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Abstract: The outbreak of coronavirus disease (COVID-19) has affected almost all of the countries of
the world, and has had significant social and psychological effects on the population. Nowadays,
social media platforms are being used for emotional self-expression towards current events, including
the COVID-19 pandemic. The study of people’s emotions in social media is vital to understand the
effect of this pandemic on mental health, in order to protect societies. This work aims to investigate
to what extent deep learning models can assist in understanding society’s attitude in social media
toward COVID-19 pandemic. We employ two transformer-based models for fine-grained sentiment
detection of Arabic tweets, considering that more than one emotion can co-exist in the same tweet.
We also show how the textual representation of emojis can boost the performance of sentiment
analysis. In addition, we propose a dynamically weighted loss function (DWLF) to handle the issue
of imbalanced datasets. The proposed approach has been evaluated on two datasets and the attained
results demonstrate that the proposed BERT-based models with emojis replacement and DWLF
technique can improve the sentiment detection of multi-dialect Arabic tweets with an F1-Micro score
of 0.72.

Keywords: BERT; COVID-19 tweets; emotion detection; sentiment analysis; transformers

1. Introduction

Corona virus disease or COVID-19 was first reported by the Chinese public health
authorities in the city of Wuhan in 2019 to be characterized later as a pandemic by the
World Health Organization (WHO). This pandemic affected almost all world countries
with more than 143 million reported cases and over 3 million deaths [1]. Many people
around the world have lost their jobs during this pandemic, or have been forced to study
or work remotely from home.

The study of people’s feelings is vital to investigate the effect of COVID-19 pandemic
on mental health. Although there are numerous studies analyzing the impacts of the pan-
demic on healthcare, medical treatments, and the economy, there has been relatively little
emphasis on studying people’s feelings during this pandemic. It is crucial to understand
the personal level in order to protect societies from distress, anxiety, and mental illness.

Social media has become an inherent part of our daily life as a medium of communi-
cation. It encourages emotional self-expression toward current events including COVID-19
pandemic. Social media platforms, such as Twitter and Facebook, are considered the global
center of big data, with a massive amount of generated data by people who use and spend
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excessive hours on these applications [2]. This data helps in measuring people’s emotions
and opinions toward the COVID-19 pandemic through sentiment analysis systems.

Sentiment analysis or opinion mining is contextual mining of text which identifies
and extracts subjective information from the text. It helps in analysing people’s opinions
and emotions toward entities such as products, individuals, and events. Sentiment analysis
systems aim to identify the polarity expressed in the text [3]. These systems can be classified
based on the identified text polarity into coarse-grained and fine-grained. Coarse-grained
sentiment analysis techniques classify emotions broadly into three polarities: positive,
negative, and neutral. Fine-grained systems deal with more sentiment classes and they can
obtain more precise sentiment polarity such as sad, annoyed, official, and joking [4].

Most of the social media sentiment analysis studies follow a psychological model to
annotate the training data at the finer level such as those proposed by Plutchik et al. [5],
Russell et al. [6], and Ekman [7]. Plutchik’s model [8] is more adopted in natural language
processing (NLP) which considers sentiments as a discrete set of eight basic emotions: joy,
sadness, anger, fear, trust, disgust, anticipation, and surprise. Plutchik model arranges these
emotions such that opposite emotions (e.g., joy-–sadness) appear opposite to each other,
and emotion closer to the center have higher intensity. In addition, Plutchik hypothesized
how basic emotions with varying intensities can be combined to form secondary emotions;
for example, optimism as the combination of anticipation and joy [5]. However, other
models may be followed to annotate the text with different sentiments [9].

Most of the current sentimental analysis studies consider the coarse-grained senti-
ments [8]. However, there has been an increasing interest in more informative sentiment
representation by including different groups of emotional states. These fine-grained sys-
tems are more challenging, especially with the lack of labeled data at the finer level [10].
The feelings of people during the COVID-19 pandemic are more complicated, where several
fine-grained sentiments can be expressed in the text. For example, people may feel sad
and angry because of the rising number of deaths and losing jobs, whereas others may be
optimistic about the updated news of the COVID-19 vaccine. Therefore, fine-grained labels
are needed to better understand the people feelings during COVID-19 pandemic.

In this work, we propose a fine-grained sentiment analyzer for Arabic COVID-19
tweets by targeting 11 sentiments. We fine-tune two versions of the state-of-the-art Bidi-
rectional Encoder Representations from Transformers (BERT), AraBERT and MARBERT,
for our task and compare them with a vanilla deep learning model. We also show the
importance of emojis in reflecting the sentiment of the sentence. In addition, we propose a
dynamically weighted loss function to handle the issue of imbalanced data. The proposed
models have been evaluated on SenWave [9] dataset and the obtained results outperformed
other techniques.

The remainder of this paper is organized as follows: Section 2 reviews most of the
related works dealing with sentiment analysis of COVID-19 tweets. Section 3 describes the
proposed techniques for sentiment analysis of Arabic COVID-19 tweets. The experiments
and the obtained results are discussed in Section 4. Finally, Section 5 concludes the paper
and highlights the contributions of the paper.

2. Literature Review

Sentiment analysis techniques can be classified into two categories: lexicon-based and
machine learning techniques [11].

