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Abstract: This paper reviewed the weed problems in agriculture and how remote sensing techniques
can detect weeds in rice fields. The comparison of weed detection between traditional practices and
automated detection using remote sensing platforms is discussed. The ideal stage for controlling
weeds in rice fields was highlighted, and the types of weeds usually found in paddy fields were listed.
This paper will discuss weed detection using remote sensing techniques, and algorithms commonly
used to differentiate them from crops are deliberated. However, weed detection in rice fields using
remote sensing platforms is still in its early stages; weed detection in other crops is also discussed.
Results show that machine learning (ML) and deep learning (DL) remote sensing techniques have
successfully produced a high accuracy map for detecting weeds in crops using RS platforms. There-
fore, this technology positively impacts weed management in many aspects, especially in terms of
the economic perspective. The implementation of this technology into agricultural development
could be extended further.

Keywords: invasive plants; precision agriculture; remote sensing; rice farming; site-specific weed management

1. Introduction

It is undoubtful that weeds, also known as invasive plants, have their roles in the
ecosystem. However, their presence in crops such as rice, oil palm, rubber, and other mass
plantations influences productivity, causes significant economic consequences, decreases
land prices, and reduces company profits [1]. Moreover, the current trend shows that
farmers worldwide are strongly dependent on herbicides used to control weeds; other
control measures include cultural, physical, biological, and mechanical methods [2].

A statistic released by the Food and Agriculture Organization of the United Na-
tions (FAO) for the years 1990 to 2019 showed that the Asia continent had used approxi-
mately 805,412 tonnes of herbicides in controlling the presence of weeds in various types
of crops, followed by the Americas (593,619 tonnes), Europe (179,799 tonnes), Oceania
(29,309 tonnes), and Africa (21,117 tonnes) [3]. Thus, much money was spent on herbicides
to control and manage the presence of weeds in crops. However, too much dependence on
herbicides usage to control weeds to maximize yield production has caused herbicide resis-
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tance and reduced the choices of herbicides to use [4,5]. Figure 1 illustrates the herbicides
usage in controlling weeds for each continent in percentage.

Figure 1. The herbicides usage in controlling weeds by continent from 1990 to 2019.

It is necessary to construct systematic and strategic planning to improve the precision
agriculture (PA) sector, especially in weed management, to control and increase yield
production, leading to a better economy for the country and farmers. Therefore, remote
sensing-based techniques were used to construct and optimize weed management. Remote
sensing is a comprehensive framework that monitors and captures earth surface images
without direct contact with it. In PA sectors, the data gathered can be used in various
applications, such as monitoring rice’s morphology [6], yield estimation [7], and mapping
irrigated areas for food security and water resource management [8]. However, even
though remote sensing has been widely used in weed management, it may not be a
permanently adopted by developing countries anytime soon since local farmers still prefer
the traditional practices.

Thus, this paper aims to review and discuss the techniques and algorithms used in remote
sensing to construct systematic and strategic planning to improve precision agriculture in weed
management. As a result, researchers can adapt the knowledge of controlling weed presence
and increasing yield production, especially in developing countries. This study’s focus was
limited to weed detection using a remote sensing platform in the paddy field. However, weed
detection in other crops using remote sensing was also included.

This paper is organized into eight sections. Section 1 briefly explains this study’s
goal in implementing remote sensing techniques into the precision agriculture (PA) sector.
Section 2 explains the strategy used to search through the scientific database for relevant
publications. Meanwhile, Section 3 discusses the importance of rice and what has been
carried out to increase yield. Section 4 highlights the best stage to control weed in paddy,
weed types, and traditional farming practices. Section 5 presents the literature covering
various types of weed detection using remote sensing techniques. Section 6 reviews the
impact of inadequate and good weed management on crops, yield, and economy. Section 7
deliberates the future direction of remote sensing techniques in weed detection. Lastly, in
Section 8, the conclusions are presented.

2. Methodology

Articles were searched and identified from nine bibliographic databases: IEEE, Science
Direct, MDPI, Web of Science, Scopus, Google Scholar, ProQuest, Springer, and Wiley
Online Library. The primary keyword ‘remote sensing’ and its synonyms were paired with
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the secondary keyword ‘weed’ and the third keyword ‘detection’ and its synonyms, with
Boolean operators. These keyword sets were used in each database search. In addition,
a hand search was also run to ensure no related articles were missed. The search was
conducted in the quarter of 2021.

All search results were filtered based on five criteria: (1) the study must use remote
sensing imagery and platform as the primary data input with at least three spectral bands
(red, green, and blue), (2) the study must discuss the application of remote sensing tech-
niques in weed detection, (3) the document must have reported the research conducted,
(4) the included documents have been published up to the quarter of 2021, and (5) the
articles must be in English.

Next, the articles were screened by title and abstract to eliminate articles that did not
meet the stated criteria. Finally, the full text of the remaining articles was carefully reviewed
to decide whether they met the criteria or not. Lastly, details from selected articles were
extracted and compiled into one giant spreadsheet. The details include citation information,
study objective, remote sensing sensor, crop and weed types, approaches and technique
used, accuracy assessment, study’s implications, year of publication, and reference data.

3. The Importance of Rice Productivity

Rice is consumed by around 3.5 billion people worldwide. However, the estimated
demand by 2025 is mind-boggling, as rice consumption would grow higher than the popu-
lation growth in major Asian countries [9]. In general, paddy production had increased
globally up to 12% from 1975 to 2008, and nearly 166 million ha of paddy have been
harvested in the world [10]. However, in 2020, it was reported that China was the leading
country in the world producing paddy (30.5%), followed by India (224.14%), Bangladesh
(7.36%), Indonesia (7.14%), Vietnam (5.53%), and Thailand (4.17%) [11].

Numerous research have been conducted to increase the yield of rice production to
fulfil consumer demand. Masum et al. [12] had found that the Boterswar variety could
help improve the weed-suppressing capacity of rice. The study used five Bangladesh rice
varieties named Boterswar, Goria, Biron, Kartiksail, Hashikolmi, and Holoi, and these
varieties were planted via a non-weed control method. By using Simpson’s diversity
ndex (SDI) to measure the infestation rate of weed species, the relative neighbour effect
(RNE), and relative competitive intensity (RCI), results showed that Boterswar facilitated
the crop–weed interaction compared to the other varieties. This finding will significantly
influence methods to control the presence of weeds in paddy fields.

Meanwhile, Yamori et al. [13] found that, to increase plant productivity among various
crop species, they must improve the photosynthesis rate at the single-leaf level. To achieve
this, they used transgenic rice plants that consist of various amounts of the Rieske FeS
protein in the cytochrome (cyt) b6/f complex at between 10 and 100% of wild-type levels.
As a result, they decreased the electron transport rates through photosystem II, leading to
an increased uptake of carbon dioxide (CO2) and a successfully increased production yield,
up to 40% [14].

