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Abstract: There has recently been an increasing need for the collection and sharing of microdata
containing information regarding an individual entity. Because microdata typically contain sensi-
tive information on an individual, releasing it directly for public use may violate existing privacy
requirements. Thus, extensive studies have been conducted on privacy-preserving data publishing
(PPDP), which ensures that any microdata released satisfy the privacy policy requirements. Most
existing privacy-preserving data publishing algorithms consider a scenario in which a data publisher,
receiving a request for the release of data containing personal information, anonymizes the data prior
to publishing—a process that is usually conducted offline. However, with the increasing demand for
the sharing of data among various parties, it is more desirable to integrate the data anonymization
functionality into existing systems that are capable of supporting online query processing. Thus, we
developed a novel scheme that is able to efficiently anonymize the query results on the fly, and thus
support efficient online privacy-preserving data publishing. In particular, given a user’s query, the
proposed approach effectively estimates the generalization level of each quasi-identifier attribute,
thereby achieving the k-anonymity property in the query result datasets based on the statistical
information without applying k-anonymity on all actual datasets, which is a costly procedure. The
experiment results show that, through the proposed method, significant gains in processing time can
be achieved.

Keywords: privacy-preserving data publishing; k-anonymity; distributed query processing

1. Introduction

Recently, there has been an increasing need for the collection and sharing of microdata,
which contain information on an individual entity. Microdata are a valuable source of
information in diverse areas. Many different organizations, including healthcare providers,
apply data analysis techniques to large volumes of microdata to extract hidden knowl-
edge with the goal of improving their decision-making capabilities. However, microdata
typically contain sensitive information about an individual, and thus directly releasing
such data for public use may violate existing privacy requirements. To avoid the privacy
problems that occur through the release of microdata for public use, extensive studies have
been conducted in the area of privacy-preserving data publishing (PPDP) [1–4]. These
methods ensure that the microdata released satisfy the privacy requirements, such as k-
anonymity [1,2]. Although such methods differ in the way in which the original mircodata
are transformed into another format that is releasable for public use, they are all based on
the same principle, that is, individuals cannot be uniquely identified in the data released.

Most existing privacy-preserving data publishing algorithms consider a scenario in
which data owners receiving a request for the release of data containing personal informa-
tion anonymize the data before being published, which is conducted offline. However, with
the increasing demand for data sharing among various parties, such an offline data pub-
lishing scenario is insufficient to support the voluminous request of a data release. Instead,
it is more desirable to integrate the data anonymization functionality into existing systems
that are capable of supporting online query processing, such as a database management
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system or data warehouse. For example, as our motivating application, let us consider the
example scenario shown in Figure 1, in which databases are managed by either a database
management system or a data warehouse. Here, a data publisher can submit a normal
SQL query with anonymization parameters to the system. Then, the system returns the
resulting anonymized set to the data publisher who, in turn, releases it for data analytics
purposes to data users. However, thus far, the existing privacy-preserving data publishing
techniques have overlooked this online privacy-preserving data publishing scenario.

Figure 1. System architecture assumed in this paper.

The major challenge in supporting online privacy-preserving data publishing arises
from the efficiency of query processing. Applying data anonymization for query results
during the query processing phase clearly adds significant overhead, thereby resulting in a
degraded query performance. Thus, to address this efficiency challenge, in this study, we
developed a novel scheme that is able to efficiently anonymize the query results on the fly,
and therefore eventually support efficient online privacy-preserving data publishing.

In an online query audition, an aggregate query, such as sum, max or min, posed
over sensitive data is denied if the query result can reveal sensitive information [5–7].
That is, given a sequence of queries that have already been answered to users, the online
query audition denies a new query whenever an answer to the query, along with previous
query results, can reveal private data. Furthermore, it is known that anonymization
methods are vulnerable to attacks of re-identification caused by the release of multiple
anonymous datasets when failing to consider previously released anonymous datasets.
Thus, in the literature, extensive studies have been conducted to support continuous
data publishing using anonymization methods [8–12]. For example, Wang and Fung [9]
studied the problem of sequentially releasing k-anonymous tables with different sets of
attributes of the original table. In addition, Fung et al. [10] addressed the problem of
continuously publishing k-anonymous tables of an original table into which a new set of
records is continuously inserted. Moreover, Xiao and Tao [11] proposed an anonymization
algorithm that supports the continuous publication of microdata in the presence of an
inserted, deleted, and updated set of records. We note that the method proposed in this
paper is a general framework that can be extended along with these existing methods to
support a continuous anonymous table release.