The lexicon-based approaches detect the emotion from the semantic polarity of words
or phrases in the text [12]. These approaches depend on a predefined list of labeled
instances of words or phrases to train their supervised classifiers [13]. Each instance in this
lexicon will be associated with one or more emotions. For example, words such as “great”
and “wonderful” are words with positive polarity, whereas “bad” and “scary” words
induce negative feeling. The sentiment polarity score of the text will be computed based
on this lexicon [14]. This lexicon can be generated manually or automatically using a few
words as a seed to expand the lexicon lists [3]. In [15–17], the authors utilized pre-defined
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lexicons, such as VADER [18], to assess the polarity score of a given text in accordance with
their positive and negative values. However, creating a lexicon is a time consuming task
that requires preparing large entries covering all sentiment words of a certain language.

Machine learning approaches depend on extracting features from labeled text and map
them to the sentiment polarity of that text. These approaches can be classified into classical
machine learning approaches and deep learning approaches. Classical machine learning
classifiers, such as support vectors machine (SVM), Logistic Regression, and Naïve Bayes,
predict the text’s sentiment by learning from predefined features to capture different aspects
of a given text. Chakraborty et al. [19] used fuzzy inference with VADER sentiment lexicon
to label the data into three classes: positive, negative, and neutral. They employed hyper-
parametric machine learning classifiers (Naïve Bayes, AdaBoost, and Logistic Regression)
to analyze 226,668 English tweets related to COVID-19. The F1-score of their proposed
model yields up to 79%. Similarly, Samuel et al. [20] and Wrycza et al. [21] used classical
machine learning algorithms supported by necessary textual data visualizations to provide
insights into COVID-19 sentiment progression. Samuel et al. [20] proposed a coarse-
grained sentiment analysis for COVID-19 tweets using Naïve Bayes and Logistic Regression.
These machine learning classifiers obtained accuracies of 91% and 75%, respectively, on
a dataset consisting of 140 English labeled tweets. Naïve Bayes classifier is also used
by Wrycza et al. [21] with VADER lexicon for COVID-19 sentiment analysis. Another
interesting work within this category by Sattar et al. [22] investigated the COVID-19
vaccination awareness among the public via sentiment analysis and predictive modeling
(i.e., Machine Learning). Unsupervised lexicon-based approaches were applied to data sets
that contain 1.2 million tweets, by using the publicly available tools TextBlob and VADER,
to get the sentiment of each tweet. Various classification algorithms (e.g., SVM, Random
Forest, and Linear Regression) were applied to build a forecasting model classifier.

Recently, deep learning techniques have achieved a significant success in many do-
mains, including sentiment analysis. Deep learning offers several ways of learning the
text representation in supervised and unsupervised ways with the help of the hierar-
chy of model layers [23]. As can be observed from several review studies [24–27], the
most popular deep learning models used for sentiment analysis are Convolution Neural
Network (CNN) [28], Deep Belief Networks [29], Recurrent Neural Network (which in-
cludes both GRU and LSTM) [30–32], Bi-directional Recurrent Neural Network [33], and
Attention-based networks [9,34].

Imran et al. [35] utilized simple deep learning model (DNN) and LSTM, with different
word embeddings for sentiment analysis of COVID-19 tweets. The proposed models
were trained on two English datasets (i.e., Sentiment140 [36] and Emotional-Tweet [37]) to
classify the COVID-19 related tweets into negative (disgust, anger, fear, sad) or positive
(joy, surprise) sentiments. Pran et al. [38] used CNN with LSTM for classifying the text into
three classes: Analytical, Depressed, and Angry. The proposed technique was evaluated on
a dataset conistsing of 1120 Facebook comments related to COVID-19 in Bangla language
and a F1-score of 0.72 was reported.

Wang et al. [39] analyzed Chinese Weibo posts by fine-tuning the BERT transformer to
classify the sentiment of COVID-19 related posts. A dataset consisting of 120,000 Chinese
Weibo posts was used to train and evaluate this model and a F1-score of 0.75 was reported.
Another study was performed by Luo and Xu [40] to analyze restaurants’ reviews posted
on Yelp.com to help restaurants better understand customers’ needs during the COVID-
19 pandemic. The authors showed that deep learning algorithms, bidirectional LSTM,
and simple Embedding with Average Pooling, outperformed classical machine learning
algorithms in a sentiment prediction on a dataset consisting of 112,412 restaurant reviews.

In a recent study by Kabir and Madria [41], the authors developed two deep learning
models for fine-grained sentiment analysis that were applied to a unique emotion dataset
using COVID-19 tweets for categorizing 10 different emotion labels. The first model
consisted of a custom Q&A RoBERTa head to extract the key phrase, which is primarily
responsible for the corresponding emotion of a tweet. The second model is proposed for
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emotion classification employing BiLSTM with attention layer and auxiliary features input.
Their study shows how negative emotions evolved throughout the pandemic and how
they grew more optimistic over time.