Besides improving the photosynthetic activities, improving the irrigation system in
paddy is the best practice to increase yield. In Thailand, they practiced an alternate wetting
and drying (AWD) method [15]. By setting the threshold at 15 cm of water level below the
soil surface for irrigation, this method increased the grain yield by 15% in the wet season
and 7% in the dry season, meanwhile improving water usage by 46% and 77% in the wet
and dry season, respectively, compared to continuously flooding water into the paddy
field. Therefore, the AWD method is a good practice that helps sustain rice production
through water-saving. Lahue et al. [16] also obtained the same result, and in addition, their
study successfully reduced the total arsenic concentration released by rice grain up to 65%.
Meanwhile, Liang et al. [17] managed to reduce the methane emissions into the atmosphere
by up to 77.1%.
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Climate conditions played a significant role. The potential rice yield will be affected
by severe climate conditions due to increased sterility caused by heat and shortening of
the growing season [18]. Van Oort [19] implemented a geographical information system
(GIS) by producing a map of abiotic stresses in Africa using drought, cold, iron toxicity,
and salinity or sodicity information as the input. From the analysis, drought was found as
the most critical variable that contributes to stress, where 33% of rice area was potentially
affected, followed by iron toxicity (12%), and then cold (7%) and salinity/sodicity (2%).
Dossou-Yovo et al. [20] used socio-economic, biophysical, farmer population surveys, and
secondary remote sensing data on soil characteristics and demand for water to determine
drought input parameters in rice-based inland valley production systems. Their study
shows that the average annual standardized precipitation evapotranspiration index and
groundwater availability duration were the most critical input to determine drought
occurrence in their study area.

It is crucial to find solutions to improve and increase rice yield. However, to achieve
rice production sustainably and meet demands, productivity and quality must significantly
improve. Therefore, through participatory approaches, it is critical to foster joint working
between research, extension, local governments, non-governmental organizations (NGO),
and private industry to identify the relevant constraints to high yield, adopt new solutions
and technologies, and make systematic decisions to close rice yield gaps.

4. Controlling Weed in Paddy Fields at Different Growth of Stages

In general, rice growth periods can be identified in three stages. They are the veg-
etative stage, reproductive stage, and maturative or ripening stage [21]. Depending on
agricultural and environmental conditions, the whole cycle takes about 120 to 125 days.
The International Rice Research Institute (IRRI) splits the growth cycle into five stages [22].
A general idea of the growth cycle is presented in Figure 2, with morphology examples.

Figure 2. The growth cycle of a rice plant corresponds to the IRRI scale and sample structure.

Rice is generally a weak competitor with weeds. Therefore, the vegetative stage is
critical in the paddy growth cycle. Successfully controlling weeds at this stage can deliver
a 95% weed-free yield [23]. This is agreed with by Kamath et al. [24] because the effect
of weeds in this stage will be at maximum. However, if we fail to prevent weeds from
spreading in the vegetative stage, they will dominate the area, leading to a lack of sufficient
space, light, and nutrients to grow and develop [25]. As a result, crops will experience
uneven flowering and will not mature uniformly for the scheduled harvest [26,27].
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Once the tillering reaches its maximum number, the reproductive stage will occur,
followed by the maturative or ripening stage. Excess water in the fields is drained, resulting
in a drop in the overall biomass due to lower moisture content. The grain is maturing and
becoming heavier. At this stage, the presence of weeds will not affect the development
of the crop. Nevertheless, we cannot save the yield losses because weeds dominated the
paddy plot and the number of paddy crops that survive the competition is nominal. In
general, weed in paddy can be classified into three types. They are grasses, sedges and
broad leaved weeds [28], and Table 1 shows a compilation of the primary weeds usually
found in paddy fields.

Table 1. Type of weeds commonly found in the paddy field.

Family Name Scientific Name Common Name

Grasses weeds
Poaceae Oriza sativa complex Weedy rice

Leptochloa chinensis (L.) Nees Chinese sprangletop
Chloris barbata Sw. Swollen fingergrass

Echinochloa crus-galli (L.)
Beauv. Barnyardgrass

Echinochloa colana (L.) Link Jungle rice
Ischeamum rugosum Salisb Ribbed murainagrass

Brachiaria mutica (Forsk.) Stapf Para grass, buffalo grass
Cynodon dactylon (L.) Pers. Bermuda grass

Sedge weeds
Cyperaceae Fimbristylis miliacea (L.) Vahl. Fimbry

Cyperus iria Rice flat sedge
Cyperus difformis Small flower umbrella plant
Cyperus rotundus Nut grass, nut sedge

Eleocharis dulcis (Burm.f)
Henschel Chinese water chestnut

Fimbristylis globulosa (Retz.)
Kunth Globe fimbry

Fuirena umbellate Rottb Yefen, tropical umbrella sedge
Scirpus grossus L.f. Tukiu, giant bulrush

Scirpus juncoides Roxb. Club-rush, wood club-rush,
bulrush

Scirpus suspinus L. -

Broad leaved weeds

Butomaceae Limnocharis flava (L.)
Buchenau

Yellow velvet-leaf, sawah
lettuce, sawah flower rush

Pontederiaceae Monochoria vaginalis (Burm.f.)
C.Presl

Pickerel weed, heartshape
false pickerel weed

Eichhornia crassipes (Mart.)
Solms Floating water-hyacinth

Alismataceae Sagittaria guayanensis Kunth Arrowhead, swamp potato

Onagraceae Ludwigia hyssopifolia (G.Don)
Exell

Seedbox, linear leaf water
primrose

Sphenocleaceae Sphenoclea zeylanica Gaertn Goose weed, wedgewort

Convolvulaceae Ipomoea aquatica Forsk
Kangkong, swamp morning
glory, water spinach, swamp

cabbage

The environmental relationship between weed and rice is very complicated and
complex [29]. The weed management system needs improvement to control the spreading
of weeds. The traditional practices that include burning, hand sowing, manual spot
spraying, herbicide pre-emergence or post-emergence application, and repetitive blade
hoeing are not practical anymore. These practices impacted the non-target species and the
ecosystem rather than benefiting production [30].
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The traditional weed sampling for practice-oriented management is too costly, and
this is not a recent concern. Since 2005, Brown and Noble [31] have developed automated
methods for evaluating infestation. Automatic weed sampling provides a way to increase
the amount of data obtained in the field (smaller sampling intervals) at lower overall costs
of 7–13 USD/ha, and sensor technology is used exclusively for the application of herbicides,
resulting in a reduction of herbicide usage of 30–70% [32].

Advanced weed management methods are required to manage weeds effectively.
The process may include targeted and site-specific weed control, selection of weed seeds,
different herbicide application (depending on weed distribution, spatial arrangement
and soil properties), destruction of weed seeds over predation and microbial loss, nano
herbicides, and optical spraying techniques. Advanced vision-guided robotics that can
be adopted for site-specific weed management (SSWM) are transgenic herbicide-resistant
crops, weed control and spraying robots, decision support systems, and pattern recognition
modelling [33]. Implementing these technologies will help prevent unwanted species and
improve existing weed management systems [34].

5. Weed Detection Using Remote Sensing Technique

Remote sensing technology aims to monitor and capture the earth’s information
without making direct contact and destroying it. The utilization of the electromagnetic
spectrum, ranging from visible to microwave for measuring the earth’s properties, is
the main idea behind remote sensing technology. Since the target’s reactions to various
wavelength regions differ, we can exploit them to identify vegetation, water, soil, and
other features [35]. Combining the target’s reaction with the shape, texture, and pattern
information of weeds and crops, we can discriminate them and improve SSWM using
remote sensing algorithms.

The image processing workflow to detect weed in paddies can generally be divided
into five stages: image data collection, pre-processing, feature extraction and selection,
training, image classification and validation [36].

5.1. Image Data Collection

There are multiple platforms available for data gathering for weed detection in
crops, such as digital cameras [37], hand-held spectroradiometers [38], polarization spec-
troscopy [39], and satellites [40]. However, unmanned aerial vehicles (UAV) are the most
popular platforms researchers use to identify weeds in crops, due to their availability,
high-quality data delivery, and ease of handling [41]. Nevertheless, the data collection
differs in the types of sensors attached to UAVs: RGB, multispectral, or hyperspectral.

