
applied  
sciences

Article

Vehicle State Estimation Using Interacting Multiple Model
Based on Square Root Cubature Kalman Filter

Wan Wenkang 1 , Feng Jingan 1,*, Song Bao 2 and Li Xinxin 3

����������
�������

Citation: Wenkang, W.; Jingan, F.;

Bao, S.; Xinxin, L. Vehicle State

Estimation Using Interacting Multiple

Model Based on Square Root

Cubature Kalman Filter. Appl. Sci.

2021, 11, 10772. https://doi.org/

10.3390/app112210772

Academic Editor:

Angelos Amanatiadis

Received: 18 October 2021

Accepted: 12 November 2021

Published: 15 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China;
wanwk@stu.shzu.edu.cn

2 School of Mechanical Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430000, China; songbao@hust.edu.cn

3 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130000, China; lixinxin202@mails.ucas.ac.cn

* Correspondence: fja_mac@shzu.edu.cn

Abstract: The distributed drive arrangement form has better potential for cooperative control of
dynamics, but this drive arrangement form increases the parameter acquisition workload of the
control system and increases the difficulty of vehicle control accordingly. In order to observe the
vehicle motion state accurately and in real-time, while reducing the effect of uncertainty in noise
statistical information, the vehicle state observer is designed based on interacting multiple model
theory with square root cubature Kalman filter (IMM-SCKF). The IMM-SCKF algorithm sub-model
considers different state noise and measurement noise, and the introduction of the square root filter
reduces the complexity of the algorithm while ensuring accuracy and real-time performance. To
estimate the vehicle longitudinal, lateral, and yaw motion states, the algorithm uses a three degree of
freedom (3-DOF) vehicle dynamics model and a nonlinear brush tire model, which is then validated
in a Carsim-Simulink co-simulation platform for multiple operating conditions. The results show
that the IMM-SCKF algorithm’s fusion output results can effectively follow the sub-model with
smaller output errors, and that the IMM-SCKF algorithm’s results are superior to the traditional
SCKF algorithm’s results.

Keywords: distributed drive; interacting multiple model; square root cubature Kalman filter; state
estimation; vehicle system

1. Introduction

Artificial intelligence technology has been promoted and applied to a variety of fields
in recent years, and vehicles are moving closer to intelligence and electrification, with more
advanced active safety control systems and intelligent driver assistance systems being
installed in vehicles. A large amount of vehicle dynamics information, such as yaw rate,
sideslip angle, lateral velocity, and longitudinal velocity, is used in the development of
related control systems. The acquisition of this data in real time necessitates the use of
high-accuracy sensors, which are costly and prone to issues such as sensor errors and
uncertainties. Furthermore, unreliable measurement data can cause dispersion in the
vehicle controller, which can have serious consequences. Therefore, state estimation meth-
ods for measurement information based on low-cost sensors have been widely tried and
applied to vehicles [1]. Distributed-drive electric vehicles drive directly with in-wheel mo-
tors, replacing mechanical transmission and hydraulic systems with wire control systems,
greatly simplifying the vehicle chassis structure and increasing mechanical efficiency. For
distributed drive electric vehicles, a large number of control studies have been conducted.
Electronic body stability systems, such as yaw moment control, use the quick response of
four-wheel motors to improve the vehicle control system’s performance. Distributed-drive
electric vehicles’ steering, driving, and braking signals are more accessible than those of
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conventional vehicles, effectively improving the vehicle’s sensing capability and making
real-time observation of vehicle dynamics parameters easier [2]. Accurate vehicle state
estimation results directly improve the sensing capability of intelligence vehicles, which
is important for path tracking, trajectory tracking, and active safety controller design of
intelligence vehicles. Mohamed Fnadi et al. proposed a nonlinear tire stiffness observer
for the real-time tire stiffness estimation problem, and the Kalman-Bucy filter was used
for lateral velocity estimation and a constrained MPC path tracking controller based on
accurate state parameter information was proposed to improve the effectiveness of path
tracking [3,4]. Hyo-Seok Kang et al. designed a robust tracking control method based on
the estimation results provided by the state observer [5]. Song Yitong et al. designed a
chassis controller integrated with four-wheel independent steering system and a direct
yaw moment control system integrated with MPC based on the vehicle state estimation
results provided by the UKF observer, which fully improved the stability of the vehicle [6].