The rest of this paper is structured as follows: In the next section, we present the
related work. In Section 3, we introduce the background, and then formally define the
problem addressed in this paper. In Section 4, we present our algorithm for efficiently
supporting online privacy-preserving data publishing. In Section 5, we experimentally
evaluate our approach using real datasets. Finally, we provide some concluding remarks
in Section 6.

2. Related Work

Extensive studies have been conducted in the area of privacy-preserving data publish-
ing (PPDP). The most popular anonymization algorithm, k-anonymity, was first formulated
in [1]. Various algorithms have been proposed to achieve the k-anonymity requirement.
LeFevre et al. finds full-domain optimal k-anonymous generalizations with a bottom-up
pruning approach [2]. Wang et al. proposed a bottom-up generalization algorithm to find a
minimal k-anonymization for classification [13]. Fung et al. presented the top-down special-
ization scheme in which the specialization process terminates if further specialization on
quasi-identifier attribute values violates the k-anonymity requirement [14]. Mondrian [15]



Appl. Sci. 2021, 11, 10740 3 of 15

is a multidimensional generalization model that anonymizes data by recursively parti-
tioning the space across the dimension. Clustering-based methods have been proposed to
effectively find the k-anonymous table. For example, [16,17] group k similar records into
a cluster and generalize each cluster to achieve k-anonymity. Besides k-anonymity, many
privacy metrics have been proposed in the literature. Machanavajjhala et al. [3] introduced
l-diversity that requires that each equivalence has at least l well represented values of
a sensitive attribute. Li et al. proposed t-closeness that requires that the distribution of
a sensitive attribute in each equivalence class is similar to the distribution of the entire
table [4]. p+-sensitive k-anonymity was proposed to prevent similarity attacks, and thus
to reduce the potential threat for attribute disclosure [18–20]. Kim et al. [21] developed
a delay-free anonymization method to publish electronic health data streams. In [22], a
utility-preserving anonymization method for PPDP, which preserves the utility of health
data by inserting counterfeit records and creating a catalog of the counterfeit records in the
process of data anonymization, was proposed. Khan et al. [23] introduced the θ-sensitive
k-anonymity privacy model, in which the threshold θ determines the diversity level of
an equivalence class, to prevent the sensitive variance attack when publishing electronic
health records. A comprehensive survey of privacy-preserving data publishing can be
found in [24–29].

Differential privacy (DP) [30], which is the strongest scheme for protecting individuals’
privacy in released data, has been extensively studied in diverse areas, including data
mining and medical analysis. DP guarantees that an attacker with arbitrary background
knowledge cannot infer with high confidence whether a particular individual is participat-
ing in the query result (or the published data). DP can be used in two different settings.
The first one is the offline setting where a statistical summary, such as histograms or a set
of synthetic data that mimic the original data, is released for public use [31]. The second
one is the online setting, where the user issues a statistical query to the original database,
and then a perturbed version of the query result is returned to the user [32]. With its strong
privacy guarantees, DP has been used in various application areas and many variants of
DP have been proposed in the literature, such as local differential privacy [33–36] and
geo-indistinguishability [37,38]. DP can be used for publishing location data in a privacy-
preserving manner by using a spatial histogram [39,40]. DP complaint spatial histograms
are constructed by first partitioning a spatial domain into several cells and then adding
carefully calibrated noise to the true count of objects located within the boundaries of each
cell. Unlike anonymization methods, DP is mostly used for the release of aggregated re-
sults, such as histograms or cross tabulations. However, several recent attempts have been
made to apply DP along with an anonymization algorithm to the publishing of microdata.
For example, Lee and Chung [41] proposed a method for releasing the ε-DP version of
an original dataset. The method proposed in [41] uses anonymization methods based on
generalization, suppression, and insertion, along with DP to generate an ε-DP version
of an original dataset. Guo et al. [42] proposed a method based on the combination of
k-anonymity and DP for publishing physiological signals collected by wearable devices.

