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Abstract: In a Fizeau interferometer, off-axis illumination will lead to fringe optimization. Primarily
due to the unique structure of our interferometer, we first analyze the influence of the optical
properties of the parallel plate as a part of the interferometer on the optimal incident angle. Generally,
the incident angle determination is mainly based on the graphing method proposed by Langenbeck
and the estimation formula proposed by Kajava. However, Langenbeck’s method is cumbersome,
and the error of Kajava’s estimation formula is large. Based on the predecessors, this paper proposes
a modified method of determining the optimal angle of incidence and further derives more accurate
optimal angle expressions than Kajava’s. By simply substituting the wedge angle of the wedge cavity
and the reflectivity of the cavity, the optimum incidence angle can be obtained immediately. Thus,
it eliminates the tedious and complex process of finding the optimum incident angle by graphing
method and makes the formula method the simplest method to find the optimum incident angle.
Finally, the comparison of the interference intensity at the optimum incidence angle calculated by the
improved method and normal incidence is given. It is found that the beam has a good suppression
effect on the sub-peak when it is incident at the optimum incident angle calculated by the method in
this paper.

Keywords: Fizeau interferometer; multi-beam interference; fringe optimization; spectrometer; the
optimum incidence angle

1. Introduction

Fizeau interferometer has the characteristics of high resolution and high light gathering
ability, so spectroscopy workers have always valued it. In 2011, Frédéric Gillard and
Sidonie Lefebvre proposed a static Fourier transform spectrometer using an optical wedge
to generate optical path difference [1–7]. The structure integrates an infrared area array
detector with a wedge prism and uses the principle of optical path difference generated
by optical wedge for infrared spectrum detection. However, this structure still needs
chemical etching after coating, and it requires high precision of the working surface. In
order to realize the marketization and popularization of the spectrometer, based on the
wedge structure, this paper proposes an improved Fizeau spectrometer structure with
simple manufacture and lower cost. As shown in Figure 1, a parallel plate coated with high
reflection film is pasted on the focal plane array. There is a wedge-shaped air chamber with
angle α composed by this parallel plate and another parallel plate also plated with high
reflection film. Due to the sudden refractive index change at the air/plate interface, the
light is reflected inside the wedge, and the multi-beams transmitted and reflected in the
wedge will interfere. The focal plane array records the interference fringes, and then the
incident spectrum is solved by corresponding algorithms.
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Figure 1. Optical layout of Fizeau spectrometer: Based on the configuration of an intentionally in-
clined afocal system and Fizeau interference system. 

However, if the collimated light is directly incident on the Fizeau interference system, 
there is a sub-peak in the interference fringe received by the detector [8–12]. During spec-
tral inversion, the intensity of the sub-peak will be superimposed on the intensity of the 
prominent peak of other wavelengths to reduce the accuracy of spectral inversion. Prede-
cessors have done much research on eliminating the sub-peak. The general idea is to find 
an optimum incidence angle. When the collimated light is incident at this angle, the influ-
ence of the sub-peak will be reduced or even eliminated. In terms of determining the op-
timum incident angle, the graphing method of the sum of the amplitude vector proposed 
by Langenbeck and the estimation formula proposed by Kajava is mainly used to select 
the optimum incident angle [13,14]. Langenbeck uses the relationship between the phase 
and the sum of the amplitude vector to make a plot. Then find the value of the incident 
angle when the sum of amplitude vector is the largest as the optimum incident angle. 
Kajava proposed a formula for the optimum incident angle in 1993 based on understand-
ing the multi-beam intensity distribution involved in the interference in the Fizeau inter-
ferometer. The two methods have their own advantages and disadvantages. Firstly, the 
sum of amplitude vector graphing method has high accuracy in determining the optimum 
incidence angle, which is the most commonly used method to determine the optimum 
incidence angle at present. However, the process is cumbersome and complicated. The 
formula mentioned by Kajava can immediately obtain the value of the optimum incident 
angle by simply substituting the structural parameters. Nevertheless, the error of the op-
timum incident angle obtained by this formula is significant. Moreover, due to the special 
structure of the spectrometer mentioned in this paper, the incident beam is reflected many 
times in the wedge cavity and emitted through the parallel plate. The phase of each out-
going beam will be modulated by the thickness and refractive index of the parallel plate, 
resulting in the change of spatial interference intensity, which may lead to the deviation 
of the optimum incident angle. Furthermore, the theory of finding the optimum incident 
angle by predecessors such as Langenbeck and Kajava did not consider the influence of 
parallel plates. Generally, the models that can be used to describe the spatial distribution 
of light include the brightness model of random field and the model of plane wave super-
position and interaction in space [15]. In this paper, using the second model, firstly, the 
influence of parallel plate on spatial interference intensity modulation when parallel beam 
is incident on Fizeau interferometer system is studied theoretically. It is proposed that if 
the thickness of the parallel plate behind the wedge cavity cannot be ignored, the spatial 
interference intensity distribution will have an intensity reproduction along the longitu-
dinal direction from the rear surface of the parallel plate. 