5.1.1. RGB Sensor

The RGB sensor is the most widely used and widely available commercial camera.
Because of their promise in delivering high-quality images and low-cost operational needs,
their possible applications have been the focus of most research for many years [42,43].
These sensors are increasingly employed in machine learning algorithms for object recogni-
tion, diseases, phenology, and other applications.

These are typical steps to acquire RGB images captured by UAV remote sensing: (1)
pre-flight planning, (2) flight and image acquisition and (3) post-processing and indices
or dataset extrapolation [44]. However, when preparing the images for machine learning
algorithms, the processing steps are different depending on the research’s objective [45–47].
The advantage of using this sensor is that radiometric and atmospheric calibration are
not required, unlike multispectral and hyperspectral images [41]. Therefore, noises from
electromagnetic radiation (EMR) can be ignored.
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5.1.2. Multispectral Sensor

The use of the multispectral sensors has become a trend nowadays because it has more
than three (RGB) bands installed. Compared to RGB sensors, several vegetation indices that
can be investigated are significantly expended. Nevertheless, to obtain accurate indices,
radiometric and atmospheric calibration are compulsory. Moreover, unlike RGB sensors,
the multispectral sensor is unable to deliver a high-quality spectral resolution image. This
drawback can be overcome by using a lower flying height and acceptable percentage of
horizontal and vertical image overlap [48].

In general, the typical steps involved in preparing multispectral images captured by
UAV remote sensing are: (1) radiometric and atmospheric calibration, (2) locating and
avoiding input and output (I/O) errors, missing data, and mission failure, and (3) image
rectification, georeferencing, and stacking [41]. In addition, these sensors are increas-
ingly being employed in machine learning algorithms for site-specific weed management
(SSWM) [40,49,50].

5.1.3. Hyperspectral Sensor

The hyperspectral sensor analyzes a broad spectrum of light, instead of assigning
primary colors (red, green, and blue). These sensors can record hundreds of narrow
radiometric spectral bands from visible to infrared, sometimes up to microwave ranges. Its
ability in providing narrow radiometric spectral bands can detect specific field concerns.
Thus, users can compute narrowband indices, such as the chlorophyll absorption ratio index
(CARI), transformed chlorophyll absorption ratio index (TCARI), triangular vegetation
index (TVI), and photochemical reflectance index (PRI) [51].

Preparing hyperspectral data is more complicated than RGB and multispectral sensors
because its radiometric and atmospheric calibration workflows are more complex. Sen-
sor calibration approaches are generated from the UAV’s hyperspectral platforms, which
use simulated targets to check data quality, correct radiance, and provide high-quality
reflectance information [52]. Therefore, typical steps in acquiring and preparing hyperspec-
tral data captured by UAV remote sensing are: (1) setting up a flight plan, (2) image size
and data storage, and (3) quality assessment [41]. Table 2 summarizes the characteristics of
each sensor alongside its advantages and disadvantages.

Table 2. Characteristic of RGB, multispectral, and hyperspectral sensors.

Sensors/Details RGB Multispectral Hyperspectral

Resolution (Mpx) 16–42 1.2–3.2 0.0025–2.2
Spectral range (nm) 400–700 400–900 300–2500

Spectral bands 3 3–10 40–660
Weight (approx.) (kg) 0.5–1.5 0.18–0.7 0.032–5
Price (approx.) (USD) 950–1780 3560–20,160 47,434–59,293

Advantages

High-quality images
Low-cost operational needs
No need for radiometric and

atmospheric calibration

Have more than three bands
Can generates more

vegetation indices than RGB

Hundreds of narrow radiometric
bands

Can calculate narrowband indices
that can target specific concerns.

Disadvantages

Only have three bands
A limited number of

vegetation indices can be
computed

Radiometric and atmospheric
calibration is compulsory

Unable to deliver a
high-quality resolution image

Expensive, heavier, and more
extensive compared to the other

sensors
Complicated system

Complex radiometric and
atmospheric calibration

Unable to deliver a high-quality
resolution image
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5.2. Image Mosaicking and Calibration

Images acquired from UAVs can be mosaicked using a Pix4D mapper (Pix4D, Prilly,
Switzerland), Agisoft Photoscan Pro (Agisoft LLC, 52 St. Petersburg, Russia), and any
available commercial software to generate qualitative, high-resolution orthomosaic images.
After mosaicking, the process will continue with radiometric calibration and rescale the
intensity of the electromagnetic radiation or digital number (DN) into the percentage
of reflectance values [53]. Researchers have implemented numerous methods, such as
the traditional empirical line correction approach and modern automatic radiometric
calibration using available commercial software.

The empirical line correction approach is an atmospheric correction technique that
provides a straightforward surface reflectance calibration method, if a set of invariants in
the time calibration target measurement is provided. Kelcey and Lucieer [54] implemented
this approach to improve six multispectral UAV data quality bands for quantitative data
analysis. Similarly, Mafanya et al. [55] applied the same method and obtained a reflectance
value of r = 0.997 (p ≤ 0.01) with an overall root mean square of 0.63. Nevertheless, when
dealing with high-quality data, the performance and accuracy must be re-evaluated [56].

In order to improve radiometric calibration accuracy, Xu et al. [57] introduced a spectral
angle correction approach, where their method uses all information in each spectral band.
Compared to the empirical line correction approach, they successfully improved the mean
relative percent error (MRPE) range up to 3% in the visible band and 1% in the near-infrared
(NIR) band. This finding will highly benefit the agriculture remote sensing field.

However, the user can also run the radiometric calibration automatically using avail-
able commercial software such as Agisoft Photoscan Pro (Agisoft LLC, 52 St. Petersburg,
Russia) and Pix4D mapper (Pix4D, Lausanne, Switzerland). The ‘reflectance map’ tool in
Pix4D mapper software is also similar to calibrate ‘calibrate reflectance’ in Agisoft Pho-
toscan Pro that employs multiple image attributes to determine surface reflectance [58].
In addition, these software packages provide ‘color correction/balancing’ functions to de-
velop the image information based on a radiometric block correction algorithm. However,
the algorithms used in these packages only calculate the homogeneity of the neighbouring
image’s histogram homogeneity, not the bidirectional reflectance distribution function
(BRDF) effect in a single image [59].

5.3. Feature Extraction and Selection

Following the spectral calibration, feature extraction can be extracted or computed
for different image processing purposes using various approaches (Table 3). This process
will be helpful for the classification and identification of weeds in paddy fields. Feature
extraction techniques are beneficial, especially in shape and pattern recognition. As features
define the behavior of an image, they show its place in terms of storage taken, classification
efficiency, and, obviously, in time consumption [60]. Therefore, optimizing the feature
subset is required before feeding it into the machine learning (ML) and deep learning
(DL) algorithms for improving the classification process and making it cost and time-
efficient [61].
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Table 3. An example of features extracted or computed for image classification.

Categories Feature Description/Formula Reference

Vegetation indices Normalized vegetation index (NDVI)
Excess green index (ExG)

(NIR − R)/(NIR + R)

2 × G−R−B
R+G+B

[62,63]

Color space transformed features
Hue

Saturation
Value

A gradation or variety of a color
Depth, purity, or shades of the color
Brightness intensity of the color tone

[64]

Wavelet transformed coefficients Wavelet coefficient mean
Wavelet coefficient standard deviation

Mean value calculated for a pixel
using discrete wavelet transformation

Standard deviation calculated for a
pixel using discrete wavelet

transformation

[65]

Principal components (1) Principal component 1
Principal component analysis-derived

component accounting maximum
amount of variance

[66]

5.4. Image Classification and Validation

Many machine learning (ML) and deep learning (ML) algorithms are available for image
classification. However, choosing the best one that fits the research’s objective is crucial, because
different algorithms have different difficulty levels. Therefore, Section 5.6 will further discuss
the application of remote sensing algorithms in detecting weeds in crops.