3. Background and Problem Statement
3.1. Background

The most popular anonymization algorithm, k-anonymity, was formulated in [1].
The k-anonymity algorithm guarantees that, for each record, there are at least k− 1 other
records included in the released data that have the same values for a set of quasi-identifier
attributes (which are defined as special attributes that can be linked with external data
to uniquely identify individual records in the released data), thereby ensuring that every
record in the released data is indistinguishable from at least (k− 1) others, despite a linkage
attack [1,2]. Each record in a dataset is generalized into an indistinguishable group, called
the equivalent class, by replacing the specific values of the quasi-identifier attributes with
more general values. For instance, let us consider the example table in Figure 2a, in which
the attributes, Age and Zip, are quasi-identifier attributes, and the attribute, Disease, is a
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sensitive attribute. Let us further assume that the domain generalization hierarchies of Age
and Zip are defined as in Figure 3. Then, the k-anonymous table in Figure 2b is obtained by
replacing the values of the quasi-identifier attributes, Age and Zip, of each record with more
general values defined in the domain generalization hierarchies. For example, the first
record, 〈14, 3068, Pneumonia〉, in Figure 2a is generalized as 〈10–20, 3060–3070, Pneumonia〉
in Figure 2b, and thus is indistinguishable from the next three records (i.e., RID = 2, 3, 4).

(a) (b)

Figure 2. (a) Original table and (b) k-anonymized table (k = 3).

Many k-anonymity algorithms employ the concept of a generalization lattice to com-
pute an anonymous table. A generalization lattice over attribute domain generalization
hierarchies is constructed using a set of all possible combinations of the generalization
levels of each attribute (Figure 3). Then, an optimal k-anonymized table is computed by
traversing the generalization lattice in a bottom-up manner until the k-anonymity property
is satisfied. See [2] for a more detailed description of the k-anonymity algorithm.

Figure 3. Example domain generalization hierarchies for Age and Zipcode, and the corresponding
generalization lattice.

3.2. Problem Statement

Let us assume the relation R(A1, A2, · · · , Am). Let A = {A1, A2, · · · , Am} be a set of
attributes in R. Let us further assume that Q ∈ A is a set of quasi-identifier attributes and
S ∈ A is a set of sensitive attributes. In this paper, we then focus on a selection query on a
single relation, which can be written as follows:
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SELECT proj_list
FROM R

WHERE pred1 AND pred2 AND · · · AND predl .

Here, we further assume the following:

• proj_list consists of attributes that are in either Q or S,
• the condition in the WHERE clause consists of l conjunctive selection conditions, pred1,

pred2, · · · , predl , and
• each predicate predi can be either an equality condition or a range condition on an

attribute not in proj_list.

In this paper, we consider a scenario in which the results of a query are anonymized
using k-anonymity with generalization, which is the most popular type of scheme.

We assume a distributed system running on a shared nothing architecture in which the
data are horizontally split and stored in multiple nodes. In a shared nothing architecture,
each node has its own private resources, such as memory or disk, and thus does not share
resources with other nodes. In a distributed environment, given a selection query on a
single relation, every slave node executes the query against its own data and sends the
query result to the master node. The master node then aggregates all query results from all
nodes and sends them to the user. In this distributed query processing scenario, none of
the slave nodes can locally anonymize their own query results because the generalization
level of each quasi-identifier attribute used to satisfy the k-anonymity requirement cannot
be determined without combining all of the results from each of the slave nodes. Hence,
the straightforward solution is to first aggregate the results from every slave node and
then globally anonymize the aggregated results at the master node (Figure 4a). However,
considering the large volume of data stored in the system, this global approach is highly
inefficient because the data anonymization is performed solely by the master node. Fur-
thermore, with a global approach, the resources of slave nodes are not utilized during the
anonymization phase.

Figure 4. (a) Global anonymization vs. (b) local anonymization in a distributed environment.