Figure 1. Optical layout of Fizeau spectrometer: Based on the configuration of an intentionally
inclined afocal system and Fizeau interference system.

However, if the collimated light is directly incident on the Fizeau interference system,
there is a sub-peak in the interference fringe received by the detector [8–12]. During
spectral inversion, the intensity of the sub-peak will be superimposed on the intensity
of the prominent peak of other wavelengths to reduce the accuracy of spectral inversion.
Predecessors have done much research on eliminating the sub-peak. The general idea is
to find an optimum incidence angle. When the collimated light is incident at this angle,
the influence of the sub-peak will be reduced or even eliminated. In terms of determining
the optimum incident angle, the graphing method of the sum of the amplitude vector
proposed by Langenbeck and the estimation formula proposed by Kajava is mainly used
to select the optimum incident angle [13,14]. Langenbeck uses the relationship between
the phase and the sum of the amplitude vector to make a plot. Then find the value
of the incident angle when the sum of amplitude vector is the largest as the optimum
incident angle. Kajava proposed a formula for the optimum incident angle in 1993 based
on understanding the multi-beam intensity distribution involved in the interference in the
Fizeau interferometer. The two methods have their own advantages and disadvantages.
Firstly, the sum of amplitude vector graphing method has high accuracy in determining
the optimum incidence angle, which is the most commonly used method to determine the
optimum incidence angle at present. However, the process is cumbersome and complicated.
The formula mentioned by Kajava can immediately obtain the value of the optimum
incident angle by simply substituting the structural parameters. Nevertheless, the error
of the optimum incident angle obtained by this formula is significant. Moreover, due to
the special structure of the spectrometer mentioned in this paper, the incident beam is
reflected many times in the wedge cavity and emitted through the parallel plate. The
phase of each outgoing beam will be modulated by the thickness and refractive index of
the parallel plate, resulting in the change of spatial interference intensity, which may lead
to the deviation of the optimum incident angle. Furthermore, the theory of finding the
optimum incident angle by predecessors such as Langenbeck and Kajava did not consider
the influence of parallel plates. Generally, the models that can be used to describe the
spatial distribution of light include the brightness model of random field and the model
of plane wave superposition and interaction in space [15]. In this paper, using the second
model, firstly, the influence of parallel plate on spatial interference intensity modulation
when parallel beam is incident on Fizeau interferometer system is studied theoretically. It
is proposed that if the thickness of the parallel plate behind the wedge cavity cannot be
ignored, the spatial interference intensity distribution will have an intensity reproduction
along the longitudinal direction from the rear surface of the parallel plate.

In particular, based on predecessors, an improved method was proposed for finding
the optimum incident angle by finding the extreme point of the relationship between the
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sum of amplitude vector of the point and the incident angle. On this basis, a more exact
expression formula of the optimum incidence angle is also derived. By simply substituting
the value of the wedge angle and the reflectivity of the wedge cavity, the accurate value
of the optimum incidence angle can be obtained immediately. Thus, it eliminates the
tedious and complex process of finding the optimum incident angle by graphing method
and makes the formula method the most straightforward choice for finding the optimum
incident angle. This method of determining the optimal incident angle is expected to be
used to evaluate the optimal laser exposure angle position [16,17]. The structure of this
paper is as follows: In the second section, we analyze the modulation effect of the thickness
of the parallel plate behind the wedge cavity on the spatial light intensity distribution
and theoretically analyze the influence of the parallel plate on the value of the optimum
incident angle. In the third section, we introduce the influence of various factors on
the interference intensity and the reasons for the appearance of interference intensity
sidelobes. An improved graphing method is proposed to correct the distortion interference
intensity by calculating the pole of the relationship between the sum of vector amplitude
and incident angle. Based on this method, a more accurate estimation expression of the
optimum incident angle is obtained. In Section 4, the optimum incidence angle obtained by
the formula is compared with that obtained by the graphing method and Kajava’s formula.
It is found that the results obtained by the formula method are in good agreement with
those obtained by the graphing method.