Few approaches have been proposed for sentiment analysis of Arabic COVID-19
tweets [9,42,43]. Two of these approaches employed classical machine learning algorithms to
classify the tweets into positive, negative, and neutral sentiments [42,43]. Aljameel et al. [42]
trained their model on 10,623 tweets labeled manually with positive, negative, and neutral
sentiments and an F1-score of 0.84 was reported using SVM with Bigram term frequency-
inverse document frequency (TF-IDF). Addawood et al. [43] built an Arabic sentiment
lexicon to assign a sentiment value for each tweet in a dataset consisting of 129,391 Arabic
tweets. Then, a SVM classifier is applied to report an accuracy and F1-score of 0.98 and
0.98, respectively.

Yang et al. [9] proposed a multi-label emotion classifier for Arabic COVID-19 tweets
based on AraBERT model [44]. The proposed model is a BERT-based transformer model
trained on the Arabic corpus. The authors reported an F1-Macro score of 0.52 on the
SenWave dataset, which has been proposed in this work. The proposed dataset con-
sists of 10,000 Arabic tweets related to COVID-19 and it is annotated with 11 emotion
classes. Another multi-label emotion detection system in COVID-19 context is proposed by
Mukherjee et al. [45]. The proposed system is used to study the evolution of emotions from
India-specific tweets towards the COVID-19 pandemic. Two attention-based transformers,
RoBERTa and BERT, have been trained on the English version of SenWave dataset and a
F1-Macro score of 0.554 was reported.

A summary of the surveyed sentiment analysis systems in COVID-19 context is shown
in Table 1. As shown in the table, the progress is still slow towards building sentiment
analysis systems for Arabic language. This can be attributed to several challenges such as
the morphological complexity of Arabic language, different dialects, and data availability.
These challenges limit the application of deep learning techniques for Arabic sentiment
analysis, specifically at the finer level.

Table 1. Summary of the surveyed sentiment analysis systems in COVID-19 context (Performance refers to F1-score unless
indicated otherwise).

Sentiments

Paper Language Cg * Fg ** Number of
Sentiments Methods Data Source Data size Performance

Chakraborty et al. [19] English X 3

Naïve Bayes,
SVM,
AdaBoost,
LinearSVC,
Logistic
Regression

Twitter 226,668 0.79

Imran et al. [35] English X 6
DNN, LSTM,
LSTM+
FastText,
LSTM+Glove

Twitter 160,000 0.82

Luo and Xu [40] English X 2

Gradient
boosting,
Random Forest,
Simple
embedding+
average pooling,
BLSTM

Yelp 112,412 0.92

Mukherjee et al. [45] English X 11 BERT,
RoBERTa Twitter 10,000 0.55

Pran et al. [38] Bangla X 3 CNN, LSTM Facebook 1120 0.72

Samuel et al. [20] English X 2 Naïve Bayes,
Logistic
Regression

Twitter 140 Acc. 0.91

Wang et al. [39] Chinese X 3 BERT Weibo 120,000 0.75

Wrycza et al. [21] English X 2 Naïve Bayes Twitter 523,000 -
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Table 1. Cont.

Sentiments

Paper Language Cg * Fg ** Number of
Sentiments Methods Data Source Data size Performance

Yang et al. [9]

English,
Spanish,
French,
Italian,
Arabic,
Chinese

X 11
XLNet, Bert,
AraBERT,
ERNIE

Twitter 10,000 0.52

Addawood et al. [43] Arabic X 3 Naïve Bayes,
SVM Twitter 12,939 0.98

Aljameel et al. [42] Arabic X 3 Naïve Bayes,
SVM, KNN Twitter 10,623 0.84

Kabir and Madria [41] English X 10 RoBERTa,
BiLSTM Twitter 10,000 0.63

Sattar et al. [22] English X 3

SVM, KNN,
Random Forest,
Linear regression,
M5 Tree

Twitter 1.2 million
not labeled NA

* Cg: Coarse-grained, ** Fg: Fine-grained.

3. Methodology

This section describes the proposed models for sentiment analysis of COVID-19 tweets.
The system starts by preprocessing the data to prepare it for sentiment detection. This
stage is followed by representing the input text using word embedding techniques. Then,
three models are used for emotion learning and classification. This stage also involves data
augmentation to handle the imbalanced data problem.

3.1. Preprocessing

Data preprocessing is an essential step for several NLP applications. This step varies
slightly from one NLP application to another based on the application requirements and
goals. The need for data preprocessing increases in morphologically rich languages such
as Arabic and Turkish languages. Arabic text has several characteristics that make it more
challenging for NLP systems such as diacritics and mixture of dialect, modern, and classical
texts. These challenges can be observed obviously in social media texts [46]. Preprocessing
the text before feeding it to machine learning algorithms is important and can improve the
accuracy of these models sharply [47].

Several preprocessing steps have been applied to the Arabic microblogs used to
train and evaluate the proposed models, as shown in Figure 1. These steps involve text
cleaning, normalization, removing diacritics, removing or replacing emojis, tokenization,
and removing stop words. These steps are widely used in Arabic sentiment analysis
and have already shown their efficiency for several NLP tasks [48,49]. To ensure a fair
comparison between the proposed models, the same preprocessing steps were applied for
each model with all datatsets.

The first step of the data preprocessing stage is text cleaning, which includes removing
the URLs, mentions (@username), HTML, line breaks, and extra white spaces. This step
is followed by normalizing Arabic letters to unify the different forms of Arabic letters
such as � , � , �. This step also involves normalizing the repeated characters which is
important to handle the non-standard way of writing some Arabic words in the social
media, such as writing �y�ts�“impossible” word as �yyyyyyy�ts�. Then we expanded
the normalization process to remove diacritics (Tashkeel) and punctuation and normalizing
elongation (Tatweel).
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Figure 1. Preprocessing steps.

