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Abstract: One of the purposes of earthquake engineering is to mitigate the damages in buildings and
infrastructures and, therefore, reduce the impact of earthquakes on society. Seismic ground response
analysis refers to the process of evaluating the ground surface motions based on the bedrock motion.
On the other hand, deep learning techniques have been developing fast, and they are establishing
their application in the civil engineering field. This study proposes two convolutional neural network
(CNN) models to estimate the seismic response of the surface based on the seismic motion measured
at 100 m level beneath the surface, and selected the one which outperforms the other as the main
model. The performances of the main model are compared with those of a physical software
SHAKE2000. Twelve sites that include 100 earthquake datasets, whose moment magnitude is higher
than 6 and PGA is higher than 0.1 g, were selected. In addition, the corresponding earthquake
datasets are used for the CNN model. Whereas the conventional software overestimated the values
of the amplitudes for most of the sites, the proposed CNN model predicts fairly well both the values
of the amplitudes and the natural periods where responses amplify the most with few exceptions.
The proposed model especially outperforms the conventional software when the natural periods
range from 0.01 to 0.3 s. For specific sites, the average mean squared errors of the proposed model
are even dozens of times lower than those of the conventional physical software.

Keywords: earthquake; seismic ground response analysis; convolutional neural networks; physical
analysis software; acceleration response spectrum

1. Introduction

One of the main purposes of modern earthquake engineering is to mitigate damage in
buildings and infrastructure and, therefore, reduce the impact of earthquakes on society [1].
When an earthquake occurs at fault, the earthquake waves propagate from the source
to other sites. The seismic waves travel through rocks over most of their trip from the
source to the ground surface, and they finally reach the surface through the soil. As the soil
deposits tend to act as filters to seismic waves by amplifying motion at certain frequencies
and attenuating it at others, characteristics of the soil mainly influence the nature of shaking
at the ground surface, which is called the site effect [2,3]. Evaluating the local site effect
on ground shaking is an essential part of earthquake-resistant design [4]. Seismic ground
response analysis refers to the process of evaluating the ground surface motions based on
the bedrock motion to consider the local site effect [5]. One-dimensional seismic ground
response analyses with wave equations have been widely performed in practices [6].

Since Adeli and Yeh (1989) published the first article on applications of neural net-
works to structural design [7], a large number of research have been conducted on civil
engineering applications of neural networks. In particular, convolutional neural net-
works (CNN), a class of artificial neural networks commonly applied to analyze visual
imagery, can extract features from raw data [8]. Perol et al. (2018) detected earthquake
occurrences and locations of epicenters in a predefined area with seismic waveforms
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recorded on a seismic station using CNN [9]. Ross et al. (2018) trained the CNN model
on the vast data archives of the Southern California Seismic Network to detect seis-
mic body-wave phases [10]. Mousavi et al. (2019) introduced the CNN-Recurrent neu-
ral networks Earthquake detector (CRED), a combination of convolutional layers and
bi-directional long-short-term memory units in a residual structure [11]. Wu and Jahan-
shahi (2019) proposed a CNN-based approach to evaluate the dynamic response of a
linear single-degree-of-freedom (SDOF) system, a nonlinear SDOF system, and a full-scale,
three-story, multi-degree-of-freedom (MDOF) steel frame [12]. Harirchian et al. (2021)
presented a review on the application of soft computing techniques for the rapid visual
safety evaluation and damage classification of an existing building [13]. Li et al. (2021)
utilized CNN to tune the first approximation to predict the maximum interstory drift
ratio (MIDR) [14].

Although research on the application of artificial neural networks to structural design
has been actively conducted, the application to the seismic ground response analysis is
insufficient. This study suggests two convolutional neural networks (CNN) models, which
estimate the seismic response of the surface based on the seismic motion measured at the
bed rock in a site, and selects the one which outperforms the other as the main model.
The performances of the main model in each site are compared with those of conventional
analysis software for every selected site.