2. Analysis of Spatial Light Intensity Distribution

The interference intensity distribution made by predecessors is based on the simple
wedge structure, and the influence of the specific composition structure of the wedge
cavity on the spatial interference intensity is not considered [18,19]. Based on the specific
design structure of our spectrometer, since the parallel plate close to the telescope system
is a non-focal system and does not participate in the interference optical path, this paper
does not analyze the contribution of this parallel plate to the optical path. The parallel
plate near the focal plane array is directly involved in the interference light path, which
leads us to analyze the influence of the parallel plate on the interference light intensity
distribution. As shown in Figure 2, an ideal collimated beam enters the interferometer, and
the angle between the incident beam and the normal on the back of the wedge cavity is
the incident angle θ. Here, it is specified that the angle of clockwise rotation of the optical
axis to the incident direction is negative; conversely, θ is positive. The incident plane wave
is repeatedly reflected into a series of beams in the wedge cavity. These plane waves are
in phase with the beams mentioned above, but their propagation directions are twice α

different from each other, and the strength decreases exponentially. However, due to the
influence of the parallel plate on the optical path, the light is refracted at the interface
between the parallel plate and the air, and the angle between the incident light and the mth
outgoing light is no longer a simple 2mα. When the beam exits from the parallel plate, due
to the non-focus of the parallel plate, the direction of the outgoing beam is consistent with
the direction of the beam incident on the parallel plate. However, since the beam passes
through the parallel plate, the spatial interference intensity distribution of a point in space
is related to the thickness and refractive index of the parallel plate. Here, we assume that
a point in space is P(z0, y0). The amplitude distribution of point P is only related to the
relative phase difference between the reflected wavefront. It is assumed that the optical
path from the incident wavefront and the optical path from the mth outgoing wavefront to
P is L0 and Lm, respectively. Both reflectivities in the wedge cavity are R, and the thickness
of the parallel plate is d. When P is inside the wedge cavity (0 ≤ z0 ≤ d), the optical path
expression from the incoming wavefront and the mth outgoing wavefront to point P can
be calculated, respectively.
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Figure 2. The plane wave is incident into the wedge-shaped cavity and forms multiple new plane
wavefronts after multiple reflections by the wedge-shaped cavity, and produces coherent amplitude
superposition at a point P in space: (a) amplitude coherent superposition when point P is inside
the parallel plate; (b) amplitude coherent superposition in the air after the beam exits through the
parallel plate.

L0 = z0

(
n2 − sin2θ

) 1
2
+ y0sinθ (1)

Lm = z0

(
n2 − sin2(θ + 2mα)

) 1
2
+ y0sin(θ + 2mα) (2)

where n is the refractive index of the parallel plate, and α is the apex angle of the wedge
cavity. The optical path difference between the incident wavefront and the mth outgoing
wavefront to point P is

∆L = Lm − L0

= y0(sin(θ + 2mα)− sinθ) + z0

((
n2 − sin2(θ + 2mα)

) 1
2 −

(
n2 − sin2θ

) 1
2

) (3)

when the beam exits from a parallel plate (z0 ≥ d), the optical path from the incident
wavefront and the mth exit wavefront to point P satisfies

L0 = (z0 − d)·cosθ + y0·sinθ + d·
√

n2 − sin2θ (4)

Lm = (z0 − d)·cos(θ + 2mα) + y0·sin(θ + 2mα) + d

·
√

n2 − sin2(θ + 2mα)
(5)

At this time, the optical path difference between the incident wavefront and the mth
outgoing wavefront to point P is

∆L = Lm − L0 = (z0 − d)·(cos(θ + 2mα)− cosθ) + y0

·(sin(θ + 2mα)− sinθ) + d

·
(√

n2 − sin2(θ + 2mα)−
√

n2 − sin2θ
) (6)

when mα approaching zero, Equation (6) can be expressed in a simplified form by use of
the Taylor-series expansion

sin(2mα) = 2mα− (2mα)3

6
+ (2mα)5 (7)
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cos(2mα) = 1− (2mα)2