A large number of studies based on kinematic and vehicle dynamics models have been
conducted on vehicle state estimation. Tire-road conditions and vehicle parameters have
no effect on kinematic-based state estimation, but the integration of sensor measurements
generates cumulative errors that lead to large deviations in the results, so the method is
only applicable to steady-state situations. The state estimation based on the dynamics
model is also divided into two categories. The first is the linear two-degree-of-freedom (2-
DOF) vehicle model, which is derived from the linear tire model and has a high estimation
accuracy in conditions with small tire slip angle and is widely used to estimate the yaw
rate and sideslip angle [7,8]. However, when the vehicle is operating in extreme conditions,
the steering angle is large, the tire slip angle increases, and the tire enters the nonlinear
region, the linear tire model does not accurately reflect the real vehicle dynamics. As a
result of the large difference between the estimated and real values, the vehicle controller
receives the result and makes an incorrect decision, resulting in serious consequences.
In extreme operating conditions, the estimation method based on the nonlinear vehicle
dynamics model has a high estimation accuracy [9]. Wang Zhenfeng et al., based on the
Takagi-Sugeno (T-S) fuzzy model to describe the lateral force of tires, design a T-S fuzzy
observer to estimate the vehicle roll state, and use the linear matrix inequalities (LMIs)
criterion to prove the observer’s stability to solve the nonlinear problem of lateral force of
vehicle under large lateral deflection angle working condition [10]. To solve the problem
of inertial parameter changes such as the center of gravity position when the vehicle load
changes, Dasol Jeong et al., proposed an algorithm based on smart tires combined with a
nonlinear vehicle dynamics model to estimate tire loads and vehicle parameters, which has
a higher sampling rate and better robustness in estimating tire loads [11]. Henning et al.
proposed an integrated control method for lateral dynamics, combining nonlinear vehicle
state and parameter estimation with a second-order differential Kalman filter to build a
nonlinear vehicle model capable of accurately estimating the peak pavement adhesion
coefficient as well as the sideslip angle under extreme operating conditions [12].

In recent years, more nonlinear estimation algorithms have been used in the field of
vehicles. Among them are various Kalman filter derivative algorithms, such as extended
Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF).
When the vehicle model is complex, the EKF algorithm has trouble solving complex
Jacobian matrices, while the UKF algorithm has high computational complexity. CKF is a
Gaussian weighted integral approximation algorithm based on the third-order spherical-
phase diameter volume rule proposed by Canadian scholars Arasaratnam and Haykin in
recent years. The square root cubature Kalman filter (SCKF) is an improved algorithm
based on the CKF that uses square root approximation recursion to effectively reduce
the algorithm’s computational complexity while ensuring accuracy, stability, and real-
time performance [13,14]. To design the vehicle state observer, which is based on the
Kalman filter algorithm, it is essential to have a more accurate mathematical model as
well as statistical properties of the known noise; otherwise, the prediction results will
have large errors and even divergence in severe cases [15]. Zhang Zhida et al., used a
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weighted adaptive sliding window algorithm to adaptively adjust the measurement and
process noise matrices of the SCKF algorithm, which has more improved accuracy and
robustness than the conventional method [16]. Cheng Shuo et al. used an adaptive fusion
of the estimated and integrated values to accurately estimate the vehicle sideslip angle
by considering the sensor’s unknown color noise and correcting the integration term [17].
Most literature addressing the problem of statistical noise uncertainty employs adaptive
corrections to measure and process noise in order to make accurate predictions.

The interacting multiple model Kalman filter method has been widely used in the
field of target tracking and extended to many fields such as vehicle state estimation [18,19].
Liu HQ et al. based work on the framework of an interacting multiple model approach
to update the probability of target state estimation and motion model by distance-rate
measurement. Combined with SCKF algorithm to cope with the nonlinearity of the mea-
surement equation, the designed IMM-SCKF algorithm has good performance in maneu-
vering target tracking [20]. Rui Song et al. designed SCKF with different error covariance
matrices based on an interacting multiple model framework in order to solve the uncer-
tainty of the error covariance of the navigation system in vehicle dynamics state estimation,
and the results show that the IMM-SCKF algorithm has better accuracy compared with
the traditional method [21]. In order to adapt to different vehicle-road system models,
X Jin et al. designed a vehicle side slip angle state estimator based on interacting multiple
model unscented Kalman filter (IMM-UKF) and analyzed the applicability of the nonlinear
tire model under large tire side slip angle operating conditions [22]. In previous research
work, interacting multiple model methods are often combined with nonlinear Kalman filter
and have shown good performance in areas such as target tracking, navigation, etc., but
there have been no applications to extend the IMM-SCKF algorithm to the field of vehicle
state estimation.