2. Earthquake Database

Since the National Research Institute for Earth Science and Disaster Prevention (NIED)
in Japan has applied seismometers on boreholes and surfaces in each station to record
earthquakes throughout the nation, the strong-motion seismograph network Kiban Kyoshin
Network (KiK-net) presents the acceleration history measurements, information of the sites,
and earthquake events required to perform the seismic ground response analysis [15–17].

2.1. Site Information

A total of 12 sites that include 50 earthquake events, whose magnitude is higher than
6 and PGA is greater than 0.01 g, were selected (Figure 1). These sites have the records at
both surfaces and at 100 m depth beneath the surface after the year 2008.
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Shear wave velocity (VS) profiles and brief classifications of the soil layers of the
selected sites were shown in Figure 2. The black triangles in the figure represent the
installation locations of the seismometers.
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According to a two-parameter site classification system from the National Earthquake
Hazard Reduction Program (NEHRP), the sites can be classified into six classes based on
the average shear velocity (VS,30) and natural period of the soil deposit (TG) [18] in the
seismic design. The average shear velocity is the shear wave velocity profile up to 30 m
(100 ft) depth beneath the ground. The average shear velocity and the natural period of the
soil can respectively be calculated by Equations (1) and (2):

VS,30 =
30

∑n
i=1

Di
VSi

(1)

TG = 4
n

∑
i

Di
VSi

(2)

where n is the number of strata from the surface up to 30 m beneath the ground surface,
Di is the thickness of the ith stratum (m), and VSi is the shear wave velocity of the ith
stratum (m/s).

According to the National Earthquake Hazard Reduction Program (NEHRP), the sites
where VS,30 ranges from 180 to 360 m/s are classified as stiff soil. The sites where VS,30
ranges from 360 to 760 m/s are classified as soft rock, and those whose VS,30 are over
760 m/s are classified as rock. Table 1 presents the basic information of the sites, the values
of average shear velocities, natural periods, and the classification of the soil in the sites.

Table 1. Information of the sites.

No. Site Code Site Name VS,30 (m/s) NEHRP Site Classification Description TG (s)

1 FKSH17 Kawamata 544.0 C Dense soil, Soft rock 0.22
2 FKSH18 Miharu 307.2 D Stiff soil 0.39
3 FKSH19 Miyakoji 338.1 D Stiff soil 0.35
4 IBRH13 Takahagi 335.4 D Stiff soil 0.36
5 IWTH02 Tamayama 816.3 B Rock 0.15
6 IWTH05 Fujisawa 442.1 C Dense soil, Soft rock 0.27
7 IWTH12 Kunohe 367.9 C Dense soil, Soft rock 0.33
8 IWTH14 Taro 816.3 B Rock 0.15
9 IWTH21 Yamada 521.1 C Dense soil, Soft rock 0.23
10 IWTH22 Towa 532.1 C Dense soil, Soft rock 0.23
11 IWTH27 Rikuzentakata 670.3 C Dense soil, Soft rock 0.18
12 MYGH04 Towa 849.8 B Rock 0.14

2.2. Earthquake Events

Fifty earthquake events, whose moment magnitude is higher than 6 and PGA is greater
than 0.01 g recorded after the year 2008 in each site, were adopted. As each earthquake
was measured in both east-west and north-south directions, they provided 100 datasets
of ground motion acceleration histories. A dataset consists of the acceleration history
measured at 100 m beneath the surface (bedrock) and the history measured on the ground
surface. For the motions at the bedrock, the velocity and displacement histories were
generated from the acceleration histories, and they were all assigned to the input data. For
the motions on the surface, the acceleration histories were assigned to the output data.
Correction of earthquake data was processed with a methodology with a polynomial linear
baseline correction and bandpass filter proposed by BAP (Converse, 1982) [19] (Figure 3).
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3. Analytical Method

The study aims at proposing convolutional neural networks (CNN) models to estimate
the seismic response of the surface based on the seismic motion measured at bedrock. The
software, SHAKE2000, is utilized to compare the performance of proposed models with
its performance.

3.1. Seismic Ground Response Analysis

Seismic ground response analysis is used to predict the seismic behavior on the
ground surface influenced by the properties of soil deposits [3]. The one-dimensional
ground response analysis, which is a simulation of shear waves propagating vertically
through shallow soil layers on the assumption that all boundaries are horizontal, is an
approach to capture site effects on ground shaking [3,4]. A series of one-dimensional
ground response analyses (linear and equivalent linear methods) are introduced.