2
+

(2mα)4

24
+ (2mα)6 (8)

In the approximation we collect all the term in Equations (7) and (8) up to the second power
of mα. The optical path difference between the incident wavefront and the mth outgoing
wavefront to point P becomes

∆L =

 2mα·y0 −
(

2mθα
n + 2m2α2

n

)
·z0 z0 ∈ [0, d]

2mα·y0 −
(
2mαθ + 2m2α2 )·(z0 +

(
1
n − 1

)
·d
)

z0 ∈ (d, ∞)
(9)

If the amplitude transmission coefficient of the parallel plate surface close to the focal plane
array is t, the amplitude spatial distribution is

E(y0, z0) =
E0

M
∑

m = 0
Rmexp

{
ik
[
2mα·y0 −

(
2mθα

n + 2m2α2

n

)
·z0

]}
z0 ∈ [0, d]

E0
M
∑

m = 0
tRmexp

{
ik
[
2mα·y0 −

(
2mαθ + 2m2α2 )·(z0 + εz·d)

]}
z0 ∈ (d, ∞)

(10)

Among εz = 1
n − 1. Under the paraxial condition, the spatial distribution of amplitude is

E(y0, z0) =


E0

M
∑

m = 0
Rmexp

{
ik
[
2mα·y0 − 2m2α2

n ·z0

]}
z0 ∈ [0, d]

E0
M
∑

m = 0
tRmexp

{
ik
[
2mα·y0 − 2m2α2·(z0 + εz·d)

]}
z0 ∈ (d, ∞)

(11)

According to the characteristic that the amplitude weight decreases in geometric series,
we can select a certain number of effective beams according to the estimation error. When
the strength error is

∣∣∣ err(I)
I

∣∣∣ ≤ ε, the number of effective beams is [18]

M = logR

(
ε(1− R)
2(1 + R)

)
(12)

It can be seen from Equation (11) that in any medium, the lattice period along the
transverse direction is not affected by the refractive index n of the medium. However, along
the longitudinal direction, the lattice period is related to the material’s refractive index,
as shown in Figure 3. In fact, in this case, the distribution position of spatial interference
intensity in the longitudinal direction has an n-fold relationship with the coordinates of
the corresponding position in the air. Suppose there is a focal plane array in a parallel
plate, the relationship between the value of the optimum incidence angle θOpt_P and the
optimum incidence angle θOpt_A when the parallel plate does not exist is satisfied:

θOpt_P = nθOpt_A (13)

when the plane waves of all levels exit from the parallel plate and form the interference
intensity in space, the intensity distribution compared with the absence of parallel plate
phase modulation shifts. Overall, the strength distribution shifts to the right along the
longitudinal direction by a distance of εz·d, and this distance is marked with a red dotted
line in Figure 4. The period of spatial coherence distribution is not affected by the parallel
plate, so the optimum incidence angle θOpt_P is the same as the optimum incidence angle
θOpt_A when the parallel plate does not exist, that is

θOpt_P = θOpt_A (14)
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coordinate transformation based on the point of rotation θ in the formula. In this case, the 
optimal incident angle when the beam passes through the parallel plate and interferes 
behind the parallel plate is equal to the optimal incident angle when the parallel plate 
does not exist. Unlike the symmetrical structure of a single fringe of the Fabry Perot inter-
ferometer, the Fizeau interferometer’s fringe has an asymmetric shape and substructure. 
The reason for fringe distortion is that the structure is unstable, making the interference 
beam move in the direction of increasing plate spacing so that the beam gradually 

Figure 3. Under normal incidence conditions, the longitudinal period of lattice points in different media changes significantly.
The period of longitudinal lattice point (a) in air is 1/n that (b) in the parallel plate. However, there is no difference in the
transverse period between the two cases. (λ = 1610 nm, α = 0.1 mrad, n = 1.5).
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Figure 4. In order to illustrate the reproduction effect of the parallel plate on the spatial interference intensity, the spatial
interference intensity is deliberately displayed in the form of contour lines. (a,b) are the spatial interference light intensity
distribution in the absence of parallel plate modulation and the presence of parallel plate modulation, respectively.