After normalizing the Arabic tweets, we proceed with text tokenization step and
stop-words removal. Text tokenization is the process of segmenting the text into tokens to
make it more convenient for producing words vectors. This step is followed by stop-words
removal. Stop-words that do not express any emotion, such as preposition, were removed.
During our experiments, we observed that removing stop-words in static-embedding based
models improves the model performance. However, removing stop-words is not performed
in neural models that rely on contextual embeddings, since these models consider all stop-
words to provide enough context information. In addition, stop-words receive as much
attention as non-stop-words in BERT-based models [50]. Lastly, to study the effect of emojis
in learning process, we removed the emojis for one experiment and replaced them with
their representation in another experiment, as will be discussed in Section 3.2.

3.2. Emojis Replacement

Emojis replacement is an important prepossessing step for social media text. Emojis
have become widespread in social media communications, and are particularly prominent
feature of expressing emotions that are difficult to express textually. For example, consider
the tweets with different emojis shown in Figure 2. We can get from the first tweet that
the user is joking about the situation based on the joking emoji at the end of this sentence,
whereas the second tweet has anger emotion that indicates that the user is unhappy about
the same situation. Thus, in this case, replacing emojis with their equivalent description
could have a significant improvement in extracting the sentiment of the sentence.

Figure 2. Two Arabic tweets with different emojis.

To incorporate the emojis into the proposed deep learning models, we represented
them textually in the input tweets through emojis replacement. We started by selecting the
most commonly used emojis in Arabic tweets (506 emojis) that have a meaning in emotions
expression. Then, we replaced each emoji with its Arabic equivalent and represented it as
a token in the input tweet.

3.3. Word Embeddings

The traditional techniques of words representation ignore the word context that de-
grades the accuracy of sentiment classification systems [51]. Several techniques have been
proposed for word representation, such as N-gram, TF-IDF, and word embeddings [27].
Recently, pre-trained vectors (or embeddings) play a vital role in improving the accuracy
of machine learning models in several problems related to the NLP [52].

Word embeddings are used extensively in NLP to capture the semantic relations
between sentence’s words. Embedding techniques can be classified into static word em-
beddings (e.g., word2vec, Glove) and contextual embeddings (e.g., BERT, ELMo). Static
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word embeddings encode the context of the word into the word vector (embedding), while
contextual embedding considers the sequence of all words in the documents to learn
sequence-level semantics. Therefore, contextual techniques learn different representations
for polysemous words [53]. In this work, we utilized both embedding representations for
Arabic sentiment analysis.

Static word embedding learns a continuous representation for each word, such that
each word is associated with exactly one dense vector. This word representation method
was originally coined by Bengio et al. [54] to build a model that learns a distributed
representation for each word along with the probability function for word sequences.
The classic model of static word embedding consists of one embedding layer that feeds
forward into a neural network that predicts the next word in a sequence. However, it was
Mikolov et al. [55] who brought word embedding to the forefront of deep learning models
for NLP, through the creation of the Word2vec model. In this work, we used the AraVec
word embedding technique to represent the words in Arabic tweets [56]. This method
provides powerful Arabic pre-trained word embedding models following the Word2vec
approach. AraVec has several word embedding models built from three Arabic content
domains (web pages, Wikipedia articles, and Twitter tweets) with two methods, Skip-
Gram and Common Bag Of Words (CBOW). We used in this work the Twitter-skip-gram
model with 300 dimensions (Twt-SG-300) where each word in a tweet is represented as a
300 dimensional dense vector.

We also employed contextual embedding for the sentiment analysis of COVID-19
tweets through pre-trained BERT-based transformers. The main advantage of BERT-based
models is that they train word embedding based on a bidirectional transformer (or auto-
encoder) rather than language model. Bidirectional transformer considers both the previous
and next tokens when predicting the token, in contrast to the N-gram language model,
which considers only the previous n words. Thus, the bidirectional transformers are able to
incorporate contextual information from both directions at the same time. Two versions of
BERT have been used in this work, AraBERT [44] and MARBERT [57]. These embeddings
retrained the BERT transformer on Arabic texts. More details about these two models will
be presented in the following Section.

3.4. Sentiment Analysis Models

Several deep learning models have been proposed in the literature for sentiment
analysis, as discussed in Section 2. However, these models have several limitations such
as ignoring the context of the text and the parallelization problem. The parallelization
problem has been addressed by transformer-based models where the network depends on
self-attention, allowing the model to be trained faster on more data as the implementation
can be parallelized. Furthermore, transformer models (e.g., BERT) have better performance
and speed in many NLP tasks [52]. In this work, we propose two BERT-based language
models for emotion detection of Arabic COVID-19 tweets. These models are employed
with different configurations, as will be discussed in Section 4. To evaluate the performance
of these models, we proposed a baseline model consisting of a CNN model.