In the linear method, the material properties are assumed to remain constant during
shaking [20]. The material properties are assumed to be unchanged in dynamic processes
during the earthquake. The equivalent linear method, initially proposed by Seed and
Idriss (1970), accounts for material yielding and damping by iteratively matching the
shear modulus and damping ratio to a characteristic strain level [20]. Both are in the
frequency domain with linear visco-elastic material behavior. A ground motion time
history of the bedrock (input) is converted to the frequency domain by the fast Fourier
transform (FFT) algorithm and then multiplied by the transfer function to generate the
ground surface motion (output) Fourier series. Thereafter, the ground surface (output) can
be transformed back into the time domain by the inverse fast Fourier transform (IFFT), as
shown in Equation (3):

aoutput(t) = IFFT
[

f (w) ∗ FFT
[
ainput(t)

]]
(3)

f (w) =
uoutput(ω)

uinput(ω)
(4)

where aoutput(t) is ground surface acceleration, ainput(t) is bedrock acceleration, and f (w)
is a bedrock-to-surface transfer function, as shown in Equation (4). uoutput is ground surface
displacement, and uinput is bedrock displacement.

3.2. Convolutional Neural Networks (CNN)

Deep learning explores complex structures in the large dataset using algorithms to
change the internal parameters in order to compute the representation of the dataset in each
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layer from the previous layer, based on the artificial neural networks. Convolutional neural
networks (CNN), a class of artificial neural network that has become dominant in computer
vision works, are designed to learn spatial hierarchies of features in the form of 2D images
automatically and adaptively through backpropagation using building blocks, such as
convolution layers, pooling layers, and fully connected layers, as shown in Figure 4 [21]. A
convolution layer has image data abstracted to a feature map, and a pooling layer reduce
the dimensions of the feature map.
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3.3. Response Spectrum

Response spectrum is a plot of the peak response of a series of SDOF systems with
varying natural frequencies that provides practical information for the seismic design of
structures [22,23]. Based on the response spectrum, ground response measurements and
predictions by the analysis program and proposed CNN models are compared.

4. Analytical Procedure
4.1. CNN Model

For the motions measured at the bedrock, velocity histories were calculated by inte-
grating the acceleration histories over time, and displacement histories were calculated
by integrating the velocity histories over time. They were assigned to input data, and the
acceleration histories measured at the surface were to output data. Every motion applied
to the model was tailored to have 12,000 acceleration values measured at time increments
of 0.01 s, having 120 s duration. Among the 100 datasets, 80 datasets were used for the
train (train dataset), and 20 datasets were for the test (test dataset). Two different CNN
models, A and B, were established and tried with the earthquake datasets for site FKSH18.
Between them, a model which outperformed the other was selected as a main model.

4.1.1. Model A

Time domain acceleration, velocity, and displacement histories were applied to model
A. Every history was evenly split into 120 signals with 100 acceleration values of time
increments of 0.01 s, having 1 s of duration. The thin lines behind the graphs in Figure 5
split the signals from the duration of 120 to 1 s. Accordingly, the split time domain
acceleration, velocity, and displacement histories at the bedrock are assigned to input data,
and the split acceleration histories measured on the surface are to output data, as presented
in Figure 5. CNN architecture A consists of a convolution layer with 100 kernels with the
size (9,1) as parameters without a pooling layer. Mean squared error (MSE) was adopted to
loss function and Rectified linear unit (ReLU) was to activation function.
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4.1.2. Model B

The response spectra of ground motion data were applied to model B. Five percent of
damped acceleration, velocity, and displacement response spectra were generated from
the time domain acceleration, velocity, and displacement histories at the bedrock, as
presented in Figure 6. In addition, they were assigned to input data. Five percent of
damped acceleration response spectra calculated from acceleration histories measured
on the surface were for output data. The process of model B is shown in Figure 7. CNN
architecture B consists of a convolution layer with 500 kernels with the size (21,1) without
a pooling layer. Mean squared error (MSE) was also adopted to loss function and Rectified
linear unit (ReLU) was to activation function.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19 
 

 
Figure 5. Overview of model A. 