3. Determination of the Optimum Incident Angle

Based on the influence of the thickness of parallel plates on the spatial interference
intensity distribution analyzed in Section 2, it is found that there is an expression of a
coordinate transformation based on the point of rotation θ in the formula. In this case,
the optimal incident angle when the beam passes through the parallel plate and interferes
behind the parallel plate is equal to the optimal incident angle when the parallel plate does
not exist. Unlike the symmetrical structure of a single fringe of the Fabry Perot interfer-
ometer, the Fizeau interferometer’s fringe has an asymmetric shape and substructure. The
reason for fringe distortion is that the structure is unstable, making the interference beam
move in the direction of increasing plate spacing so that the beam gradually dephases [20].
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When α is unchanged, with the increase of y, the sub-peak will gradually appear on one
side of the main peak. During spectral inversion, the intensity of the side lobe will be super-
imposed on the intensity of the main peak of other wavelength interferograms, resulting in
inversion distortion and reducing the accuracy of spectral measurement. This situation
should be avoided in the field of spectral measurement. Observing the phase distribution
formula, when the wedge air layer rotates around the wedge apex o, the fringe pattern
remains unchanged, which is still formed by the interference between the same wavefront.
Different portions of the interference light intensity are introduced into the focal plane by
the change in the incident angle θ. Thus we need to find an incident angle θOpt, so that
the focal plane is just coincident with the localized plane. Under the inclined illumination,
the lattice period is not affected because it is only determined by the wedge α. In this
paper, based on the research theory of LangenBeck, a more accurate method of determining
the optimum entry angle is proposed. Since the natural period of the lattice point in the
y-direction is λ/2α, we select the peak value closest to the wedge apex in the y-direction
as the reference strength. While θ is changing, the intensity at different positions of the
peak can always be introduced into the focal plane. When the intensity is maximum, the
θ is the optimum incident angle we are looking for. The specific approach is taking the
straight line on the rear surface of the wedge-shaped cavity, which is also perpendicular to
the ridge of the wedge-shaped cavity as the reference direction. A position with a phase
difference of π/α from the ridge of the wedge cavity is found in this direction. The sum of
the amplitude vector here is used as the reference value. The amplitude derivative here
must satisfy

dE
dθ =

M
∑

m = 0
Rmsin

[
π
α

(
sin
(
θOpt + 2mα

)
− sinθOpt

)]
·
[(

cos
(
θOpt + 2mα

)
− cosθOpt

)]
= 0

(15)

Due to the complexity of the Equation (13), the solution of the equation can be determined
by the intersection of the function plot on the left side of the equation and the horizontal axis.
Compared with Langenbeck’s method of indirectly determining the optimum incidence
angle by graphing the relationship between amplitude vector and phase, the improved
method proposed here can find the solution of the equation by determining the intersection
point, which can more intuitively and accurately determine the optimum incidence angle.
Figure 5 shows the optimum incident angle obtained by plotting when the reflectivity is 0.5,
0.7, and 0.9 under different wedge angles. The red dot marked in Figure 5 is the optimum
incident angle obtained by plotting when the reflectivity is 0.5, 0.7, and 0.9 under different
wedge angles.

When determining the optimum incident angle, whether different graphing methods
are accurate or not, the process is cumbersome. Kajava et al. tried to obtain the optimum
incidence angle directly by formula method and gave an estimation formula of the optimum
incidence angle.

θOpt =
∑∞

m = 0(2mα)Rm

∑∞
m = 0 Rm ≈ 2αR

1− R
(16)

However, since the estimation formula derived by Kajava is quite different from the value
of the optimum incidence angle obtained by the graphing method, the latter method to
determine the optimum incidence angle is still the mainstream method at present. In order
to solve the problem of insufficient accuracy of the formula method, the left side of the
equation is expanded into a fourth-order term by using Taylor expansion, which can obtain
a more accurate formula θOpt estimator.

θOpt =
α ∑∞

m = 0 m4Rm

∑∞
m = 0 m3Rm (17)
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Formally, the estimation formula derived in this paper is consistent with that derived by
Kajava et al. In essence, both formulas estimate the average direction of the intensity of the
interference wavefront. By expanding(

Rm+4
)(4)

=
(m + 4)!

m!
Rm (18)

(
Rm+3

)(3)
=

(m + 3)!
m!