A more promising solution is for each node to locally anonymize its own results and
send the anonymized results to the master node, which combines the anonymized results
from every slave node (Figure 4b). Thus, in this study, we develop a method that enables
the query result at each slave node to be locally anonymized as much as possible, thereby
fully utilizing the resources of the slave nodes during the anonymization phase.
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4. Efficient Support of Online Data Publishing

In this section, we describe the proposed algorithm for efficiently anonymizing the
query results on the fly in a distributed environment to support online privacy-preserving
data publishing. The proposed approach in this paper is summarized as follows (Figure 5):

1. First, given a query, the master node estimates the generalization level of each quasi-
identifier attribute to satisfy the k-anonymity property over the query result datasets,
and then send it to each slave node along with the user query (Section 4.1);

2. Each slave node then executes the user query, anonymizes its own query results
based on the generalization information received from the master node, and sends
the anonymized query results to the master node (Section 4.2);

3. Finally, the master node aggregates the anonymized query results from every slave
node and returns the aggregated results to the user (Section 4.3).

It is well known that k-anonymity algorithms are generally computationally expensive
and complex, making them difficult to perform well with large amounts of data [43]. Thus,
several approximation methods requiring a trade-off between data utility and computing
time have been proposed [44–47]. We also note that the approach proposed in this study is
an approximation-based algorithm in that it trades off between data utility and computing
time. We will now describe each of the above three steps in detail.

Figure 5. Overview of the proposed approach.

4.1. Phase I: Estimating the Generalization Level

In this paper, we estimate the generalization level of each quasi-identifier attribute to
achieve k-anonymity over the query results by leveraging the statistical information, such
as the histograms that are maintained for query optimization purposes in most commercial
database management systems. In general, a histogram on attribute Ai is constructed by
dividing the entire value range of Ai into w disjointed subranges, H(Ai) = {x1, x2, · · · , xw}.
Each subrange, xj, usually stores xs

j , xe
j , f j, and dvj. Here, xs

j and xe
j represent the start

point and the end point of the subrange xj, respectively. Furthermore, f j corresponds to the
number of tuples whose Ai values lie between xs

j and xe
j , and dvj represents the number of

distinct values in xj.
Given a query, we first estimate the size of the query result. Estimating the query result

size, which is known as a cardinality estimation, has been extensively studied over the past
several decades [48–53]. Although there are many complex algorithms that can provide
a very high level of accuracy in a cardinality estimation, our approach uses a solution
based on the assumption of attribute value independence. The cardinality estimation in
many database management systems indeed relies on a method based on an attribute
value independence assumption owing to its simplicity and reasonably good accuracy. For
example, PostgreSQL [54], which is a well-known open-source DBMS, assumes that all
attributes are mutually independent and maintains one-dimensional histograms [53].

Given a histogram H(Ai) = {x1, x2, · · · , xw} and predicate predu involving attribute
Ai, let su be the selectivity ratio associated with predu. The overall distribution of entire
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values of the attribute Ai can be captured by using the histogram H(Ai). Furthermore, we
assume that attribute values in each subrange of H(Ai) are uniformly distributed, which
is a common assumption in modern database systems [53]. Then, the selectivity ratio su
is obtained as follows: For the equality predicate (i.e., σAi=val(R), where val denotes any
integer value located within the range between xs

j and xe
j ), su is defined as:

su =
f j

|R| ×
1

dvj
.

Here, |R| is the number of tuples in the relation R. For the range predicate (i.e.,
σval1≤Ai≤val2(R), where val1 and val2 are any integer values located within the range of xs

j
and xe

j ), su is defined as:

su =
f j

|R| ×
val2 − val1

xe
j − xs

j
.

Note that the above equation considers the case in which val1 and val2 are located
within the same subrange xj. Let assume the case where val1 and val2 are located in different
subranges, xj and xj+k, respectively. In this case, subranges, xj+1, xj+2, · · · , xj+k−1, are fully
covered by the range predicate, while subranges, xj and xj+k, are partially covered. Thus,
in this case, the selectivity ratio su is computed as:

su =

(
f j

|R| ×
xe

j − val1
xe

j − xs
j

)
+

(
j+k−1

∑
c=j+1

fc

|R|

)
+

(
f j+k

|R| ×
val2 − xs

j+k

xe
j+k − xs

j+k

)
.