4.1.2. Model B 
Ground motion data in terms of response spectrum were applied to model B. Five 

percent of damped acceleration, velocity, and displacement response spectra were gener-
ated from the time domain acceleration, velocity, and displacement histories at the bed-
rock, as presented in Figure 6. In addition, they were assigned to input data. Five percent 
of damped acceleration response spectra calculated from acceleration histories measured 
on the surface were for output data. The process of model B is shown in Figure 7. CNN 
architecture B consists of a convolution layer with 500 kernels with the size (21,1) without 
a pooling layer. ReLU was used as an activation function. Mean squared error (MSE) was 
also adopted to loss function and Rectified linear unit (ReLU) was to activation function. 

 
Figure 6. Input data preprocessing for model B. Figure 6. Input data preprocessing for model B.



Appl. Sci. 2021, 11, 10760 8 of 19Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 19 
 

 
Figure 7. Overview of model B. 

After predicting the ground response on the surface through model B, a weight mov-
ing average is applied to the prediction for reducing noise and errors. The moving average 
is used to analyze data points by creating a series of averages of different subsets of the 
entire dataset. Equation (5) presents the mathematical calculation of the weight moving 
average we implemented. ܵܣ = 1ܵܽିସ + 2ܵܽିଷ + 3ܵܽିଶ + 4ܵܽିଵ + 5ܵܽ + 4ܵܽାଵ + 3ܵܽାଶ + 2ܵܽାଷ + 1ܵܽାସ25  (5) 

where ܵܽ is the ݅th prediction of a ground motion by model B, and ܵܣ is the pre-
diction after applying the weight moving average. 

4.1.3. Comparisons 
With the earthquake dataset in site FKSH 18, CNN models A and B for the site were 

trained. Each model predicted the ground response at the surface and the results were 
compared with the baseline to decide main model. Among 20 predictions by each model, 
response spectrum of a sample prediction is presented in Figure 8. 

 
Figure 8. The sample prediction by models A and B and the measurement (FKSH18). 

It is found that model B outperforms model A. Not only the average errors of model 
B were lower than those of model A, but also data processing for model B was more con-
venient. Whereas the constitution of model A requires the tailored earthquake data with the 
same duration (120 s) and the same number of values (12,000), model B doesn’t. As a result, 

0.00

0.10

0.20

0.30

0.01 0.1 1 10

A
cc

el
er

at
io

n 
Re

sp
on

se
 S

pe
ct

ru
m

Period (sec)

Measurement
Model A
Model B

Figure 7. Overview of model B.

After predicting the ground response on the surface through model B, a weight moving
average is applied to the prediction for reducing noise and errors. The moving average
is used to analyze data points by creating a series of averages of different subsets of the
entire dataset. Equation (5) presents the mathematical calculation of the weight moving
average we implemented.

SAprei
=

1Saprei−4
+ 2Saprei−3

+ 3Saprei−2
+ 4Sai−1 + 5Saprei

+ 4Saprei+1
+ 3Saprei+2

+ 2Saprei+3
+ 1Saprei+4

25
(5)

where Saprei
is the ith prediction of a ground motion by model B, and SAprei

is the
prediction after applying the weight moving average.

4.1.3. Comparisons

With the earthquake dataset in site FKSH 18, CNN models A and B for the site were
trained. Each model predicted the ground response at the surface and the results were
compared with the baseline to decide main model. Among 20 predictions by each model,
the response spectrum of a sample prediction is presented in Figure 8.
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It is found that model B outperforms model A. Not only the average errors of model
B were lower than those of model A, but also data processing for model B was more
convenient. Whereas the constitution of model A requires the tailored earthquake data with
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the same duration (120 s) and the same number of values (12,000), model B doesn’t. As a
result, the study decided to apply model B for the seismic ground response estimation. The
study chose model B as a main model, and trained each CNN model for every selected site.