Rm (19)(
Rm+2

)(2)
=

(m + 2)!
m!

Rm (20)(
Rm+1

)′
= (m + 1)Rm (21)

and iterating into Equation (15), an expression after summation can be obtained

θOpt =
−α
(

R3 + 11R2 + 11R + 1
)

(R3 + 3R2 − 3R− 1)
(22)
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When θ changes, the intensities of the main peak and the sub-peak appearing in the
focal plane also change. Nevertheless, regardless of the value of the incident angle, the total
energy of the light on the focal plane array is constant. In other words, the lower energy of
the main peak is due to the leakage of energy into the sub-peak, increasing the intensity of
the sub-peak. Conversely, if the intensity of the main peak is on the increase, the power
of the sub-peak will decrease. Figure 6 shows the trend of the intensity of the main peak
with the incident angle θ. It can be found that when θ is equal to θOpt, the sum of the
amplitude vector of the main peak will be maximized, and the influence of the sub-peak
will be minimized at this time. This plot verifies the correctness of the optimum incident
angle obtained by our formula method.
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It can be seen that when θ is the optimum incident angle calculated by the formula, the sum of the amplitude vector is the
largest. Since the main peak is the largest here, the intensity of the sub-peak is the smallest or even zero at this time.

As shown in Figure 7, it is the curve of the optimum incident angle obtained by
Langenbeck’s graphing method, Kajava formula method, and the formula method in
this paper under different wedge angles and different reflectivity. It should be noted
here that due to the different number of beams involved in an interference, the average
direction of intensity obtained must not be consistent. Considering this factor, the number
of effective beams in the three methods is unified as M = 100 in the figure. Through
comparison, it is found that under different conditions, the optimum incidence angle
obtained by Langenbeck’s method is in good agreement with the optimum incidence angle
determined by the formula method proposed in this paper. At the same time, there is a
large gap between the value obtained by Kajava’s formula and the optimum incidence
angle obtained by Langenbeck’s method.
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4. Intensity Optimization

According to expression dE
dθ , when the value of reflectivity or wedge angle is relatively

low, the variation trend of the sum of the amplitude vector is insensitive to the change
of θ near the optimum incidence angle. Only when R is relatively large (e.g., R is greater
than 0.9) or wedge angle is relatively large (e.g., α is greater than 0.5 mrad), the difference
of the sum of amplitude vector between oblique incidence and normal incidence can be
clearly seen. In order to verify the effectiveness of the formula proposed in this paper,
Figure 8 is the comparison diagram of the interference intensity before and after correction
when the focal plane array is at z = 0 and the focal plane array is within 10 mm from the
wedge apex. Compared with the direct normal incidence of the beam into the wedge cavity,
the intensity of the sub-peak is significantly reduced, and the intensity of the main peak is
improved when the beam is incident at the optimum incidence angle.

However, when the selected position of y is relatively large, only under the condition
of a slight wedge angle or low value of reflectivity, the beam incident at the optimum
incident angle will have a good correction effect on the interference intensity. Like in
the case of α = 0.1 mrad, a better correction can be obtained at the peak of y = 5007 mm.
However, in the case of high reflectivity (such as R = 0.9 or R = 0.95), when α > 0.5 mrad, the
interference intensity has not been well corrected. Especially when the reflectivity is greater
than 0.9, and the wedge angle is greater than 0.5 mrad, the interference intensity has lost
the characteristics of the periodic distribution. These features can be easily seen in Figure 9.
The reason for the fringe distortion is that the structural instability makes the interference
beam move in the direction of increasing the plate spacing so that the beam gradually
dephases. This dephasing is mainly related to two parameters. High reflectivity and large
wedge angle will aggravate the dephasing of interference intensity in the y-direction. This
dephasing phenomenon is caused by the structure of the Fizeau interferometer itself and
can’t be corrected by changing the incident angle of the beam.



Appl. Sci. 2021, 11, 10678 11 of 13
Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 14 
 

 
Figure 8. When the focal plane array is at the position of Z = 0 and the focal plane array is within 10 mm from the apex of 
the wedge, the interference intensity curve is corrected by using the formula derived in this paper. The blue line represents 
the state before correction, and the red line represents the state after correction. 