Therefore, this paper proposes an interacting multiple model algorithm combined
with square root cubature Kalman filter to design interacting multiple model sets based
on nonlinear vehicle dynamics models for the case where the statistical characteristics of
system state noise and measurement noise are unknown. The SCKF algorithm is used to
estimate the yaw rate, sideslip angle, and longitudinal and lateral vehicle speeds for each
sub-model, ensuring that the fusion estimation results always maintain the output of the
sub-model with the least tracking error.

2. Vehicle and Tire Model

In this section, the vehicle dynamics model and tire model for vehicle state estimation
are proposed to describe the vehicle motion state.

2.1. Vehicle Model

An overly complex vehicle model is not conducive to the real-time performance
of the algorithm, so this paper establishes a three-degree-of-freedom (3-DOF) nonlinear
vehicle dynamics model under the premise of satisfying the observation accuracy of vehicle
dynamics and makes the following assumptions [23].

(1) Assume that the pitch, vertical, and roll motion of the vehicle are ignored, and the
influence of the suspension is ignored.

(2) Ignore the influence of the camber angle and self-aligning torque of the wheels on the
vehicle dynamics performance.

According to D’Alembert’s principle, a 3-DOF vehicle dynamics model containing
yaw, longitudinal, and lateral motions was established, as shown in Figure 1, and the entire
vehicle dynamics equations were established as follows:
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Figure 1. Planar vehicle model.

Longitudinal motion:
.

Vx =
2

∑
i,j=1

Fxij/m + Vy
.
ψ (1)

2

∑
i,j=1

Fxij = Fx11 cos δ11 + Fx12 cos δ12 − Fy11 sin δ11 − Fy12 sin δ12 + Fx21 + Fx22 (2)

Lateral motion:
.

Vy =
2

∑
i,j=1

Fyij/m + Vx
.
ψ (3)

2

∑
i,j=1

Fyij = Fx11 sin δ11 + Fx12 sin δ12 + Fy11 cos δ11 + Fy12 cos δ12 + Fy21 + Fy22 (4)

Yaw motion:
..
ψ =

2

∑
i,j=1

Mzij/Izz (5)

2
∑

i,j=1
Mzij = a(Fy11 cos δ11 + Fy12 cos δ12) + a(Fx11 sin δ11 + Fx12 sin δ12)− w

2 (Fy11 sin δ11 − Fy12 sin δ12)+

w
2 (Fx11 cos δ11 − Fx12 cos δ12)− (L− a)(Fy21 + Fy22) +

w
2 (Fx21 − Fx22)

(6)

where Vx is the vehicle longitudinal velocity, Vy is the lateral velocity,
.
ψ is the yaw rate,

ax is the longitudinal acceleration, ay is the lateral acceleration, Mz is the yaw moment,
Fxij and Fyij are longitudinal and lateral forces of the tire (ij is 11, 12, 21, and 22, which
represent the front left, front right, rear left, and rear right wheel, respectively), m is the
vehicle mass, a is the distance from the center of mass to the front axle, b is the distance
from rear axle to the center of gravity, w is the wheel track, L is the wheelbase, Izz is the
yaw moment of inertia, and δ11 and δ12 are the steering angles of the left and right front
wheels, respectively.

2.2. Brush Tire Model

According to the above formula, the calculation of vehicle state requires known
longitudinal and lateral tire forces, which are generally calculated using a tire model in
vehicle dynamics research, and the accuracy of the tire model directly affects the accuracy
of state estimation. Compared with the currently widely used Magic Formula (MF) tire
model, the brush tire model requires fewer parameters to be fitted and can accurately
represent the longitudinal and lateral forces of the tire, so the brush tire model is used for
simulation in this paper [24].
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As can be seen in Figure 2, the brush tire model has a high fitting accuracy under the
small lateral deflection angle condition, but the peak lateral force of the brush tire model
is slightly larger than that of the MF tire model under the large slip angle condition. In
this paper, the simulation conditions are low vertical force and lateral slip angle, and the
tires are not in the strong nonlinear region, so the brush tire model is chosen to ensure the
simulation accuracy. The brush tire model calculation is shown below.