3.4.1. Baseline

We started by proposing a CNN model, as a baseline, to detect the sentiment of Arabic
tweets and to be used as a baseline for our experiments. CNN is a special type of feed-
forward neural network originally utilized in the field of computer vision [58]. Afterward,
CNN showed success in NLP tasks, specifically in the classification problems [59], due to
its ability in extracting important features that assist with the classification tasks.

The proposed model consists of 11 layers as shown in Figure 3. Each convolution
layer applies a set of kernels to extract the features from the input word vectors. We used
kernels of size 5 × 5 with the ‘same’ padding and stride of 1 × 1 selected empirically.
The first convolution layer accepts the words’ vector embeddings resulting from the text
representation phase. The input to this layer is n × 300, where n is the number of words
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in the tweet, and 300 is the vector embedding dimension of each word. Each convolution
layer in this model is followed by a nonlinear ReLU activation function. This function takes
an input of a real-valued number and threshold it at zero when it is less than 0. Compared
with other activation functions, such as Tanh and Sigmoid, ReLU is fast to converge and
easier to compute with better performance [60]. In addition, global maximum pooling
layers of size 3 are used to down-sample the obtained features of each convolution layer, as
shown in Figure 3.

To overcome the overfitting problem, we regularized the network by dropping out 30%
of the learned features at the dropout layer. This layer is followed by a fully-connected layer
and a Sigmoid classifier. This classification layer outputs 11 output units that correspond
to the number of the tweets’ emotions that will be predicted by the model. We avoided
using the Softmax function since it forces the total predicted probabilities to sum to one
that violates our objective of predicting multiple classes or no class.

Figure 3. The architecture of the proposed CNN model for sentiment analysis.

3.4.2. BERT-Based Transformers

In this work, we employed AraBERT [44] and MARBERT [57] transformers for emotion
detection of Arabic COVID-19 tweets. The two transformers are inspired by Google’s BERT
architecture, which is re-trained on Arabic texts. The two models use the same architecture
as the BERT transformer, which has 12 attention layers, 12 attention heads, 768 hidden
dimensions, and a 512 maximum sequence length. Table 2 shows a comparison between
AraBERT and MARBERT in terms of data source and training parameters.

Table 2. Comparison between AraBERT and MARBERT transformers.

Model Data Source Vocabulary Size #Tokens #Parameters

AraBERT

Wikipedia,
1.5B words of Arabic corpus,
OSIAN corpus,
Assafir news articles

64K 2.5B 135M

MARBERT Arabic tweets 2.5B 15.6B 163M

AraBERT and MARBERT transformers have been trained on datasets not related to the
domain of COVID-19. Therefore, we fine-tuned these two transformers on datasets related
to COVID-19 context. Figure 4 shows the framework of the proposed model. The system
starts by tokenizing the input tweets, using WordPiece tokenizer [61], to split the word into
tokens compatible with BERT-based models. Then, an input of size 128 tokens is formed
and fed into the BERT-based model, AraBERT or MARBERT, to produce representations
of the words in the tweets via multiple transformer layers. After representing the tweets’
words using AraBERT or MARBERT models, we fed them into the classification model. As
illustrated in Figure 4, only the first head of the final layer, which is corresponding to the
embedding of [CLS] token, is fed into the classifier.

The classification model is a randomly initialized feed-forward layer along with a
Sigmoid function to get the probability distribution over the predicted output classes. The
classifier and the pre-trained model weights are trained jointly during the fine-tuning to
maximize the probability of the correct sentiment. Then, we used adaptive moment estima-
tion (AdamW) [62] for the optimization with a learning rate of 2e-5 selected empirically.
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The AdamW optimizer can be generalized better than the Adam optimizer and the models
trained with AdamW optimizer have a lower training loss compared with the models
trained with Adam [62]. In addition, a binary Cross-Entropy loss function was employed
for the multi-label classification.

Figure 4. Framework of the proposed BERT-based model.

3.5. Data Augmentation

In multi-class and multi-label classification, a balanced dataset has target classes that
are evenly distributed. If one or more classes have overwhelmingly more samples than
another (i.e., there is a skewness towards these classes), this dataset can be considered as an
imbalanced dataset. One of the well-known methods for handling an imbalanced dataset is
to perform oversampling for the minority classes (classes with low samples) or undersampling
for the majority classes (classes with a large number of samples). Although either of these
two approaches balances out the dataset, they do not directly tackle this problem, rather
they may introduce new issues. Oversampling entails duplication of samples associated
with the minority classes. Thus, it could lead to overfitting and slow down the training
process. On the other hand, undersampling the majority classes removes a certain number
of samples, which could lead to the model to be disadvantaged when learning important
concepts that could be learned from the removed samples.

In this work, we used the SenWave dataset [9] to train and evaluate the proposed
models. To our knowledge, the SenWave dataset is the largest available fine-grained labeled
dataset related to COVID-19. The dataset consists of 10,000 tweets available in 2 languages
Arabic and English. In this work, we consider only the Arabic tweets. Each tweet in this
dataset is labeled by 1 or more emotions, from a total of 11 emotions: annoyed, anxious,
denial, empathetic, joking, official, optimistic, pessimistic, sad, surprise, and thankful.