4.2. Conventional Model

The equivalent linear ground response analyses were performed with the analysis
program, SHAKE2000, computing the response in a system of homogenous, visco-elastic
layers of infinite horizontal extent. The seismic response was calculated by an iterative
process in which the shear modulus and damping ratio are updated in each step for the
corresponding value of effective shear strain. The effective shear strain was taken as
65% of the maximum shear strain obtained from the calculated strain history. The thin
layers are recommended to capture the highly non-uniform variation in strain vs. depth.
Therefore, the layers were divided into more than one sublayer, which meets the criteria as
Equation (6) [24]:

Thickness o f sublayers <
VS

4 ∗ fmax
(6)

where VS is the shear wave velocity of layers, and fmax is maximum frequency.
Widely used soil properties were employed from the previous works of literature.

According to the material type of layers, they were classified as rock, gravel, and sand, as
shown in Table 2. For the rock, the mean values of normalized shear modulus and damping
ratio curves by Schnabel (1973) were taken. For the gravel, the properties by Seed et al.
(1986) were taken, and for the sand, those by Seed and Idriss (1970) were taken [25–28].
Figure 9 shows the adopted mean values of normalized shear modulus and damping ratio
curves.

Table 2. Classification and reference according to the material type.

Material Type Classification Reference

Argillite
Breccia
Granite

Sandstone
Tonalite

Rock (Mean) Schnabel (1973)

Sandy gravel
Clayey gravel Gravel (Mean) Seed et al. (1986)

Top soil Sand (Mean) Seed and Idriss (1970)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 19 
 

the study decided to apply model B for the seismic ground response estimation. The study 
chose model B as a main model, and trained each CNN model for every selected site. 

4.2. Conventional Model 
The equivalent linear ground response analyses were performed with the analysis pro-

gram, SHAKE2000, computing the response in a system of homogenous, visco-elastic layers 
of infinite horizontal extent. The seismic response was calculated by an iterative process in 
which the shear modulus and damping ratio are updated in each step for the corresponding 
value of effective shear strain. The effective shear strain was taken as 65% of the maximum 
shear strain obtained from the calculated strain history. The thin layers are recommended 
to capture the highly non-uniform variation in strain vs. depth. Therefore, the layers were 
divided into more than one sublayer, which meets the criteria as Equation (6) [24]: ܶℎ݅ܿ݇݊݁ݏݎ݁ݕ݈ܾܽݑݏ ݂ ݏݏ < ௌܸ4 ∗  ݂௫ (6)

where ௌܸ is the shear wave velocity of layers, and ݂௫ is maximum frequency. 
Widely used soil properties were employed from the previous literatures. According 

to the material type of layers, they were classified as rock, gravel, and sand, as shown in 
Table 2. For the rock, the mean values of normalized shear modulus and damping ratio 
curves by Schnabel (1973) were taken. For the gravel, the properties by Seed et al. (1986) 
were taken, and for the sand, those by Seed and Idriss (1970) were taken [25–28]. Figure 9 
shows the adopted mean values of normalized shear modulus and damping ratio curves. 

Table 2. Classification and reference according to the material type. 

Material Type Classification Reference 
Argillite 
Breccia 
Granite 

Sandstone 
Tonalite 

Rock (Mean) Schnabel (1973) 

Sandy gravel 
Clayey gravel  

Gravel (Mean) Seed et al. (1986) 

Top soil  Sand (Mean) Seed and Idriss (1970) 
 

  
(a) (b) 

Figure 9. Dynamic soil properties: (a) Normalized shear modulus reduction curves; (b) damping ratio curves. 

5. Results 
5.1. Prediction 

Among the results from 20 testing datasets for each site, response spectra of 6 sample 
results are presented in Figures 10–21. The name of the subfigure in the figures are the 
original name from the source of data, KiK-net. 

Figure 9. Dynamic soil properties: (a) Normalized shear modulus reduction curves; (b) damping ratio curves.