Figure 2. Lateral force calculation of brush tire model and MF tire model.

The joint longitudinal force and lateral force model is defined as:

f =

 ρs − (ρs)2

3µFz
+ (ρs)3

27(µFz)
2 |s| < sm

µFz |s| ≥ sm

ρ = 4εa
2εbke

sm = 3µFz
ρ

s =
√

s2
x + s2

y

(7)

The longitudinal force and lateral force of the tire are expressed as:

Fx =
sx

s
f , Fy =

sy

s
f (8)

where εa is half of the contact patch length, εb is half of the contact patch width, ke is the
tire tread stiffness coefficient in unit length, s is the total slip rate, Fz is the tire vertical force,
and µ is the friction coefficient. The longitudinal and lateral slip rates, denoted by sx and
sy, are expressed as follows:

sx,ij =
Rωij − vij

max(Rωij, vij)
, sy,ij =

vij

Rωij
tan αij (9)

where R is the wheel effective radius, ωij is the angular speed of wheel rotation, vij is the
wheel center speed, αij is the tire side slip angle, and the calculation formula is as follows:{

v1j = (vx ∓ w
.
ψ) cos δ + (vy + a

.
ψ) sin δ

v2j = vx ∓ w
.
ψ

(10)


α1j = δ− arctan( Vy+a

.
ψ

Vx∓w
.
ψ/2

)

α2j = −arctan( Vy−b
.
ψ

Vx∓w
.
ψ/2

)
(11)
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when the vehicle is steering, the longitudinal force of the tire as well as the lateral one, is in-
fluenced by the transfer of the vertical load, which is calculated by the following equations:{

Fz1j =
b

2L mg− hcog
2L max ∓

bhcog
Lw may

Fz2j =
a

2L mg +
hcog
2L max ∓

ahcog
Lw may

(12)

where hcog is the height of the center of gravity.

3. Design of Vehicle State Observer

In this section, an interacting multiple model based on square root cubature Kalman
filter algorithm for vehicle state estimation is proposed.

3.1. Vehicle System Equation and Measurement Equation

For the SCKF algorithm, it needs to be designed based on the discretized vehicle
dynamics equation. The corresponding system state equations and measurement equations
with additive noise are as follows:

xk+1 = f (xk, uk) + qk
yk+1 = h(xk, uk) + rk

qk ∼ N(0, Qk), rk ∼ N(0, Rk)
(13)

The state equation function and the observation equation function are denoted by
f (·) and h(·), respectively, and the state noise qk and measurement noise rk are defined
as Gaussian white noise with a mean value of 0. The covariance matrices Qk and Rk
calculations are as follows:

E(qkqT
j ) = Qk∆k−j

E(rkrT
j ) = Rk∆k−j

(14)

where the ∆k−j is the Kronecker delta function, when k = j ∆ = 1, and when k 6= j ∆= 0.
Generally, as a simplification, Qk is set as a diagonal matrix [25].

The inertial measurement information, as well as the angular velocity of the in-wheel
motors and the angle information of the active steering system, are available directly
from the sensors in distributed-drive electric vehicles. The gyroscope and accelerometer
in the IMU can directly measure the three-axis acceleration information and yaw rate,
and the sensors in Carsim can provide the corresponding measurement information in
this simulation. As a result, system inputs include steering wheel angle and four-wheel
angular velocity, while system observations vector include vehicle longitudinal and lateral
acceleration and yaw rate.

Vehicle system equation state variables are

xk = (Vx, Vy,
.
ψ, ax, ay, Mz)

T
(15)

where the yaw rate is used as the estimated state in order to make full use of the measure-
ment information.

The system observation vector is

yk = (ax, ay,
.
ψ)

T
(16)

The system input is
uk = (δ, ωij)

T (17)

Among them, the state equation needs to be discretized. This article uses the first-order
Euler method.
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The calculation process is as follows:

xk+1 = f (xk, uk) + qk =



Vx,k
Vy,k.
ψk
0
0
0


+



ax,k−1 + Vy,k−1
.
ψk−1

ay,k−1 −Vx,k−1
.
ψk−1

Mz,k−1/Izz
0
0
0


· T +



0
0
0

ax,k
ay,k
Mz,k

+ qk (18)

The system measurement equation is calculated as follows:

yk+1 = h(xk, uk) + rk =

 0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 ·


Vx,k
Vy,k.
ψk
ax,k
ay,k
Mz,k


+ rk (19)

where T is the sampling time.
According to Formulas (13)–(19), the IMM-SCKF vehicle state observer can be de-

signed, and the flow of the algorithm is shown in Figure 3. The measured signals are
obtained from the vehicle’s own sensors, and the tire forces are calculated by the brush tire
model. The input interaction is output by three SCKF sub-filters at the previous moment,
and the model probabilities are updated in real time, and the final output is fused to
estimate the state results. The SCKF sub-filter algorithm design is shown in Section 3.2.