Given a query having l predicates, pred1, pred2, · · · , predl , let Rres be the correspond-
ing result relation. Then, given selectivity ratios, s1, s2, · · · , sl , computed as explained
previously, the query result size is estimated as:

|Rres| = |R| × s1 × s2 × · · · × sl .

That is, based on the assumption of attribute value independence, the query result
size is computed by the product of all selectivity ratios, s1, s2, · · · , sl .

Once the number of query results is computed, we next estimate the generalization
level to achieve the k-anonymity property over the query results. Given a projection list,
proj_list, of a query, let Qproj = {A′1, A′2, · · · , A′y} be the set of quasi-identifier attributes in
proj_list (where Qproj ⊂ Q). Let us further assume that L(N, E) be a generalization lattice
constructed with the attributes in Qproj, where N and E are the set of nodes and edges,
respectively. The set of possible values for the quasi-identifier attributes in Qproj at the
specific node ni ∈ N is then defined as follows:

EQni = {(v1, v2, · · · , vy) | v1 ∈ VA′1
, v2 ∈ VA′2

, . . . , vy ∈ VA′y}.

Here, VA′t
(1 ≤ t ≤ y) is the set of possible values for the quasi-identifier attribute, A′t,

at node ni. Note that each possible value combination in EQni indeed corresponds to an
equivalence class in the k-anonymity algorithm.

Example 1. Let us consider the example shown in Figure 3, where Qproj = {Age, Zip}. Let n5 be
a node associated with 〈O1, P1〉. The set of possible values for the quasi-identifier attributes, Age
and Zip, at n5 is as follows:

VAge = {10–20, 21–30}, VZip = {3060–3070, 3071–3080}.

Then, EQn5 is computed as follows:

EQn5 = {(10–20, 3060–3070), (10–20, 3071–3080), (21–30, 3060–3070), (21–30, 3071–3087)}.
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Each element in EQn5 corresponds to an equivalence class at the node n5 in the generaliza-
tion lattice.

Given a result relation, Rres, and a node, ni, in a generalization lattice, let Rres[v1, v2, · · · , vy]
be an equivalence class whose values correspond to (v1, v2, · · · , vy) ∈ EQni at node ni. The
size of an equivalence class is then estimated as:

|Rres[v1, v2, · · · , vy]| = |Rres| × s〈A′1=v1〉 × s〈A′2=v2〉 × · · · × s〈A′y=vy〉.

Here, s〈A′t=vt〉 (1 ≤ t ≤ y) is the selectivity ratio associated with the quasi-identifier
attributes A′t and the value vt. Note that s〈A′t=vt〉 is estimated by leveraging a histogram,
H(A′t).

Example 2. Let us continue with the example in Figure 3. |Rres[(10–20, 3071–3080)]| is com-
puted as:

|Rres[10–20, 3071–3080]| = |Rres| × s〈Age=10–20〉 × s〈Zip=3071–3080〉.

Here, s〈Age=10–20〉 corresponds to the selectivity ratio associated with σ10≤Age≤20(R), which
is computed using a histogram, H(Age), as described earlier. Similarly, s〈Zip=3071–3080〉 can be
computed using a histogram H(Zip).

K-anonymity is achieved if each equivalence class contains at least k-tuples. Thus,
given node ni in a generalization lattice, our approach checks whether the equivalence
class having the minimum size satisfies the k-anonymity property as follows:

min
(v1,v2,··· ,vy)∈EQni

|Rres[v1, v2, · · · , vy]| ≥ k.

Thus, our approach traverses each node of a generalization lattice in a bottom-up
manner, such as in [2], until a node that satisfies the above equation is found. Our approach
is similar to the algorithm in [2] in that the generalization lattice is traversed in a bottom-up
manner. However, it should be noted that, unlike the method in [2], our approach estimates
the generalization level of each quasi-identifier attribute for k-anonymity based on the
estimation method presented in this subsection, instead of performing k-anonymity on
actual datasets.