The main issue of SenWave dataset is that it is an imbalanced dataset, as shown
in Figure 5. Each of the anxious, denial, empathetic, optimistic, and sad classes (emotions)
have few tweets compared with other classes. To address this issue, we proposed two
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approaches. The first approach depends on creating new dataset, SenAIT, by merging
the common classes of SemWave and AIT [63] datasets. The second approach is to use a
dynamically weighted loss function (DWLF) that gives more weights for undersampled
classes in the loss function during model training.

Figure 5. Emotions distribution of SenWave and SenAIT datasets.

• SenAIT: This dataset is created by merging the shared classes between SemWave and
AIT datasets. Affect in Tweets (AIT) dataset was created as part of SemEval-2018 Task
1 [63] and it consists of 4380 Arabic tweets not related to COVID-19. Each tweet is
labeled by 1 or more emotions, from a total of 11 emotions: anger, anticipation, disgust,
fear, joy, love, optimistic, pessimistic, sad, surprise, and trust. SenWave and AIT datasets
have four emotions as the common classes: sad, surprise, optimistic, and pessimistic.
Thus, to enrich the SenWave dataset and for a comparative study, a new dataset,
SenAIT, is created. This dataset contains all SenWave’s tweets enriched by tweets from
AIT dataset that are labeled by one or more of the four common classes. The resulting
dataset contains 13,019 tweets with 11 classes and the distribution of these classes are
shown in Figure 5.

• Dynamically weighted loss function (DWLF): Another technique is proposed in this
work to address the issue of imbalanced dataset through a weighted loss function.
This technique involves having different weights for each class in the loss function
based on the number of class’s samples [64]. We assign a higher weight to the loss of
the samples that belong to minor classes. For our multi-label classification task, we
applied the proposed technique on the binary Cross-Entropy loss function that can be
expressed mathematically as:

L(x, y) = {l1, . . . , lN}T (1)

li = −wi[yi.logxi + (1− yi).log(1− xi)] (2)

where xi is the input, yi is the ground truth label, N is the batch size, and wi is the
sample weight that will optimize the contribution of the sample towards the overall
loss. The sample weight is computed using the inverse of number of samples. First,
the class weight wc is computed as follows:

wc =
1

Number of samples in class c
(3)
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Then, each sample weight wi is computed as the average of weights of classes that the
sample belongs to:

wi =
∑m

j=1 wj = 1

m
(4)

where m is the number of classes that the sample belong to.

4. Experiments and Results
4.1. Datasets

Annotated data of Arabic tweets is important to build a system for Arabic sentiment
analysis in the context of COVID-19. To our knowledge, SenWave is the only available
dataset that can be used for emotion detection of Arabic COVID-19 tweets. This dataset
consists of 10,000 tweets collected from 1 March 2020 to 15 May 2020. Each tweet is
labeled by 1 or more emotions, from a total of 11 emotions. However, this dataset is
highly imbalanced and we generated another dataset, SenAIT, by combining the common
classes of SenWave with AIT dataset. These two datasets are used to train and evaluate the
proposed models. Each dataset is divided into 80% for training and 20% for testing. More
information about these datasets and the augmentation techniques used to enrich them
can be found in Section 3.5.

4.2. Evaluation Metrics

Most of the state-of-the-art systems on sentiment analysis use four measuring parame-
ters for performance evaluation: Accuracy, F1 score, Precision, and Recall [27]. However, as
we have a fine-grained sentiment analysis task (multi-label classification), and to handle
imbalanced data, we will consider measuring metrics that deal with multi-label problems.
Therefore, we will evaluate the proposed models using six multi-label performance mea-
sures. These metrics are Multi-label accuracy, Jaccard accuracy, Macro-averaged F1 score,
Micro-averaged F1 score, Label ranking average precision score, and Hamming loss. These
metrics treat the data as a collection of classes and extend a binary metric (e.g., Accuracy,
F1 score, and Precision) to a multi-class by averaging binary metric calculations across the
set of classes [65]. These performance measures are computed as follows:

• Multi-label accuracy (Multi-Acc.):

Multi− Acc. =
1

D ∗m

D

∑
i=1

m

∑
j=1

α(ŷij == yij) (5)

where D is the number of testing samples, m is the number of labels, yij is the ground
truth label, and ŷij is the predicted label.

• Jaccard accuracy (Jac-Acc.):

Jac− Acc. =
1
|D|

D

∑
i=1

Yi
⋂

Ŷi

Yi
⋃

Ŷi
(6)

where D is the number of testing samples, Yi is the ground truth label, and Ŷi is the
predicted label.

• Macro-averaged F1 score (F1-Macro):
F1-Macro = F1 score averaging on each label.

• Micro-averaged F1 score (F1-Micro):
F1-Micro = F1 score averaging on the prediction matrix (global calculation).

• Label ranking average precision score (LRAP):
LRAP = Average over each ground truth label assigned to each sample, of the ratio of
true versus total labels with lower score. The goal of this metric is to assign better rank
to the labels associated to each sample, and then compute whether the percentage of
the higher-ranked labels were true labels.

• Hamming loss (H-Loss):
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H-loss = The fraction of the wrong labels to the total number of labels.

4.3. Results and Discussion

Several experiments have been conducted to evaluate the proposed models on Sen-
Wave and SenAIT datasets. Table 3 shows the results of the proposed models. We compare
the performance of each model (Baseline, AraBERT, and MARBERT) using SenWave dataset.
Then, we evaluate these models using the newly generated dataset, SenAIT. In addition,
we show how emojis replacement and DWLF approaches can improve the performance of
the proposed models.