Figure 3. IMM-SCKF flow chart.
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3.2. Square Root Cubature Kalman Filter Algorithm

The SCKF algorithm is based on the traditional CKF algorithm framework and updates
the square root of the covariance matrix directly in the form of Cholesky decomposition,
which ensures non-negative characterization of the covariance matrix and improves nu-
merical stability while reducing the algorithm’s computational effort [26].

Based on the above vehicle discrete system equations, the SCKF algorithm is calculated
as follows:

Initialization:
x̂0 = E[x0] (20)

P0 = E[(x0 − x̂0)(x0 − x̂0)]
T] (21)

Time update:
Cholesky decomposition of the error covariance matrix:

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1 (22)

Calculate the set of vehicle state cubature points:

Xi
k−1|k−1 = Sk−1|k−1ζi + x̂k−1|k−1 (23)

Calculate the set of vehicle state cubature points: where ζi =
√

m/2[I]i, [I]i represents
the i-th column vector of [I], i = 1, 2, . . . , m = 2n, and [I] is the point set generated by the
unit vector of n-dimensional space that is fully arranged or inverted. The generated point

set meets the [I] =




1
0
...
0




0
1
...
0

 . . .


0
0
...
1



−1
0
...
0




0
−1

...
0

 . . .


0
0
...
−1


 condition.

Cubature point propagation:

X∗k|k−1 = f (Xi
k−1|k−1) (24)

State one-step prediction:

x̂k|k−1 =
1

2n

2n

∑
i=1

X∗i,k|k−1 (25)

Calculate the square root of the prediction error covariance matrix:

Sk|k−1 = Tria[χ∗k|k−1, Chol(Qk−1)] (26)

The weighted central moment χ∗k|k−1 is defined as

χ∗k|k−1 =
1√
m
[X∗1,k|k−1 − x̂k|k−1, X∗2,k|k−1 − x̂k|k−1, X∗m,k|k−1 − x̂k|k−1] (27)

where Tria(·) denotes the matrix’s QR decomposition and S the upper triangular matrix
after the decomposition.

Measurement update:
Further calculation of cubature measurement points:

Xi,k|k−1 = Sk|k−1ζi + x̂k|k−1 (28)

Cubature point propagation:

Zi
k|k−1 = h(Xi

k|k−1) (29)
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Calculate the prediction matrix of measurement:

ẑk|k−1 =
1
m

m

∑
i=1

Zi,k|k−1 (30)

Calculate the square root of the self-covariance matrix:

Szz
k|k−1 = Tria[Zk|k−1, Chol(Rk)] (31)

The weighted central moment Zk|k−1 is defined as

Zk|k−1 =
1√
m
[Z1,k|k−1 − ẑk|k−1, Z2,k|k−1 − ẑk|k−1, Zm,k|k−1 − ẑk|k−1] (32)

Calculate the self-covariance matrix and the cross-covariance matrix:

Pzz
k|k−1 = Szz

k|k−1(S
zz
k|k−1)

T (33)

Pxz
k|k−1 = Xk|k−1ZT

k|k−1 (34)

The weighted central moment Xk|k−1 is defined as

Xk|k−1 =
1√
m
[X1,k|k−1 − x̂k|k−1, X2,k|k−1 − x̂k|k−1, Xm,k|k−1 − x̂k|k−1] (35)

Calculating the Kalman gain matrix:

K = Pxz
k|k−1(Pzz

k|k−1)
−1 (36)

Update the posterior prediction of state:

x̂k|k = x̂k|k−1 + K(zk − ẑk|k−1) (37)

Calculate the square root factor of the error covariance matrix:

Sk|k = Tria([xk|k−1 − KZk|k−1, Kchol(Rk)]) (38)

where Qk and Rk are the system noise and measurement noise variance, respectively.