Appl. Sci. 2021, 11, 10760 10 of 19

5. Results
5.1. Prediction

Among the results from 20 testing datasets for each site, response spectra of 6 sample
results are presented in Figures 10–21. The name of the subfigure in the figures are the
original name from the source of data, KiK-net.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 19 
 

Throughout every site, the CNN-based model predicts both values of the amplitudes 
and the natural periods fairly well, where the responses amplify the most with few excep-
tions. The proposed CNN model overestimates the response in some cases, such as (f) in 
Figure 10 (FKSH17), (d) in Figure 11 (FKSH18), (e) in Figure 14 (IWTH02), and (a) in Figure 
17 (IWTH14), whereas it undervalued the response for (b) in Figure 11 (FKSH18), (e) in Fig-
ures 13, 20, and 21, and (f) in Figure 14 (IWTH02). On the other hand, the physical analysis 
software overrated most of the motions throughout the sites, especially for the site in Figure 
10 (FKSH17), Figure 15 (IWTH05), Figure 18 (IWTH21), and Figure 19 (IWTH22). 

   
(a) (b) (c) 

   
(d) (e) (f)  

Figure 10. The six samples of acceleration response spectra measurements and predictions at site FKSH17. (a) 
FKSH171201011428.EW. (b) FKSH171201011428.NS. (c) FKSH171204131910.EW. (d) FKSH171206180532.NS. (e) 
FKSH171305181448.EW. (f) FKSH171309040919.NS2. 

   
(a)  (b)  (c)  

   
(d)  (e)  (f)  

Figure 11. The six samples of acceleration response spectra measurements and predictions at site FKSH18. (a) 
FKSH181310260210.EW. (b) FKSH181407120422.NS. (c) FKSH181611220559.NS. (d) FKSH181612282138.NS. (e) 
FKSH181906182222.NS. (f) FKSH181908041923.EW. 

Figure 10. The six samples of acceleration response spectra measurements and predictions at site FKSH17.
(a) FKSH171201011428.EW. (b) FKSH171201011428.NS. (c) FKSH171204131910.EW. (d) FKSH171206180532.NS. (e)
FKSH171305181448.EW. (f) FKSH171309040919.NS2.
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Figure 12. The six samples of acceleration response spectra measurements and predictions at site FKSH19.
(a) FKSH191611240623.EW. (b) FKSH191611240623.NS. (c) FKSH191908041923.EW. (d) FKSH192004200539.NS.
(e) FKSH192102132308.EW. (f) FKSH192102132308.NS.
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Figure 13. The six samples of acceleration response spectra measurements and predictions at site IBRH13.
(a) IBRH131412201830.EW. (b) IBRH131412201830.NS. (c) IBRH131611240623.NS. (d) IBRH131908041923.EW.
(e) IBRH131611220559.NS. (f) IBRH132006250447.NS.
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Figure 14. The six samples of acceleration response spectra measurements and predictions at site IWTH02.
(a) IWTH021809060308.EW. (b) IWTH021906182222.EW. (c) IWTH021908041923.EW. (d) IWTH021908041923.NS.
(e) IWTH022004200539.EW. (f) IWTH022105011027.EW.
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Figure 15. The six samples of acceleration response spectra measurements and predictions at site IWTH05. (a) 
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IWTH052105140858.EW. (f) IWTH052105140858.NS. 

Figure 15. The six samples of acceleration response spectra measurements and predictions at site IWTH05.
(a) IWTH051502170806.EW. (b) IWTH051505130613.EW. (c) IWTH052009121144.EW. (d) IWTH052102132308.NS.
(e) IWTH052105140858.EW. (f) IWTH052105140858.NS.
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Figure 16. The six samples of acceleration response spectra measurements and predictions at site IWTH12.
(a) IWTH121801241951.EW. (b) IWTH121908290846.NS. (c) IWTH122002131934.EW. (d) IWTH122004200539.NS.
(e) IWTH122012210223.EW. (f) IWTH122102132308.EW.
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Figure 17. The six samples of acceleration response spectra measurements and predictions at site IWTH14.
(a) IWTH141601141225.EW. (b) IWTH141709270522.NS. (c) IWTH141908041923.NS. (d) IWTH142004200539.NS.
(e) IWTH142009121144.NS. (f) IWTH142102132308.EW.
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Figure 18. The six samples of acceleration response spectra measurements and predictions at site IWTH21. (a) 
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Figure 19. The six samples of acceleration response spectra measurements and predictions at site IWTH22. (a) 
IWTH221611220559.EW. (b) IWTH221709270522.NS. (c) IWTH222004200539.EW. (d) IWTH222004200539.NS. (e) 
IWTH222012210223.NS. (f) IWTH222105140858.NS. 