4.2. Phase II: Executing a Query and Anonymizing Local Query Results

Upon receiving the user query from the master node, each slave node executes the
received query over its local data collections and applies anonymization to the query results
according to the generalization information received from the master node. It then returns
the anonymized results to the master node. We note that this phase is executed in parallel
by the salve nodes, which leads to the resources of slave nodes to be fully utilizied during
the anonymization phase.

4.3. Phase III: Aggregating (and Further Anonymizing) Locally Anonymized Results

In the final phase, the master node aggregates the anonymized results from every
slave node. Because the method proposed in this paper estimates the generalization level
of each quasi-identifier attribute based on the histograms, the aggregated results may not
satisfy the k-anonymity requirement when either an under- or overestimation occurs. An
underestimation corresponds to a case in which a node in the generalization lattice, which
is estimated by the algorithm described in Section 4.1, is located before the set of nodes in
the traversing order of the lattice node, where k-anonymity with minimal generalizations
is achieved. Similarly, an overestimation is defined as a case in which an estimated node in
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a generalization lattice is located after the set of nodes in the traversing order of the lattice
node, where k-anonymity with minimal generalizations is satisfied.

For example, in Figure 6a, let us assume that k-anonymity with minimal generaliza-
tions is achieved with the node 〈O0, P2〉, which is highlighted with the red oval. Further-
more, let assume that the generalization lattice is traversed in a bottom-up manner and
nodes in the same label are traversed from left to right. In this example, the nodes 〈O2, P0〉,
which are estimated using the algorithm described in Section 4.1, correspond to an under-
estimation case. On the other hand, the estimated node 〈O2, P1〉 is an overestimation case.

(a) (b)

Figure 6. (a) Example of an underestimation and an overestimation of Phase I, in which we assume
that k-anonymity with minimal generalizations is achieved with the node 〈O0, P2〉, and (b) for the
case of an underestimation, the master node may apply the anonymization process on the actual
aggregated results (blue area), skipping the nodes that were already visited during Phase I (red area).

Hence, after aggregating the anonymized results from every slave node, the master
node needs to check whether k-anonymity is satisfied over the aggregated results. If so, the
aggregated results are returned to the user. However, if k-anonymity is not satisfied owing to
an underestimation of the generalization level of each quasi-identifier attribute, the master
node needs to conduct further anonymization of the aggregated results until k-anonymity
is satisfied. It should be noted that, even in such a situation, the proposed method is more
efficient than the baseline approach (i.e., the global approach shown in Figure 4a), because
the nodes in the generalization lattice that were already visited during the generalization
estimation phase in Section 4.1 can be skipped during the anonymization process of the
master node. For example, consider the underestimation example in Figure 6b, in which the
algorithm described in Section 4.1 estimates that the k-anonymity requirement is satisfied with
the node 〈O2, P0〉, even though in reality it is not. In this case, the master node conducts the
anonymization process on the actual aggregated results, starting from the node 〈O1, P1〉, and
thus skips the nodes that were already visited during Phase I. This anonymization process
continues until k-anonymity is satisfied. In the example in Figure 6b, the anonymization
process stops at the nodes 〈O0, P2〉, where k-anonymity is satisfied.

By contrast, an overestimation causes a loss of information of the released micro-
data because the quasi-identifier attributes are more generalized than necessary. With
the anonymized results received from the slave nodes, the master node cannot detect
whether an overestimation actually occurs, which results in returning more coarse-grained
k-anonymity results to the user. This, in turn, leads to a loss in the data utility of the
released microdata. That is, the algorithm proposed in this paper achieves a high level of
efficiency in terms of applying k-anonymity by trading information loss with efficiency.
However, as described in the experiment section, the proposed approach does not cause a
significant reduction in the information on the released microdata, despite the occurrence
of an overestimation, while achieving a high level of efficiency.