3.3. Interacting Multiple Model Fusion Algorithm

Traditional Kalman filter usually sets the noise matrix as a constant, which does
not give accurate estimation results when the model changes [27]. The IMM algorithm
designed in this paper consists of a total of three sub-filters, whose models are all based
on the above brush tire model as a 3-DOF vehicle dynamics model, respectively. All sub-
models set the same state vector and measurement vector, all using the same input, using
the SCKF algorithm to build the observer. Due to the uncertainty of the a priori statistical
information of the noise, in order to keep the model of the minimum tracking error as
the output of the model, multiple sub-models with different state noise and measurement
noise are set separately:

p =

 p11 · · · p1r
· · · · · · · · ·
pr1 · · · prr

 (39)

where pij denotes the state transfer probability from model i to model j.
The IMM algorithm’s entire iterative process is detailed below:
Step 1. Input interacting
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The state estimate X̂0j(k− 1 | k− 1) and covariance P0j(k− 1 | k− 1) are calculated
from the state estimate result x̂i(k− 1 | k− 1) and model probability µi(k− 1) of each filter
in the previous step, and the estimate result is used as the initial state of the current IMM
cycle, which is calculated as follows:

Model transition probability:

µij(k− 1 | k− 1) =

r
∑

i=1
pijµi(k− 1)

cj
(40)

where naturalization vector cj =
r
∑

i=1
pijµi(k− 1).

X̂0j(k− 1 | k− 1) =
r

∑
i=1

X̂i(k− 1 | k− 1)µij(k− 1 | k− 1) (41)

P0j(k− 1 | k− 1) =
r
∑

i=1
µij(k− 1 | k− 1){Pi(k− 1 | k− 1)+

[X̂i(k− 1 | k− 1)− X̂0j(k− 1 | k− 1)]·
[X̂i(k− 1 | k− 1)− X̂0j(k− 1 | k− 1)]T}

(42)

Step 2. Model filter
Based on the iterative process of SCKF in Equations (20)–(38), the state estimate

X̂0j(k− 1 | k− 1) and covariance P0j(k− 1 | k− 1) in Step 1 are substituted into the j-th
model to obtain the posterior state estimate X̂j(k | k), the state covariance matrix Pj(k | k),
the measurement output ẑj(k | k− 1) and the corresponding covariance matrix Pzz

j,k|k−1 for
the j-th model.

Step 3. Model probability update
The likelihood function of model j:

Λ(k) =
1

(2π)n/2∣∣Sj(k)
∣∣1/2 exp

{
−1

2
vT

j S−1
j (k)vj

}
(43)

vj(k) = z(k)− ẑj(k | k− 1) (44)

Sj(k) = Pzz
j,k|k−1 (45)

The probability of model j:

µj(k) = Λj(k)cj/c (46)

c =
r

∑
j=1

Λj(k)cj (47)

where c is a naturalization constant.
Step 4. Output interacting
The estimates of each filter are weighted and combined separately based on the model

probabilities, and the final output interaction results are calculated as follows:

X̂(k | k) =
r

∑
j=1

X̂j(k | k)µj(k) (48)

P(k | k) =
r

∑
j=1

µj(k)
{

Pj(k | k) + [X̂j(k | k)− X̂(k | k)] · [X̂j(k | k)− X̂(k | k)]T
}

(49)
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4. Simulation and Analysis

To evaluate the IMM-SCKF algorithm’s effectiveness in vehicle state estimation, we
built a co-simulation platform for distributed-drive electric vehicles, using industry stan-
dard simulation software Matlab (version 2018a) and Carsim (version 2019.0), and set up
a distributed-drive electric vehicle model in the Carsim platform with model selection
A-class, Hatchback. In this paper the sampling time T was set to 0.001 s. The parameters
of the whole vehicle model are shown in Table 1, and the IMM-SCKF state observer was
built in Matlab/Simulink platform. The IMM-SCKF state observer was compared to the
SCKF observer in simulation experiments by using the double-lane change condition and
sinusoidal steering conditions as vehicle operating conditions and keeping the input pa-
rameters the same as the vehicle model to evaluate the effect of both observers under the
same operating conditions.

Table 1. Simulation vehicle parameter settings.