Accuracy assessment is crucial to validate the quality of the classification output that
best represents the study area. Overall, the assessment can be carried out by comparing the
classified pixels with ground truth pixels using a confusion matrix [67]. The result for weed
classification is presented in terms of producer accuracy and overall accuracy. Producer
accuracy (Equation (1)) is the probability that a pixel in the classification correctly shows
class X. Given the ground truth class is X, producer accuracy can be calculated using

Producer accuracy =
caa

c.a
× 100% (1)

where:

- caa = element at a position ath row and ath column.
- c.a = column sums.

Overall accuracy (Equation (2)) is the total percentage of pixels correctly classified,
and it can be calculated by using

Overall accuracy =
∑U

a=1 caa

Q
× 100% (2)

where:

- Q = total number of pixels.
- U = total number of classes.

The agreement between variables with ground truth data can be represented by using
the kappa coefficient (Equation (3)), and its value can be calculated by using

Kappa coe f f icient, K =
∑U

a=1
caa
Q − ∑U

a=1
ca .ca
Q2

1 − ∑U
a=1

ca .ca
Q2

× 100% (3)

where:

- ca = row sums.

However, some limitations occur when dealing with object-based classification, pri-
marily related to the real-world object recognition’s thematic and geometrical accuracy [68].
Therefore, to address this concern, De Castro et al. [46] designed Weed detection Accuracy
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(WdA), Equation (4). This index analyzes the spatial placement of classified weeds by
using the intersection of shapefiles as a spatial relationship rather than the overall overlap.

WdA (%) =
Area o f Observed Weed objects intersecting Detected Weed Objects

Area o f Observed Weed × 100 (4)

The detection of weeds is crucial for successful site-specific weed management
(SSWM). However, weed detection is still challenging for automatic weed removal [37]. In
addition, low tolerance between the cutting point and the crop location requires an accurate
weed classification against the main crop. Therefore, several works have been conducted
in the context of remote sensing image processing to detect and improve site-specific
management [69–71].

5.5. An Overview of Machine Learning in Agriculture

In recent years, machine learning (ML) has provided a new criterion for agriculture
with big data technology and high-performance computing. The development of ML has
created new opportunities in agriculture operational management to unravel, measure,
and analyze complex data [72]. Generally, the ML framework involves learning from
‘experience’, known as training data, to execute the classification, regression, or clustering
tasks. These training data are usually regarded as a feature described by a set of attributes
or variables. The machine learning model works by predicting the pattern and trend of
future events in crop monitoring and assessment [73]. The ML model’s performance in
a particular task is evaluated by performance metrics improved by experience over time.
As a result, classification techniques have been a prominent research trend in machine
learning for many years, informing various studies. This method seeks to create features
from the input data. Furthermore, it is highly field-specific and requires significant human
effort, leading to deep learning techniques [36]. Figure 3 shows how machine learning and
deep learning techniques work.

Figure 3. The differences in how deep learning and machine learning techniques work.
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Deep learning is a subset of machine learning, but with more complicated image
analysis [36], commonly used in agricultural crop monitoring and management. In terms
of functionality, machine learning and deep learning share the same purpose: to make intu-
itive and intelligent decisions using artificial neural networks stacked layer-wise based on
what it has learned while being trained [74]. However, in terms of developing an accurate
model, machine learning requires a pre-processing stage before the model is developed,
trained, and validated. In contrast, deep learning has a ‘build in’ feature extractor to extract
meaningful features from the raw data. It learns features layer by layer, which means
that it learns low-level features in the first levels and then progresses up the hierarchy to
learn a more abstract representation of the input. [75]. Regardless of which agricultural
domain and purpose, it has taken a directive in various crop monitoring purposes such
as nutrient disorder, weed detection, plant insects, and disease detection. Many studies
on weed detection have utilized deep learning with other remote sensing methods con-
cerning classification or regression performance differences. The outcome has marked high
accuracy, outperforming other commonly used image processing techniques [76].

In deep learning (DL), CNN is the most well-known and widely used algorithm [69,70,77].
The fundamental advantage of CNN over the other DL algorithms is that it automatically
detects significant elements without the need for human assistance [36]. Comparable to the
multi-layer perceptron (MLP), where it consists of three layers known as the input, output, and
hidden layer [78], CNN has many convolution layers before sub-sampling (pooling) layers,
with fully connected (FC) layers as the last layers. An illustration of the CNN framework for
image classification is shown in Figure 4.

Figure 4. An illustration of the CNN framework for image classification.

A CNN model’s input image is structured in three dimensions: height (m), width (m),
and depth (r), where height (m) equals the width (m), and the depth (r) is referred to as
channel number. For example, the depth (r) of the RGB image in Figure 4 equals three
(three bands). The available kernel filters for the convolution layer will be designated by
the letter k (n × n × q). However, n must be less than m, and q must be equal to or less
than r. The dot product between the input and the weights is calculated by the convolution
layer using Equation (5)

hk = f
(

Wk ∗ x + bk
)

(5)

where:

- hk = feature maps in size (m – n – 1).
- Wk = weightage.
- bk = bias.

These groundbreaking CNNs were able to achieve such incredible accuracy, partly
because of their non-linearity. The rectified linear activation function (ReLU) applies the
much-needed nonlinearity to the model. Non-linearity is necessary to produce a non-linear
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decision boundary, so the output cannot be written as a linear combination of the inputs.
If there is no non-linear activation function, the deep CNN architecture will evolve into a
single equivalent convolutional layer, and its performance will hardly be so. The ReLU
activation function is used explicitly as a non-linear activation function, in contrast to other
non-linear functions such as Sigmoid, because it has been observed from experience that
the CNN using ReLU trains faster than the corresponding CNN [79]. Furthermore, the
ReLU activation function is a one-to-one mathematical operation, as shown in Equation (6).

ReLU(x) = max(0, x) (6)

It converts the whole values of the input to positive numbers. Thus, lower computa-
tional load is the main benefit of ReLU over the others. Subsequently, each feature map
in the sub-sampling layers is down-sampled, decreasing network parameters, speeding
up the learning process, and overcoming the problem related to the overfitting issue. This
can be carried out in the pooling layers. The pooling operation (maximum or average)
requires selecting a kernel size p × p (p = kernel size) and another two hyperparameters,
padding and striding, during architecture design. For example, if max-pooling is used, the
operation slides the kernel with the specified stride over the input, while only selecting the
most significant value at each kernel slice from the input to yield a value for the output [80].

Padding is an important parameter when the kernel extends beyond the activation
map. Padding can save data at the boundary of the activation maps, thereby improving
performance, and it can help preserve the size of the input space, allowing architects
to build simpler higher-performance networks, while stride indicates how many pixels
the kernel should be shifted over at a time. The impact that stride has on a CNN is
similar to kernel size. As stride is decreased, more features are learned because more
data are extracted [36]. Finally, the fully connected (FC) layers receive the medium and
low-level features and generate the high-level generalization, representing the last-stage
layers similar to the typical neural network’s technique. In other words, it converts a
three-dimensional layer into a one-dimensional vector to fit the input of a fully connected
layer for classification. Usually, this layer is fitted with a differentiable score function, such
as softmax, to provide classification scores. The fundamental purpose of this function is to
make sure the CNN outputs the sum to one. Thus, softmax operations are helpful to scale
the model output into probabilities [80].