Figure 18. The six samples of acceleration response spectra measurements and predictions at site IWTH21.
(a) IWTH211310260210.EW. (b) IWTH211601141225.EW. (c) IWTH211611220559.NS. (d) IWTH211801241951.NS.
(e) IWTH211908041923.NS. (f) IWTH212004200539.EW.
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Figure 19. The six samples of acceleration response spectra measurements and predictions at site IWTH22. (a) 
IWTH221611220559.EW. (b) IWTH221709270522.NS. (c) IWTH222004200539.EW. (d) IWTH222004200539.NS. (e) 
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Figure 19. The six samples of acceleration response spectra measurements and predictions at site IWTH22.
(a) IWTH221611220559.EW. (b) IWTH221709270522.NS. (c) IWTH222004200539.EW. (d) IWTH222004200539.NS.
(e) IWTH222012210223.NS. (f) IWTH222105140858.NS.
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Figure 20. The six samples of acceleration response spectra measurements and predictions at site IWTH27. (a) 
IWTH271212071731.EW. (b) IWTH271302022317.EW. (c) IWTH271308041229.NS. (d) IWTH271502170806.EW. (e) 
IWTH271505130613.EW. (f) IWTH271709270522.EW. 
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Figure 21. The six samples of acceleration response spectra measurements and predictions at site MYGH04. (a) 
MYGH041308041229.EW. (b) MYGH041505130613.NS. (c) MYGH042004200539.NS. (d) MYGH042102132308.EW. (e) 
MYGH042103201809.NS. (f) MYGH042105011027.NS. 

5.2. Prediction Errors 
An average of 20 errors in each station was calculated with Equation (7). The average 

errors of the estimation of CNN model and SHAKE2000 for the twelve sites are plotted in 
Figure 22. 
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Figure 20. The six samples of acceleration response spectra measurements and predictions at site IWTH27.
(a) IWTH271212071731.EW. (b) IWTH271302022317.EW. (c) IWTH271308041229.NS. (d) IWTH271502170806.EW.
(e) IWTH271505130613.EW. (f) IWTH271709270522.EW.
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Figure 21. The six samples of acceleration response spectra measurements and predictions at site MYGH04.
(a) MYGH041308041229.EW. (b) MYGH041505130613.NS. (c) MYGH042004200539.NS. (d) MYGH042102132308.EW.
(e) MYGH042103201809.NS. (f) MYGH042105011027.NS.

Throughout every site, the CNN-based model predicts both values of the amplitudes
and the natural periods fairly well, where the responses amplify the most with few ex-
ceptions. The proposed CNN model overestimates the response in some cases, such as (f)
in Figure 10 (FKSH17), (d) in Figure 11 (FKSH18), (e) in Figure 14 (IWTH02), and (a) in
Figure 17 (IWTH14), whereas it undervalued the response for (b) in Figure 11 (FKSH18), (e)
in Figures 13, 20 and 21, and (f) in Figure 14 (IWTH02). On the other hand, the physical
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analysis software overrated most of the motions throughout the sites, especially for the site
in Figure 10 (FKSH17), Figure 15 (IWTH05), Figure 18 (IWTH21), and Figure 19 (IWTH22).

5.2. Prediction Errors

An average of 20 errors in each station was calculated with Equation (7). The average
errors of the estimation of CNN model and SHAKE2000 for the twelve sites are plotted
in Figure 22.