Table 3. Performance of the proposed models.

Dataset Method Multi-Acc. Jac-Acc. F1-Micro F1-Macro LRAP H-Loss

W
it

ho
ut

D
W

LF

W
it

ho
ut

Em
oj

is

SenWave
Baseline 0.888 0.470 0.456 0.288 0.647 0.104
AraBERT 0.925 0.586 0.629 0.507 0.633 0.075
MARBERT 0.933 0.624 0.662 0.453 0.669 0.067

SenAIT
Baseline 0.886 0.508 0.545 0.384 0.601 0.093
AraBERT 0.931 0.591 0.648 0.484 0.640 0.069
MARBERT 0.933 0.630 0.669 0.483 0.674 0.067

W
it

h
Em

oj
is SenWave

Baseline 0.892 0.476 0.502 0.289 0.655 0.095
AraBERT 0.926 0.601 0.641 0.521 0.633 0.073
MARBERT 0.934 0.633 0.664 0.523 0.676 0.068

SenAIT
Baseline 0.887 0.511 0.552 0.391 0.681 0.984
AraBERT 0.932 0.622 0.663 0.565 0.668 0.067
MARBERT 0.932 0.631 0.692 0.512 0.676 0.066

W
it

h
D

W
LF

W
it

ho
ut

Em
oj

is

SenWave
Baseline 0.886 0.456 0.454 0.354 0.645 0.166
AraBERT 0.925 0.586 0.629 0.507 0.633 0.075
MARBERT 0.929 0.627 0.657 0.519 0.670 0.071

SenAIT
Baseline 0.888 0.460 0.465 0.396 0.657 0.171
AraBERT 0.931 0.591 0.648 0.484 0.640 0.069
MARBERT 0.930 0.632 0.671 0.568 0.673 0.070

W
it

h
Em

oj
is SenWave

Baseline 0.886 0.455 0.461 0.350 0.638 0.212
AraBERT 0.929 0.622 0.658 0.536 0.664 0.071
MARBERT 0.931 0.638 0.665 0.530 0.680 0.069

SenAIT
Baseline 0.887 0.477 0.480 0.400 0.678 0.163
AraBERT 0.936 0.651 0.694 0.632 0.691 0.064
MARBERT 0.932 0.636 0.725 0.704 0.678 0.068

As shown in Table 3, the baseline model performed poorly compared with the
transformer-based models, AraBERT and MARBERT, under all settings. The significant
improvement of these models over the baseline model can be attributed to the contextual
representation of the input tweets learned by AraBERT and MARBERT models from the
large Arabic corpora used to train these models. Thus, the learned vocabulary would be
more representative of Arabic morphemes and sub-word tokens, which would enable the
model to learn a better contextual representation of Arabic words. In addition, we observed
that the baseline model performs better for short tweets (length of 5–10 words), whereas
AraBERT and MARBERT work well for longer tweets since these models are developed to
capture contextual information of long texts.

Although AraBERT and MARBERT models are using the same architecture as the BERT
transformer, MARBERT outperformed AraBERT on both datasets. The improvement in F1-
Micro with MARBERT is between 2.0% and 3.3% compared to AraBERT. This improvement
can be attributed to the fact that MARBERT utilizes massive amounts of user generated
content sourced from Twitter to train the language model. These texts represent social
media text characteristics, including wrong spellings, irregular syntax, abbreviations, etc.,
which is similar to the nature of our training datasets. In addition, these texts represent
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dialectal Arabic and Modern Standard Arabic (MSA). Thus, enabling MARBERT to capture
Dialectal Arabic used with the majority of tweets, whereas AraBERT was trained only
on MSA.

Enriching the minority classes of the SenWave dataset with samples from AIT dataset
improved the performance of the proposed models sharply as can be seen in Table 3.
All models have been trained and evaluated on the SenAIT dataset resulting from this
integration. As shown in the table, the improvement of F1-Micro ranges from around 1.5%
to 8.9% and it can be seen with almost all experiment’s arguments (emojis and DWLF).

Emojis play a significant role in expressing sentiments that cannot be expressed
textually. As shown in Table 3, replacing the emojis with their textual description improved
the performance across all models and datasets. For example, the F1-Micro increased
by a substantial margin, 0.07–5.4%, compared with the performance of the same models
without emojis. The highest improvement of F1-Micro is around 5.4% with tthe MARBERT
model. This indicates that emojis information is complementary to the textual content, and
modeling emojis by their meaning is important for emotion detection.

Although SenAIT helped in improving the performance of the proposed models, this
dataset still has the issue of imbalanced classes, as discussed in Section 3.5. To address this
issue, we proposed the DWLF technique, which gives more weight for the samples of the
minority classes during the model’s training (more information about this technique can
be found in Section 3.5). As shown in Table 3, this technique boosted the performance of
the AraBERT and MARBERT models sharply on both datasets. In addition, the proposed
technique shows a significant improvement in detecting the minority classes (e.g., Denial,
Thankful). This is supported by the confusion matrices of the minority classes before and
after applying this technique. Figure 6 shows the confusion matrices of three minority
classes (Empathetic, Thankful, and Denial) before and after using DWLF with MARBERT
model. As shown in the figure, the model has improved when detecting emotions that
have very limited examples in the training set.