Symbol Parameter Name Value

m Vehicle mass 750 kg

a Distance from front axle to the
center of gravity 1.1 m

b Distance from front rear to the
center of gravity 1.25 m

w Wheel track 1.415 m
hcog Height of the center of gravity 0.54 m
Izz Yaw moment of inertia 750 kg/m2

R Effective radius 0.284 m

In the IMM-SCKF fusion algorithm in this paper, the Markov state transfer matrix is
set to

p =

 0.95 0.025 0.025
0.025 0.95 0.025
0.025 0.025 0.95

 (50)

Because of the system statistical noise uncertainty, different noise is set for each of the
three SCKF sub-filters in the interacting multiple model algorithm, and the settings based
on experience are as follows:

R1= diag([0 .01, 0.01, 0 .01])
Q1= diag([0.01, 0.01, 0.01])
R2= 10R1; Q2= 10Q1
R3= 10R2; Q3= 10Q2

(51)

The next sub-process model and measurement noise magnitudes are each ten times
larger than the previous model. As a comparison, the simulation results of adding a single
SCKF with the UKF algorithm with settings such as noise parameters remain the same as
Submodel1 of the IMM-SCKF algorithm, the system equations and the measurement equa-
tions in the design process are consistent with the above. The corresponding simulation
results are shown below.

4.1. Double-Lane Change Condition

Under this condition, the vehicle speed is set to 60 km/h, and the road surface has
an adhesion coefficient of 0.85 in this operating condition. Figure 4 shows the observer’s
corresponding system input, and Figure 5 compares the simulation results of the SCKF and
IMM-SCKF algorithms.
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Figure 4. Double-lane change condition (a) observer input, including front wheel angle and four-wheel speed;
(b) vehicle trajectory.

Figure 5. Simulation results of vehicle state under double-lane change condition: (a) longitudinal velocity; (b) lateral
velocity; (c) yaw rate; (d) probability of each IMM’s model.

As shown in Figure 5a–d, in the observation of longitudinal vehicle speed, both algo-
rithms have high observation accuracy, but the IMM-SCKF algorithm is able to eliminate
certain steady-state errors at the end of the double-lane change condition. When the vehicle
steering angle gradually increases into the limit condition, the tire enters the nonlinear re-
gion. At this point, the IMM-SCKF algorithm is able to maintain high observation accuracy
at the limit value for the lateral vehicle speed and yaw rate, whereas the SCKF and UKF
algorithm has a 20% error. The IMM-SCKF algorithm can adjust the model probability in
real-time based on the state and measured value of each sub-model, and the output results
are always kept to track the model output with less error via the Markov state transfer
matrix, as shown in the above results.
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4.2. Sinusoidal Steering Condition

In order to further evaluate the effectiveness of the algorithm under a variety of
operating conditions, the algorithm is evaluated using a sinusoidal steering condition,
where the initial vehicle speed is set to 80 km/h and the adhesion coefficient of the road
surface is set to 0.85. The corresponding system inputs to the observer are shown in
Figure 6, and the simulation results of the corresponding SCKF algorithm are compared
with those of the IMM-SCKF algorithm as shown in Figure 7.

Figure 6. Sinusoidal steering condition: (a) observer input, including front wheel angle and four-wheel speed;
(b) vehicle trajectory.

Figure 7. Simulation results of vehicle state under sinusoidal steering condition: (a) longitudinal velocity; (b) lateral velocity;
(c) yaw rate; (d) probability of each IMM’s model.

As shown in Figure 7a, which is a comparison of the longitudinal observation results,
both algorithms have high observation accuracy, but the IMM-SCKF algorithm is able to
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estimate with smaller following error at higher vehicle speed conditions. In Figure 7b
lateral vehicle speed observation, due to the higher vehicle speed, the steering angle is
larger at this time, and the tire enters the nonlinear region, and the lateral force calculation
result has some error with the real result at this time. Therefore, both observers have
certain errors in the steering condition, but the IMM-SCKF algorithm can quickly adjust to
a smaller error model output after the steering condition is over, and the error of the SCKF
algorithm is about 10% at this time. For yaw rate observation, both IMM-SCKF algorithm
and SCKF algorithm have high accuracy, but IMM-SCKF is relatively more resistant to
noise, while UKF algorithm has a certain estimation error of about 15% under large steering
angle conditions.