5. Experiment Evaluations

In this section, we describe the experimental evaluation of the performance of the
proposed approach. First, we describe the experimental setup and then discuss the results.
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5.1. Experiment Setup

To evaluate the proposed approach, we used the NPS dataset from the Health Insur-
ance Review and Assessment (HIRA) service in Korea [55]. The National Patients Sample
(NPS) dataset consists of electronic health records of 3% of the Korean people sampled in
2011. We randomly selected 5 M records with seven attributes (Age, Sex, Length of stay
in the hospital, Location, Surgery status, Disease, and Height of patience) from the NPS
dataset. We consider the first five attributes (Age, Sex, Length, Location, Surgery) to belong
to QA, and the disease attribute belonging to S. In the experiments, we focused on the
following range query:

SELECT Age, Sex, Length, Location, Surgery, Disease
FROM R

WHERE minheight ≤ Height AND Height ≤ maxheight.

Here, the values of minheight and maxheight were varied during the experiments. In
addition to reporting the experimental results for the method proposed in this paper (which is
based on local anonymization in a distributed environment), we also report the results for the
k-anonymity algorithm that is based on global anonymization in a distributed environment.

One way to evaluate the performance of the proposed approach is to implement
the proposed scheme on commercial or open source distributed DBMSs and conduct
comprehensive experiments in real application environments. This, however, is out of
scope at this stage of the research. Thus, in this paper, we simulated a distributed query
processing environment as following: we used a cluster with one master node and five
slave nodes for the experiments. Each node has a 3.30 GHz of CPU. 1 Gbps LAN is used
for node communication. The data used in the experiment is horizontally partitioned into
five fragments which are distributedly stored in the five slave nodes. That is, each slave
node has a relation with the same set of attribute (i.e., Age, Sex, Length, Location, Surgery,
Disease, and Height) and records are randomly and evenly distributed among five slave
nodes. Each slave node has its local (standalone) DBMS, MySQL [56], managing local data.
The communication between a master and a slave node is implemented using standard
TCP/IP. Upon receiving a user query, the master node sends it to slave nodes which run
in parallel. Then, each slave node runs the user query against the local data, and returns
query results to the master node. We ran each query five times and the averaged values are
presented in the paper.

5.2. Results and Discussion

Figure 7 shows the execution times for varying the number of query results. During
the experiments, various numbers of query results were obtained by controlling the values
of minheight and maxheight. The key observations, based on Figure 7, can be summarized as
follows: the proposed method (Est_kAnonymity that is based on local anonymization in a
distributed environment) significantly outperforms the original k-anonymity algorithm
(kAnonymity that is based on global anonymization in a distributed environment) in
terms of the execution time. As the number of results increases, the performance gap
between Est_kAnonymity and kAnonymity increases. Figure 7 also shows whether the
generalization level of each quasi-identifier attribute for k-anonymity is correctly estimated
(marked with ‘C’ in the figure), or under- or overestimated (marked with a ‘U’ or ‘O’,
respectively, in the figure) by the estimation method described in Section 4.1. As can be
seen in Figure 7, the underestimation causes a slight increase in the execution time because
the anonymization is applied on the actual query result dataset by the master node.
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Figure 7. The execution times when varying the number of query results.

Figure 8 plots the loss metric (LM) [57] for varying the number of query results. Note
that LM measures the amount of information that is lost due to a generalization of the
quasi-identifier attributes, ranging from zero to one (a lower value is better). The proposed
method, Est_kAnonymity, shows a very similar pattern with kAnonymity in terms of the
LM. As can be seen in Figure 8a, the LM slightly increases with the proposed approach. In
particular, the increases are observed when the generalization level is overestimated. This
is because the overestimation causes the values of the quasi-identifier attributes to be more
generalized than needed, which results in the increased LM. However, the underestimation
does not lead to an increase in the LM, the reason for which is that, in the case of an
underestimation, the values of the quasi-identifier attributes are less generalized, and
thus the master node applies further anonymization on the actual aggregated results until
k-anonymity is satisfied, which corresponds to Phase III in Section 4.3.

(a) (b)

Figure 8. (a) LM when varying the number of query results, and (b) comparison of LM between kAnonymity and
Est_kAnonymity.