However, when the selected position of y is relatively large, only under the condition 
of a slight wedge angle or low value of reflectivity, the beam incident at the optimum 
incident angle will have a good correction effect on the interference intensity. Like in the 
case of α = 0.1 mrad, a better correction can be obtained at the peak of y = 5007 mm. How-
ever, in the case of high reflectivity (such as R = 0.9 or R = 0.95), when α > 0.5 mrad, the 
interference intensity has not been well corrected. Especially when the reflectivity is 
greater than 0.9, and the wedge angle is greater than 0.5 mrad, the interference intensity 
has lost the characteristics of the periodic distribution. These features can be easily seen 
in Figure 9. The reason for the fringe distortion is that the structural instability makes the 
interference beam move in the direction of increasing the plate spacing so that the beam 
gradually dephases. This dephasing is mainly related to two parameters. High reflectivity 
and large wedge angle will aggravate the dephasing of interference intensity in the y-
direction. This dephasing phenomenon is caused by the structure of the Fizeau interfer-
ometer itself and can’t be corrected by changing the incident angle of the beam. 

Figure 8. When the focal plane array is at the position of Z = 0 and the focal plane array is within 10 mm from the apex of
the wedge, the interference intensity curve is corrected by using the formula derived in this paper. The blue line represents
the state before correction, and the red line represents the state after correction.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 14 
 

 
Figure 9. When the selected position of y is relatively large, only under the condition of a small wedge angle or low value 
of reflectivity, the beam incident at the optimum incident angle will have a good correction effect on the interference 
intensity. In the case of higher reflectivity or larger wedge angle, the interference intensity has not been well corrected. 
The blue line represents the state before correction, and the red line represents the state after correction (𝜆 = 1610 nm). 

At present, the design angle of the wedge-shaped cavity is 0.1 mrad, and the thick-
ness of the parallel plate constituting the wedge-shaped cavity is 10 mm, so it is necessary 
to analyze the fringe correction effect under the specific structure. Here we simulate the 
comparison of light intensity before and after correction when the thickness of the parallel 
plate is d = 10 mm, as shown in Figure 10. It is found that when the reflectivity is 0.5, 0.7, 
0.9, and 0.95, respectively, the optimum incidence angle obtained by the formula still has 
a good correction effect on the intensity distribution. 

 
Figure 10. When the thickness of the parallel plate is 10 mm and the detector is placed at z = 10 mm, the intensity is 
compared before and after correction. The blue line represents the state before modification, and the red line represents 
the state after correction. (𝜆 = 1610 nm, 𝛼 = 0.1 mrad). 

Figure 9. When the selected position of y is relatively large, only under the condition of a small wedge angle or low value of
reflectivity, the beam incident at the optimum incident angle will have a good correction effect on the interference intensity.
In the case of higher reflectivity or larger wedge angle, the interference intensity has not been well corrected. The blue line
represents the state before correction, and the red line represents the state after correction (λ = 1610 nm).

At present, the design angle of the wedge-shaped cavity is 0.1 mrad, and the thickness
of the parallel plate constituting the wedge-shaped cavity is 10 mm, so it is necessary to
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analyze the fringe correction effect under the specific structure. Here we simulate the
comparison of light intensity before and after correction when the thickness of the parallel
plate is d = 10 mm, as shown in Figure 10. It is found that when the reflectivity is 0.5, 0.7,
0.9, and 0.95, respectively, the optimum incidence angle obtained by the formula still has a
good correction effect on the intensity distribution.
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Figure 10. When the thickness of the parallel plate is 10 mm and the detector is placed at z = 10 mm,
the intensity is compared before and after correction. The blue line represents the state before
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5. Conclusions

In this paper, the modulation effect of the parallel plate on spatial interference intensity
distribution in the Fizeau interferometer system is analyzed theoretically. It is found that if
the focal plane array is behind the parallel plate, the optimum incidence angle is the same
as that when the parallel plate does not exist. Moreover, based on previous studies, this
paper proposes an improved calculation method of the optimal incidence angle and obtains
a more accurate estimation formula of the optimal incidence angle. Therefore, we no longer
need to use the cumbersome graphing method to determine the optimum incidence angle,
which makes it fast and straightforward to decide on the optimum incidence angle.
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