The key benefit of the DL technique is the ability to collect data or generate a data
output using prior information. However, the downside of this strategy is that, when
the training set lacks samples in a class, the decision boundary may be overstrained.
Furthermore, given that it also involves a learning algorithm, DL consumes many data.
Nevertheless, DL requires enormous data to build a well-behaved performance model, and
as the data grow, the well-behaved performance model can be achieved [36].

5.6. The Application of Remote Sensing and Machine Learning Technique into Weed Detection

Choosing remote sensing (RS) and machine learning algorithms for SSWM can improve
precision agriculture (PA). This situation has resulted in integrating remote sensing and
machine learning becoming critical, as the need for RGB, multispectral, and hyperspectral
processing systems has developed. Numerous researchers who tested the RS technique
successfully produced an accurate weed map with promising implications for weed detection
and management. Since the weed management using RS technique application in paddy is
still in its early stage, Table 4 lists more studies on weed detection and mapping in various
crops that apply remote sensing techniques with acceptable accuracy, for further reviews.
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Table 4. Weed detection and mapping in various crops that apply remote sensing techniques.

Sensors Crops Weed Type Technique Accuracy (%) Implications Year Reference

RGB* Carrots: Autumn
King

Grass and
broad-leaved

Auto-associative
neural network >75%

Neural network-based
allows the system to learn
and discriminate between

species without
predefined plant

descriptions

2003 [81]

Hyperspectral
images:

72-waveband
Corn Grass and

broad-leaved

Support vector
machine (SVM) vs

artificial neural
network (ANN)

66–76%
The SVM technique

outperforms the ANN
method

2006 [82]

Multispectral Winter wheat Cruciferous
weeds

Maximum likelihood
classification (MCL) 91.3%

MCL accurately
discriminated weed

patches field-scale and
broad-scale scenarios

2013 [83]

RGB* Rice Various types
Overlapping and

merging the binary
image layers

N/A

RGB images can be used
to validate proper growth

and discover the
irregularities such as

weeds in the paddy field

2013 [84]

Multispectral
and hyperspectral

Cereals and
broad-leaved

crops

Grass and
broad-leaved

General discriminant
analysis (GDA) 87 ± 5.57%

Using GDA, it is feasible
to distinguish between

crops and weeds
2013 [85]

Hyperspectral 61
bands: 400–1000

nm spectral
resolution: 10 nm

Field pea, spring
wheat, canola

Sedge and
broad-leaved

Artificial neural
network (ANN) 94%

ANN successfully
discriminates weeds from

crops
2014 [86]

Hyperspectral Soybean Broad-leaved Random forest (RF) >93.8%
Shortwave infrared: best
spectrum to differentiate
pigweeds from soybean

2016 [38]

RGB* Rice N/A Artificial neural
networks (ANN) 99%

ANN can detect weeds in
paddy fields with

reasonable accuracy, but
50 m above the ground is

insufficient for weeds
similar to paddy

2016 [45]

RGB* Sunflower Broad-leaved Object-based image
analysis (OBIA) >85%

The OBIA procedure
computed multiple data

points, allowing herbicide
requirements for timely

and improved site-specific
post-emergence weed
seedling management

2016 [87]

RGB*,
multispectral Maize Grass Object-based image

analysis (OBIA) 86–92%

Successfully produced
accurate weed map,
reduced spraying

herbicides and costs

2016 [88]

Multispectral Bracken fern Broad-leaved Discriminant analysis
(DA) 87.80%

WolrdView-2 has the
highest overall

classification accuracy
compared to Landsat 8
OLI, but Landsat 8 OLI*

provides valuable
information for long term

continuous monitoring

2017 [40]

Multispectral
camera Cereals Broad-leaved

Supervised Kohonen
network (SKN),

counter-propagation
artificial neural

network (CP-ANN)
and XY-fusion

network

>98%

The results demonstrate
the feasibility of weed

mapping on the
multispectral image using

hierarchical
self-organizing maps

2017 [49]

Multispectral Cereals Broad-leaved Maximum likelihood
classification (MCL) 87.04%

The results prove the
feasibility of weed

mapping using
multispectral imaging

2017 [89]

RGB* Sugarcane Grass
Artificial neural

network (ANN) and
random forest (RF)

91.67%

Even though ANN and RF
achieved nearly identical
accuracy. However, ANN

outperform RF
classification

2017 [90]

RGB* Sugar beet Broad-leaved

Support vector
machine SVM vs
artificial neural
network (ANN)

95.00%

The SVM technique
outperformed the ANN

method in terms of
shape-based weed

detection

2018 [37]
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Table 4. Cont.

Sensors Crops Weed Type Technique Accuracy (%) Implications Year Reference

RGB* Rice Grass and sedge

Pre-trained CNN
with the residual

framework in an FCN
form and transferred

to a dataset by
fine-tuning.

94.45%
The proposed method

produced accurate weed
mapping

2018 [42]

RGB* Rice Grass and sedge
Fully convolutional

neural network
(FCN)

93.5%

A fully convolutional
network (FCN)
outperformed

convolutional neural
network (CNN)

2018 [43]

RGB* Sunflower and
cotton

Grass and
broad-leaved

Object-based image
analysis (OBIA) and
random forest (RF)

Sunflower
(87.9%) and
cotton (84%)

The proposed technique
allowed short processing

time at critical periods,
which is critical for

preventing yield loss

2018 [46]

Multispectral Rice Grass and
broad-leaved

ISODATA
classification and
vegetation indices

(VI)

96.5%
SAVI and GSAVI were the
best inputs and improved

weed classification
2018 [50]

RGB* Spinach, beet,
and bean N/A Convolutional neural

networks (CNN)

Spinach (81%),
beet (93%) and

bean (69%)

The proposed method of
weed detection was

effective in different crop
fields

2018 [69]

RGB* Spinach and
bean N/A Convolutional neural

network (CNN) 94.5% Best option to replace
supervised classification 2018 [70]

RGB* Rice Grass and sedge
Fully convolutional

neural network
(FCN)

>94%

Proposed methods
successfully produced
prescription and weed

maps

2018 [77]

RGB* N/A Yellow flag iris Random forest (RF) 99%
Hybrid image-processing
demonstrated good weed

classification
2018 [91]

Hyperspectral Maize Broad-leaved Random forest (RF)

C. arvensis
(95.9%), Rumex
(70.3%) and C.

arvense (65.9%,)

RF algorithm successfully
discriminated weeds from

crops and combination
with VIs improved the
classification’s accuracy

2018 [92]

RGB* Soybean Grass and
broad-leaved

Joint unsupervised
learning of deep

representations and
image clusters (JULE)
and deep clustering

for unsupervised
learning of visual

features
(DeepCluster)

97%

Semi-automatic data
labelling can reduce the

cost of manual data
labelling and be easily
replicated to different

datasets

2019 [71]

RGB* and
Multispectral Wheat Unwanted crop

Object-based image
analysis (OBIA),

vegetation index (VIs)
87.48%

30m is the best altitude to
detect weed patches

within the crop rows and
between the crop rows in
the wheat field, and VIs
successfully extracted

green channels and
improved weed detection

2019 [93]

RGB* Upland rice Grass and
broad-leaved

Object-based image
analysis (OBIA) 90.4%

Rice and weeds can be
distinguished by

consumer-grade UAV
images using the SLIC-RF

algorithm developed in
this study with acceptable

accuracy

2020 [47]

RGB* Rice Grass and sedge Convolutional neural
network (CNN) 80.2%

A fully convolutional
network (FCN)

outperformed OBIA
classification

2020 [94]

RGB* Barley Broad-leaved Linear regression N/A
Qualitative methods

proved to have
high-quality classification

2020 [95]

RGB* Vineyard Grass
OBIA and combined

decision tree
(DT–OBIA)

84.03–89.82%

Proposed methods enable
winegrowers to apply

site-specific weed control
while maintaining cover
crop-based management

systems and their
vineyards’ benefits.