Figure 6. Confusion matrices of three minority classes before (first row) and after (second row)
applying DWLF technique with MARBERT model.

Furthermore, we analyzed the output of the best model, MARBERT, with emojis
replacement and DWLF. The analysis aims to better understand the source of errors for
tweets’ emotions that were incorrectly categorized. Table 4 shows examples of the mis-
classified tweets from the SenWave dataset. The manual inspection of these misclassified
tweets indicates the following possible source of errors:

• Unrelated tweets: It has been noticed that there are many tweets in the dataset that
are not expressing any clear emotion, such as tweets #1, #2, and #3 in Table 4.

• Ambiguous emotions: There are some tweets that appear hard to have an agree-
ment for emotion labeling. For example, tweet #4 could be labeled as “surprise” or
“optimistic”. Similarly, tweet #5 could be labeled as “annoyed” or both “annoyed”
and “sad”.
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• Annotation error: Some tweets have been incorrectly annotated by the human annota-
tors. For example, tweets #6, #7, and #8 of the SenWave dataset are annotated with
unrelated emotions.

Table 4. Misclassified tweets from SenWave dataset.

ID Tweet Actual
(Human Annotation)

Prediction
(Our Method)

1 ��AO�� �lm� :Ahn� ,�n�  w`��d§¤ ��w\f�§ ¾� wn� ¢l�  � ..¢l��  wn�

Soldiers of God.. God has soldiers who protect you and defend you,
including: your good deeds

Empathetic Empathetic,
Thankful

2
?rymR 	¶A�l� �yk� ,,	¶A� rymR �An¡ d�w§ Ty�r`�� T�l�A� :��¥F ©dn�

I have a question: In Arabic there is an absent pronoun, so how does
the absent have a pronoun?

Joking None

3 d�w� �ybW�

Appointment application
Official, Surprice Official

4
�} �AFAyq�� �lW� 
CAy..�§¯  ¤� H�®� ©rtJ� ¨�Ay� ¨� r� �¤� A�¤Cw� 	bs�

Because of Corona, for the first time in my life, I buy clothes online. I hope
the size is right

Surprice Optimistic

5 !!!¨fk� !�lWt� ¨�� �A�AJ³� ry� �� rt�� ¨nq§AS� A� ¢l��¤

I swear that what annoys me more is the rumors spreading! Enough!!!
Annoyed Annoyed, Sad

6  AbSq�� �l� �wl\� �k� ¢§r��� �Ab}

Morning freedom for every oppressed behind bars
Sad Optimistic

7
 �d�� ¨� A�¤Cw� ¨Kf� Th��wm� T�¶A��� �b� Tylm� �lW§ ¨b`K�� dK���

Popular mobilization units launches the process of curbing the pandemic to
confront Corona outbreak in Baghdad

Thankful Official

8 Ahtqyq� Yl� �®�±� rh\� d¶�dK�� dn�

In adversity, morals appear for what they are
Empathetic None

Furthermore, to benchmark the performance of our proposed approach, we compared
the obtained results with another work using the publicly available SenWave dataset.
Table 5 shows a comparison between two of our models with emojis replacement and
DWLF with the other published work. As shown in the table, the proposed models
outperformed the work by Yang et al. [9], which depends on the AraBERT model for
sentiment analysis.

Table 5. Comparison with published work.

Model Multi-Acc. Jac.Acc. F1-Micro F1-Macro LRAP H-Loss

Yang et al. [9] 0.905 0.589 0.630 0.520 0.661 0.111
SenWav+AraBERT 0.929 0.622 0.658 0.536 0.664 0.071
SenWave+MARBERT 0.931 0.638 0.665 0.530 0.680 0.069
SenAIT+AraBERT 0.936 0.651 0.694 0.632 0.691 0.064
SenAIT+MARBERT 0.932 0.636 0.725 0.704 0.678 0.068

5. Conclusions

In this paper, we highlighted the lack of research on sentiment analysis for the Arabic
language, especially at the finer level. This study investigated to what extent accurate
deep learning models can assist in understanding society’s behavior during the COVID-19
pandemic. This paper proposed a multi-label emotion classifier by employing two BERT-
based transformers, AraBERT and MARBERT, with emojis replacement. We also proposed
a DWLF technique to give more weight in the loss function for the samples of the minority
classes. In addition, we have created a new dataset, SenAIT, by merging the common
emotions of SenWave and AIT datasets. A series of experiments have been conducted
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using several preprocessing steps with different word embeddings and architectures. The
proposed models achieved state-of-the-art results on a benchmarked dataset, SenWave. The
best performance was achieved with fine-tuning MARBERT model with emojis replacement
and DWLF. The obtained results show the importance of emojis description for sentiment
analysis and how DWLF can boost the performance of these systems. However, the
proposed model needs to be tested on other datasets to evaluate its generalization. In
addition, the proposed model has not been evaluated on other languages, which need to
be investigated in the future.

As for future work, other models and datasets will be evaluated. In addition, we will
evaluate the model on other languages. Moreover, the impact of morphological analysis of
Arabic text on the sentiment analysis needs to be investigated further.
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