To further compare the LM between kAnonymity and Est_kAnonymity, we plot the
LM results in Figure 8b, where the x-axis represents the LM quantity for kAnonymity and
the y-axis represents the LM quantity for Est_kAnonymity. Here, the red circles correspond
to the overestimation cases, whereas the blue circles represent either the underestimation or
corrected estimation cases. As can be seen in the figure, in most cases, the circles are located
on the dotted diagonal line, which indicates that there is no loss in data utility with the
proposed approach. Even under the occurrence of an overestimation, it is observed that the
red circles are closely located on the diagonal line, indicating that the proposed approach
does not cause a significant reduction in the information of the released microdata.
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Figure 9 shows (a) the execution times and (b) loss metric (LM) for varying values
of k. During the experiments, the values of k varied among 3, 5, 9, and 13, and the val-
ues of minheight and maxheight were set such that the number of query results was about
2.3 M. Key observations based on Figure 9 can be summarized as follows: as expected,
the proposed method (Est_kAnonymity) significantly outperforms the original k-anonymity
algorithm (kAnonymity) in terms of the execution time. The performance gaps between
Est_kAnonymity and kAnonymity increase as the value of k increases. The figure also shows
whether the generalization level for the k-anonymity is correctly estimated (i.e., ‘C’, ‘U’, and
‘O’). Once again, as shown in Figure 9b, the LM is slightly increased with the proposed
approach, particularly when the generalization level is overestimated (i.e., k = 3, 5).

0

100

200

300

400

500

3 5 9 13

E
xe
cu
ti
o
n
T
im

e
(s
e
c)

K

Execution Time vs. K

kAnonymity Est_kAnonymity

O O C

U

0

0.2

0.4

0.6

0.8

1

3 5 9 13

LM

K

LM vs. K

kAnonymity Est_kAnonymity

O
O

C U

(a) (b)

Figure 9. (a) The execution times and (b) loss metric (LM) when varying k.

Finally, Figure 10 shows the way that the execution time (shown in Figure 9a) is split
among three phases: (1) estimating the generalization level (Phase I); (2) executing a query
and anonymizing query results (Phase II); and (3) aggregating (and further anonymizing)
locally anonymized query results (Phase III). As can be seen in the figure, Phase III, which
corresponds to aggregating (and further anonymizing) locally anonymized query results,
has been identified as a major contributor to the execution time for all the cases. Especially,
a significant increase in the execution of the Phase III is observed, when the generalization
level is underestimated (i.e., k = 13). This is because, in the case of an underestimation,
the master node should perform further anonymization on the aggregated results until
the k-anonymity is satisfied, which causes a significant increase in the execution time of
the Phase III. Note that Phases I and III are applied by the master node, whereas Phase II
is executed by each slave node. Thus, the distributed nature of the presented algorithm
affects the execution time of Phase II. That is, if more slave nodes are used, the execution
time of Phase 2 will be reduced.

The experimental results in this section verify that, with the proposed method, sig-
nificant processing time gains can be achieved without a significant reduction in the
information on the released mircrodata.
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Figure 10. The way that the execution time is split among three phases when varying k.

6. Conclusions

Most existing privacy-preserving data publishing algorithms consider an offline data
publishing scenario in which the data publisher first anonymizes the data in an offline man-
ner, and then releases the anonymized data for public use. However, with the increasing
demand for the sharing of microdata among various parties, an offline privacy-preserving
data publishing scenario is insufficient to support the voluminous request for a release of
data. Instead, it is more desirable to integrate the data anonymization functionality into
existing systems that are capable of supporting online query processing. In this paper, with
the aim of supporting efficient online privacy-preserving data publishing, we presented a
novel scheme that is able to efficiently anonymize the query results on the fly. In particular,
given a user’s query, the proposed approach effectively estimates the generalization level
of each attribute for achieving the k-anonymity property in the query result datasets based
on the statistical information. The proposed algorithm achieves a high level of efficiency
in applying k-anonymity by effectively sacrificing the information loss of the released
microdata. The experimental results when applying a real dataset show that significant
processing time gains can be achieved with the proposed method, while avoiding a sig-
nificant reduction of information on the released mircrodata. Future work will include an
investigation into the various types of queries containing complex operations, such as a
join or aggregation.
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