4.3. Sinusoidal Steering Combined with Braking Conditions

Under this condition, the initial speed is set to 60 km/h, the road adhesion coefficient
is set to 0.85, the brake master cylinder pressure is set to 0.3 Mpa, and the sinusoidal
steering angle is input in Carsim. The corresponding input of the observer is shown in
Figure 8, and the corresponding comparison of the algorithm results is shown in Figure 9.

Figure 8. Sinusoidal steering combined with braking conditions: (a) observer input, including front wheel angle and
four-wheel speed; (b) vehicle trajectory.

Figure 9. Simulation results of vehicle state under sinusoidal steering combined with braking conditions: (a) longitudinal
velocity; (b) lateral velocity; (c) yaw rate; (d) probability of each IMM’s model.
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As shown in Figure 9a, various algorithms can maintain effective tracking of longitu-
dinal vehicle speed, with the IMM-SCKF algorithm having higher accuracy. In the lateral
vehicle speed observation results in Figure 9b, all three algorithms have some errors due
to simultaneous braking in vehicle steering, but the IMM-SCKF algorithm can quickly
switch to adjust the probability of each model and can maintain a small error output with
the reference value. All three algorithms have high accuracy in yaw rate observation, but
IMM-SCKF has a small estimation error.

To further evaluate the estimation effectiveness of the two algorithms, the root mean
square error (RMSE) was used for quantitative analysis and is calculated as follows:

RMSEk(i) =

√√√√ 1
M

M

∑
l=1

(x(l)k (i)− x̂(l)k|k(i))
2

(52)

The calculated RMSE index are shown in Table 2.

Table 2. Comparison of RMSE values under two simulation conditions.

Simulation Condition Parameters UKF SCKF IMM-SCKF

Double-lane change condition
Yaw rate 0.0137 0.0088 0.0007

Longitudinal
velocity 0.0792 0.0622 0.0276

Lateral velocity 0.0303 0.0298 0.0107

Sinusoidal steering condition
Yaw rate 0.0039 0.0005 0.0003

Longitudinal
velocity 0.0052 0.0007 0.0002

Lateral velocity 0.0117 0.0099 0.0041

Sinusoidal steering combined
with braking condition

Yaw rate 0.0012 0.0011 0.0007
Longitudinal

velocity 0.0364 0.0245 0.0128

Lateral velocity 0.4052 0.3729 0.1308

Based on the data in Table 2, the IMM-SCKF algorithm has lower RMSE values under
both operating conditions, according to the above indexes. The IMM-SCKF algorithm
has higher observation accuracy than the SCKF and UKF algorithm, and the state ob-
server of the IMM-SCKF algorithm can better adapt to noise uncertainty and can always
follow the model output with smaller errors. As can be seen from Table 3, the SCKF
algorithm has lower computational complexity and shorter simulation time than the UKF
algorithm, while the IMM-SCKF also shows better computational performance, the actual
consumption of simulation time is the shortest under various operating conditions, and
the algorithm has better real-time performance while ensuring accuracy.

Table 3. Comparison of the actual computing time consumed by various algorithms.

Simulation Condition UKF SCKF IMM-SCKF

Double-lane change condition 6.74 s 4.12 s 3.69 s
Sinusoidal steering condition 5.02 s 3.21 s 2.87 s

Sinusoidal steering combined with braking condition 7.32 s 3.88 s 3.67 s

5. Conclusions

In this paper, we propose an interacting multiple model based on square root cubature
Kalman filter algorithm and apply the algorithm to distributed drive electric vehicle
observation. Experimental validation of the algorithm was carried out using double-
lane change condition with a sinusoidal condition and sinusoidal steering combined
with a braking condition, which can perform accurate estimation of vehicle state based
on less on-board sensor information and can effectively resist the effect of noise. The
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model was designed based on the 3-DOF vehicle dynamics and nonlinear brush tire
model. The interacting multiple model approach allows multiple observers with different
noise covariance matrices to interact with one another, improving the overall algorithm’s
performance against noise uncertainty to some extent, and the observer can always choose
the sub-model with smaller errors for the state output. The co-simulation results show
that the IMM-SCKF algorithm can estimate the vehicle longitudinal, lateral, and transverse
sway motion states well, and its estimated information can provide accurate and reliable
information for the active safety control system.

Future research could include developing a hardware-in-the-loop simulation platform
for vehicle state observation, studying vehicle models with more degrees of freedom and
parameter estimation, and conduct hardware-in-the-loop simulation and real-vehicle tests
to further evaluate the algorithm in terms of real-time and accuracy.
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