Average Error =
1
n

√
n

∑
i=1

(Errori)
2 (7)

Error = SApre − SAtest (8)

where n is the number of ground motions in each station (n = 20), Error is the disparity
between the response spectra estimation and the baseline of each ground motion for each
site, SApre is the estimation by the models, and SAtest is the ground motion measurement.
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Figure 22. Average errors in the ground motions by the CNN model and SHAKE2000. (a) FKSH17 (b) FKSH18 (c) FKSH19
(d) IBRH13 (e) IWTH02 (f) IWTH05 (g) IWTH12 (h) IWTH14 (i) IWTH21 (j) IWTH22 (k) IWTH27 (l) MYGH04.
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Overall, the errors of the conventional model are higher than the CNN model, es-
pecially for sites FKSH17, FKSH18, IWTH05, IWTH21, and IWTH22 in natural periods
between 0.01 and 0.3 s. In addition, for sites IWTH14 and MYGH04 in natural periods
between 0.01 and 0.2 s, for FKSH19 in natural periods from 0.01 to 0.1 s, for IBRH13, in
natural periods from 0.3 to 0.4 s, for IWTH12, in natural periods from 0.4 to 1 s, and
for IWTH27, in natural periods from 0.1 to 0.2 s. Exceptionally, it seems that there is no
conspicuous gap between them throughout the whole natural periods for site IWTH02.

The global error which summarizes the total errors of the predictions for all the sites
with Equation (9) are presented in Figure 23.

Global Error =
1
m

√√√√ m

∑
j=1

(Average Errorj)
2 (9)

where m is the number of sites, and Average Errorj is an average error of 20 earthquakes in
the jth station calculated with Equation (7). The proposed model especially outperforms
the analysis software when the natural periods range from 0.01 to 0.3 s.
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Moreover, the mean squared error (MSE) is utilized to represent the errors as numbers.
MSE measures the average squared difference between the actual values and the estimated
values with Equation (10).

MSE =
1
l

l

∑
k=1

Error2 (10)

where Error is the disparity between the response spectra estimation and the baseline
of each ground motion, as shown in Equation (8), and l is the number of the response
spectrum values in each earthquake. An average error of 20 MSE in each station is
calculated with Equation (11).

Average MSE =
1
n

n

∑
i=1

MSE (11)

where n is the number of ground motions in each station (n = 20). Table 3 shows the
average mean squared error of 20 response spectra estimations in each station.

For sites IWTH05, IWTH21, IWTH22, and MYGH04, the average mean squared errors
of the CNN model are dozens of times lower than the errors of the software. On the other
side, for sites IBRH13 and IWTH02, the values of the errors are almost the same.
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Table 3. Average mean squared error of the proposed model and SHAKE2000.

Site CNN Model SHAKE 2000

FKSH17 0.000138 0.001734
FKSH18 0.011128 0.123401
FKSH19 0.005695 0.014009
IBRH13 0.011128 0.001150
IWTH02 0.006520 0.005750
IWTH05 0.002500 0.078644
IWTH12 0.000301 0.001670
IWTH14 0.001006 0.006529
IWTH21 0.000243 0.009845
IWTH22 0.000544 0.049496
IWTH27 0.001015 0.002871
MYGH04 0.002990 0.066302

6. Conclusions

The authors proposed two CNN-based models (A and B) to estimate the seismic
response spectra of the surface. They found that model B, whose input data are acceleration,
velocity, and displacement response spectra at the bedrock and output data are acceleration
response spectra on the surface, outperforms model A for a site. In addition, model B
does not require tailored earthquake data with the same number of values and duration.
Therefore, model B for each site was trained for every selected site as a main model.
Moreover, the performance of model B was compared with the result of SHAKE2000.

Among the 100 datasets in each site (12 sites) which are fabricated for the proposed
model, 20 sets were used for the test. It predicts both values of the amplitudes and
the natural periods fairly well, where the responses amplify the most, surpassing the
performance of the physical model for all the sites with few exceptions. In particular,
when the natural periods range from 0.01 to 0.3 s, the proposed model outperforms the
conventional software. The average mean squared errors of the proposed model are
dozens of times lower than the physical tool for specific sites. With the proposed CNN
model, the evaluation of the ground response is available for sites that offer the earthquake
measurements data.

As subsequent research, the authors aim at constituting a model to evaluate the surface
ground motion in sites where the soil properties are available, by implementing the soil
properties into the dataset.
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