2020 [96]
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Table 4. Cont.

Sensors Crops Weed Type Technique Accuracy (%) Implications Year Reference

RGB* Cotton Sedge and
broad-leaved

Object-based image
analysis (OBIA) and
random forest (RF)

83.33% (low
density plot),

85.83% (medium
density plot) and

89.16% (high
density plot)

The findings
demonstrated the value of

RGB images for weed
mapping and density

estimation in cotton for
precision weed
management

2020 [97]

Multispectral and
hyperspectral Sorghum Grass and

broadleaved

OBIA with artificial
nearest neighbor
(NN) algorithm

92%

The combination of
OBIA–ANN

demonstrated the
feasibility of weed

mapping in the sorghum
field

2021 [62]

* RGB = red, green, blue; OLI = operational land imager.

Even though numerous platforms for data collection are accessible, a UAV is the
best for identifying weeds in paddy because of its availability, high-quality data delivery,
and convenience. On the other hand, the review discovered that deep learning (DL) is
suitable for classifying grass weeds in paddy and producing high accuracy weed maps.
However, when referring to other crops, it might differ for sedge and broad-leaved weeds.
Nevertheless, this method necessitates a large amount of training data, resulting in vast
agricultural datasets. In the future, to optimize the use of the RS technique, we must
know what types of weeds we are dealing with in the paddy fields to choose the best
technique for our research. Therefore, to classify weeds, a sophisticated method might not
be necessary.

5.6.1. Machine Learning (ML)

Machine learning is a part of artificial intelligence that enables machines to recognize
patterns and judge with little or no human input. Back during the early introduction to
machine learning, Aitkenhead et al. [81] proposed a simple morphological characteristic
measurement of a leaf shape (perimeter2/area) and a self-organizing neural network to dis-
criminate weeds from carrots using a Nikon Digital Camera E900S. Their proposed method
enables the system to learn and differentiate between species with more than 75% accuracy
without predefined plant descriptions. Eddy et al. [86] tested an artificial neural network
(ANN) to classify weeds (wild oats, redroot pigweed) from crops (field pea, spring wheat,
canola) using hyperspectral images. The original data were 61 bands that were reduced to
seven bands using principal component analysis (PCA) and stepwise discriminant analysis.
A total of 94% overall accuracy was obtained from the ANN classification. Yano et al. [90]
also successfully classified weeds from sugarcane using ANN with an overall accuracy of
91.67% with a kappa coefficient of 0.8958.

Barrero et al. [45] investigated the use of artificial neural networks (ANN) to detect
weed plants in rice fields using aerial images. To train the algorithm with a flying height
of 50 m, they used a gray-level co-occurrence matrix (GCLM) with Haralicks descriptor
for texture classification and a normalized difference index (NDI) for color. As a result,
they successfully obtained 99% precision for detecting weed on the test data. However,
the detection level was low for weeds similar to rice crops, because the image resolution
was 50 m above the ground. Later, to evaluate the ANN’s performance, Bakhshipour and
Jafari [37] used a digital camera to detect weeds using shape features with an improved
machine learning algorithm, support vector machine (SVM). Results showed that SVM
outperformed the AAN with an overall accuracy of 95.00%, while 93.33% of weeds were
correctly classified. Meanwhile, for ANN, its overall accuracy was 92.92%, where 92.50%
of weeds were correctly classified.

Doi [84] used ML knowledge to discriminate rice from weeds from paddy fields by
overlapping and merging 13 layers of binary images of red-green-blue and other color
components (cyan, magenta, yellow, black, and white). These color components were
captured using a digital camera (Cyber-shot DSC T-700, Sony) and used as input to specify
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the pixels with target intensity values based on mean ranges with ±3× standard deviation.
The result shows that yellow with 1x standard deviation has the best target intensity values
in discriminating paddy from weeds, with improved ratio values from 0.027 to 0.0015.

Shapira et al. [85] used general discriminant analysis (GDA) to detect grasses and
broad-leaved weeds among cereal and broad-leaved crops. Using spectral relative reflect-
nce values obtained by field spectroscopy as references, total canopy spectral classification
by GDA for specific narrow bands was 95 ± 4.19% for wheat and 94 ± 5.13% for chick-
pea. Meanwhile, for vegetation and environmental monitoring on a new micro-satellite
(VENµS), total canopy spectral classification was 77 ± 8.09% for wheat and 88 ± 6.94% for
chickpea, and for the operative satellite advanced land imager (ALI) it was 78 ± 7.97% for
wheat and 82 ± 8.22% for chickpea. Thus, an overall classification accuracy of 87 ± 5.57%
for >5% vegetation coverage in a wheat field was achieved within the critical timeframe for
weed control, thus providing opportunities for herbicide applications to be implemented.

Meanwhile, Rasmussen and Nielsen [95] developed a yield loss due to weed infesta-
tion model by combined manual image analysis, automated image analysis, image scoring,
field scoring, and weed density data to estimate yield loss by weeds (Cirsium arvense)
in a barley field on UAV images. With a flying height of 25 m above the ground, they
successfully computed the model (Equation (7)) and found that grain moisture increased
directly proportional to weed coverage (Equation (8))

Y = 100·(1 − exp (−0.0017·X) (7)

where:

Y = Percentage of crop yield loss.
X = Percentage of weed coverage.

M = 0.0310·X (8)

where:

M = Proportional percentage increase in grain moisture.
X = Proportional percentage of weed coverage.

Other than artificial neural networks (ANN), support vector machine (SVM), and
simple ML algorithms, other algorithms have been tested to detect and classify weeds
from crops. They are maximum likelihood (ML), random forest (RF), vegetation indices
(VIs), and discriminant analysis (DA) algorithms. De Castro, López-Granado, and Jurado-
Expósito [83] used ML and VIs to classify cruciferous weed patches on a field-scale and
broad-scale. Cruciferous weed patches were accurately discriminated against in both scales.
However, the ML algorithm has a higher accuracy than VIs, 91.3 % and 89.45%. The same
outcome was archived by Tamouridou et al. [89] when they classified Silybum marianum
(L.) in cereal crops.

Fletcher and Reddy [38] explored the potential of a random forest algorithm in clas-
sifying pigweeds in soybean crops using a spectroradiometer (FieldSpec 3, PANalytical
Boulder, Boulder, CO, USA) and WorldView-3 satellite data. One nanometer spectral
data were grouped into sixteen multispectral bands to match them with the WorldView-3
satellite sensor. The accuracy of weed classifications ranged from 93.8% to 100%, with
kappa values ranging from 0.93 to 0.97. The result shows an excellent agreement between
the classes predicted by the models and the ground reference data. They also found that the
most significant variable in separating pigweeds from soybean is the shortwave infrared
(SWIR) band.

