaran, A.; Gao, Y.; Abbeel, P.; Laskin, M. Reinforcement Learning with Latent Flow. arXiv

2021, arXiv:2101.01857.
30. Yang, G.; Ramanan, D. Upgrading Optical Flow to 3D Scene Flow Through Optical Expansion. In Proceedings of the 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 1331–1340.
[CrossRef]

31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
32. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Vancouver, BC, Canada,
2019; pp. 8024–8035.

http://dx.doi.org/10.1017/S0263574719000316
http://dx.doi.org/10.1109/TPAMI.2019.2899570
http://www.ncbi.nlm.nih.gov/pubmed/30762532
http://dx.doi.org/10.1109/IROS.2013.6696520
http://dx.doi.org/10.1109/CVPR42600.2020.00141

	Introduction
	Preliminary Considerations
	Markov Decision Process
	Proximal Policy Optimization Algorithm
	Generalized Advantage Estimation

	Methodology
	Hierarchical Control Framework
	Simulator Set-Up and Augmentation
	RL Controller Architecture
	Attention-Based Spatial Feature Encoder
	Feature Difference-Based Temporal Feature Encoder
	Decision-Making and Value-Fitting Layer

	Reward Engineering
	Auxiliary Segmentation and Motion-in-Depth Loss
	Auxiliary Segmentation Loss
	Auxiliary Motion-in-Depth Loss

	Experiments
	Training
	Environment Settings
	Implementation Details
	Ablation Studies in the Learning Process

	Simulation Results
	Comparison with Baselines
	Analysis of Simulation Results

	Conclusions
	Architecture of the Network
	References