Similar to Baron, Hill, and Elmiligi [91] and Gao et al. [92], they used feature selection
to train the random forest (RF) algorithm to classify weeds on different platforms: UAV
RGB and hyperspectral camera, respectively. Their studies showed that the integration of
feature selection with the RF algorithm produced an accurate map. As for Gao et al. [92],
their output showed that for Zea mays, Convolvulus arvensis, Rumex, and Cirsium arvense
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weeds, the optimal random forest model with 30 significant spectral features would achieve
a mean correct classification rate of 1.0, 0.789, 0.691, and 0.752, respectively. Meanwhile,
Matongera et al. [40] tested discriminant analysis (DA) to classify and map invasive plant
bracken fern distribution using Landsat 8 OLI. The performance of the classification output
was compared with high spatial resolution data, WorldView-2 imagery. Worldview-2
classification outperformed Landsat 8 OLI with overall accuracies of 87.80% and 80.08%,
respectively. However, for long term continuous monitoring, Landsat 8 OLI provides
valuable information compared to the WorldView-2 commercial sensor.

A few researchers chose object-based image analysis (OBIA) to classify weeds from crops.
OBIA is an automatic hierarchal image classification algorithm. It allows numerous image
objects to be created and further categorized into user-defined classes [98]. For example, López-
Granados et al. [87] used an RGB (red, green, blue) UAV to monitor early-season weeds in
a sunflower field using object-based image analysis (OBIA). Their experiment was tested at
two different flying heights, 30 m and 60 m, above the surface. They found that both flying
heights give satisfactory outputs, with 2.5% to 5% thresholds and an accuracy higher than
85%. The same result was archived by López-Granados et al. [88], Mateen and Zhu [93], and
Sapkota et al. [97] when they classified weeds from maize, wheat, and cotton, respectively. Their
research helped farmers with rationalization of the herbicide application.

Some of the researchers integrated object-based image analysis (OBIA) with other machine
learning algorithms. OBIA’s final output can be converted into another GIS format [99], making
it flexible to integrate with other algorithms. For example, De Castro et al. [96] successfully
classified Cynodon dactylon (bermudagrass) in a vineyard by combining OBIA with the decision
tree (DT) algorithm. De Castro et al. [46] also managed to produce a weed map of Convolvulus
arvensis L. (bindweed) in a soybean field by combining OBIA with the RF algorithm. Meanwhile,
Che’Ya, Dunwoody, and Gupta [62] successfully generated various types of weed maps in the
sorghum’s field by integrating OBIA with the artificial nearest neighbor (ANN) algorithm.

Kawamura et al. [47] experimented with the OBIA classification method using the
simple linear iterative clustering algorithm–random forest (SLIC–RF). SLIC is a super-
pixel method for extracting input feature details for each subject. They used three-color
spaces (RGB, hue-saturation-brightness (HSV) and transformation function of RGB images
(CIE-L*a*b*)) as the primary input feature and a spatial texture, four VIs (excess green
(ExG), excess red (ExR), green–red vegetation index (GRVI), and color index of vegetation
extraction (CIVE)), and DSM as the secondary data. The HSV-based SLIC–RF outperformed
the other color spaces tested, with an accuracy of 90.4%.

Instead of using an RGB UAV, Stroppiana et al. [50] used UAV multispectral images
for early season weed mapping in rice using ISODATA classification. Their input data are
spectral indices (normalized different vegetation index (NDVI), soil adjusted vegetation
index (SAVI), GSAVI, a simple ratio index related to leaf pigments content and greenness
(RGRI), normalized difference red edge (NDRE), and chlorophyll vegetation index (CVI))
and textural metrics. Weed mapping performance was validated by measuring overall
accuracy (OA), while for weed class, omission errors (OE) and commission errors (CE)
were calculated. The result shows that SAVI and GSAVI gave the best output compared to
other indices, with 96.5% and 94.5% overall accuracy. The final production, classification
map, weed proportion in the percentage map, weed canopy height measured in meters
(m) map, and rice fraction cover map, were successfully produced from SAVI and GSAVI.
Pantazi et al. [49] also chose multispectral UAVs to map weeds in cereals.

5.6.2. Deep Learning (DL)

Deep learning has recently become a machine learning component widely utilized
in agricultural crop monitoring and management. It has taken a directive in many crop
monitoring objectives such as weed detection, nutrient disorder, and disease detection.
Huang et al. [43] utilized the fully convolutional network (FCN) method to map weeds in
rice using unmanned aerial vehicle red-green-blue (UAV-RGB) imagery. Transfer learning
was used to optimize the generalization capacity, and skip architecture was chosen to boost
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prediction accuracy. The result was then compared with the patch-based convolutional
neural networks (CNN) algorithm and the pixel-based CNN method. The findings showed
a proposed FCN method that outperformed others, both in efficiency and efficacy in terms
of accuracy. The overall accuracy of the FCN method was up to 93.5%, and the accuracy
for weed recognition was 88.3%.

Meanwhile, Huang et al. [94] also tested the same algorithm to delineate weeds from
rice in multi-rotor UAV images. Using an RGB-UAV with a flying height of 10 m above
the surface, they compared the object-based image analysis with the fully convolutional
network (FCN). As expected, their finding shows that FCN performs better than OBIA,
with an overall accuracy of 80.2% and 66.6%, respectively, which means that this algorithm
can produce precise weed cover maps for the evaluated UAV-based RGB imagery.

Bah et al. [69] also tested other deep learning algorithms: convolutional neural net-
works (CNNs) on other crops, spinach, beet, and bean using UAV images to classify weeds
in the crops from a 20 m flying height. The method effectively differentiates weeds from
crops with an overall accuracy for beet of 93%, spinach of 81%, and bean of 69%. However,
deep learning alone requires a great deal of training data. It is too time-consuming of a
process to construct large agricultural datasets with pixel-level identifications by an expert.
Therefore, Bah et al. [70] proposed a fully automatic learning method using CNNs with an
unsupervised training dataset collection for weed detection from UAV images. The classifi-
cation started with the identification of inter-row weeds from the automatic detection of
crop rows. Then, training datasets from inter-row weeds were made before performing the
CNNs to detect crop and weed images. Results obtained were compared with supervised
training data, and the difference in accuracy for spinach is 1.5%, and for bean is 6%. The
differences between supervised and unsupervised are narrow. This proposed method can
be the best option, since supervised labelling is expensive and challenging and requires
human expertise.

Dos Santos Ferreira et al. [71] evaluated the unsupervised deep learning performance
to discriminate weeds from soybean in UAV images. They tested two unsupervised deep
clustering algorithms, joint unsupervised learning of deep representations and image clus-
ters (JULE) and deep clustering for unsupervised learning of visual features (DeepCluster),
using two public weed datasets. The first datasets were captured in a soybean plantation in
Brazil, and weeds were distinguished between the grass and broad leaf weed. Meanwhile,
the second dataset consists of 17,509 labelled images of eight common species originating
from Australia. Semi-automatic data labelling in agriculture was used to evaluate the
outputs, and the result showed that this method achieved up to 97% accuracy, reduced 100
times in manual annotations.

This study has used the shape, texture, and pattern of weeds and crops trained and
classified by remote sensing algorithms. However, more research needs to be carried out
to detect and produce an accurate weed coverage map that recognizes weed types: grass,
sedge and broad-leaved in the paddy field. This is because different weeds have different
characteristics that require other variables to identify them. Nevertheless, based on the previous
study, it is not impossible to produce an accurate map that will highly benefit weed management
in the paddy field, especially when dealing with herbicide consumption.

5.7. Advantages of Implementation of Remote Sensing in Weed Detection through PA

The usage of herbicides, also known as agrochemicals, to control weeds in paddy
fields has caused several impacts on the environment and human health [100]. Therefore,
the authorities can consider reducing these inputs to follow an environmentally friendly
rice production practice. A study by Jafari, Othman, and Kuhn [101] showed that a 10%
reduction in agrochemical grants would reduce agrochemical use. However, it dramatically
reduces national welfare and decreases food safety. Nevertheless, we can overcome these
issues by implementing remote sensing SSWM techniques into precision agriculture (PA).

Improving weed management can improve our food security. Numerous remote
sensing platforms are available to monitor weeds, and unmanned aerial vehicles (UAV) are
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among the most popular platforms used these days. The excellent part of a UAV is that
it can fly low and precisely detect the presence of weeds in the paddy plot. Numerous
researchers proved that a UAV could produce an accurate SSWM map with overall accuracy
ranging from 66.6% to 99%, depending on the type of weeds found in the plot [49,89,91,94].

The remote sensing technique can be used to locate weed presence in the paddy plot
by using multiple approaches such as machine learning [62] and deep learning [57,58] or
by combining them both. Previous studies (Table 4) proved that any weeds, grass, sedge,
and broad-leaved weeds in crops could be classified using remote sensing techniques.
Therefore, this technique can be adopted into paddy field practices. These algorithms
were beneficial in detecting weed distribution in the paddy field, with sufficient training
data. The weed location will be recorded, and thus, the farmers will know its location and
estimate the suitable volume of herbicide needed to control the invasive plant in the plot.
Therefore, the over-application of herbicides will not be an issue anymore.

There is no standard method drawn systematically and strategically planned to de-
tect and manage weeds in paddy fields using remote sensing in developing countries.
This study is significant for finding the best approach to classify weeds in a paddy plot.
Using UAV imagery, Huang et al. [42] chose a semantic labelling approach to generate
weed distribution maps in paddy. A residual framework with an ImageNet pre-trained
convolutional neural network (CNN) was adapted and transferred into the dataset by a
fine-tuning process. A fully connected conditional random field (CRF) was adapted to
improve the spatial details. They successfully produced weed distribution maps with an
overall accuracy up to 94.45% and kappa coefficient of 0.9128. The newly generated map
can guide the sprayer UAV to spray the herbicide only at the weed colony. Thus, the usage
of a spraying UAV can minimize the contact between farmers and herbicides and, at the
same time, reduce the impact of agriculture on the environment and human health [102].

Different types of weeds need different treatments. Traditional practices are too time-
consuming and require many human resources, and they are not effective methods to
monitor weed presence. Developing countries’ farmers need this technology to improve
and increase yield production.

6. Impact of Weeds Management on Crops, Yield and Economy

Weeds cause severe yield losses in agriculture [103] and cause significant damage to
the ecosystem and the economy in the territories they enter [104]. For example, a couple of
studies have reported that rice production’s total yield loss due to weed infestation could
be up to 72% [105,106]. This loss happened due to the presence of weeds in crops that
compete in nutrient uptake. In addition, uncontrolled chemical products used to control
weeds cause farmers health issues and negatively affect the climate, killing livestock and
contaminating the air and water [100].

Fertilizer given by the farmers to increase their yield was not 100% absorbed by their
crops. For example, in Cambodia, cultivated agricultural land is 3.7 million hectares, of
which 76% is planted with lowland rice and 24% with upland crops such as soybean,
cassava, vegetables, maize, and sugar cane. At approximately 3 t ha−1, their average rice
paddy yield was about 50%, and another 50% of losses were caused by weed competition,
which is a significant constraint [107]. Due to weeds, Iranian wheat and chickpea yield
losses are more than 25% and 66%, respectively [108].

Weeds are more competitive when moisture is inadequate, and rice seedlings cannot
cope well with weeds. Meanwhile, in China, the presence of such invasive species has
caused them an economic loss of approximately USD 15 billion [109]. In Pakistan, USD
3 billion is needed annually for a weed management program to increase yield [33]. In
England, approximately USD 545 million of gross profit were lost annually, equal to 0.8
million tonnes of yield production, due to the herbicide-resistant weeds [110].

Precision agriculture techniques using high-tech tools can minimize agriculture re-
sources by site-specific application since they can calculate an optimum input to spatial
and temporal requirements, reducing greenhouse gas emissions into the atmosphere. In
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addition, these techniques will positively affect economics and yield productivity with a
lower production cost than traditional practices [111].

Malaysian farmers could expect an additional return of rice yield from 0.3 to 0.6 t ha-1
through proper weed management [112]. Meanwhile, in India, improved weed man-
agement successfully decreased weed infestation in rice fields from very high intensity
(>75%) to a mild (50%) level [113]. Matthews [114] tested herbicide usage using a spray-
ing UAV to demonstrate the impact of technology adaptation into precision farming.
The result showed that the study used approximately 200 L of herbicide per hectare
than the traditional method, which is 1000 L per hectare. Meanwhile, by applying site-
specific treatment maps on a broad scale, Huang et al. [77] successfully saved herbicide
consumption from 58.3% to 70.8%. On the other hand, De Castro, López-Granado and
Jurado-Expósito [83] saved 61.31% for the no-treatment areas and 13.02% for the low-dose
of herbicide practice. The implementation of SSWM into PA proved that it effectively
decreased the herbicide cost, optimized weed control, and avoided unnecessary environ-
mental pollutions [108,109,115,116].

7. Future Direction

Machine learning such as deep learning algorithms should be implemented for ex-
tracting higher abstract levels of weeds and their relation to the seasonal changes of the
paddy for more accurate weed identification. It is challenging to implement remote sensing
techniques into paddy. However, when referring to the previous study, De Castro et al. [96]
successfully classified Cynodon dactylon (bermudagrass) in a vineyard by integrating OBIA
with a decision tree (DT) algorithm. De Castro et al. [46] also managed to produce a weed
map of Convolvulus arvensis L. (bindweed) in a soybean field. Meanwhile, Huang et al. [94]
successfully generated a grass and sedge weed map in a paddy field using a deep learning
technique. This study has similarities in shape, texture, and pattern that machine learning
and deep learning techniques can classify. In addition, the integration of various platforms,
such as ground-based and machine vision technologies, should be considered. Besides,
various yield-determining factors, such as climatic or agronomic, should be considered
during the developmental stages of paddy. By maintaining the vigorous development of
paddy, the existence of weeds can be minimized due to the biological mechanisms of the
crops, which can be used to suppress the growth response of weeds towards the crops
during the competition process.

8. Conclusions

Traditional practices are too time-consuming and require many human resources.
Therefore, adapting automated practices into precision farming (PA) is the best practice to
control weeds. Even though various platforms are available for data gathering, UAVs are
the best for detecting weeds in paddy due to their availability, high-quality data delivery,
and ease of handling. We had complete control over the data collection phase. The review
proved that deep learning could convey high accuracy weed maps. However, this method
requires a certain number of training data, resulting in massive agricultural databases.
Therefore, to decide which algorithm best suits our research, we need to know what types
of weeds we are dealing with by observing their types in paddy fields. It is not necessary
to use a complicated algorithm to perform weed classification. Although some studies
showed that deep learning might not be necessary when dealing with imagery, much
simpler algorithms, such as OBIA, can perform adequate image analysis for detecting
weeds in paddy fields. When comparing crops and weed types, both algorithms, ML and
DL, had successfully generated a high accuracy map ranging from 85% to 99%, depending
on the type of weeds and crops. Thus, we can expect the same accuracy in producing
weed maps in paddy, regardless of the types of weeds present in the field. More research
needs to be carried out, and this review has shown that improved weed management could
optimize the usage of herbicides that should be applied on a site-specific basis. Not only
did it increase yield production, but it also proved that this technology could control the
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spreading of weeds. It also effectively maximizes herbicide usage and decreases the budget
required to purchase them.
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