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Abstract: Data-driven methods—particularly machine learning techniques—are expected to play
a key role in the headway of Industry 4.0. One increasingly popular application in this context is
when anomaly detection is employed to test manufactured goods in assembly lines. In this work,
we compare supervised, semi/weakly-supervised, and unsupervised strategies to detect anomalous
sequences in video samples which may be indicative of defective televisions assembled in a factory.
We compare 3D autoencoders, convolutional neural networks, and generative adversarial networks
(GANs) with data collected in a laboratory. Our methodology to simulate anomalies commonly
found in TV devices is discussed in this paper. We also propose an approach to generate anomalous
sequences similar to those produced by a defective device as part of our GAN approach. Our results
show that autoencoders perform poorly when trained with only non-anomalous data—which is
important because class imbalance in industrial applications is typically skewed towards the non-
anomalous class. However, we show that fine-tuning the GAN is a feasible approach to overcome
this problem, achieving results comparable to those of supervised methods.

Keywords: machine learning; video anomaly detection; classification; pattern recognition; weakly
supervised learning

1. Introduction

Intelligent models are expected to play a key role in accomplishing the goals of Indus-
try 4.0, which include the evolution of traditional manufacturing systems into intelligent,
automated systems. In this context, research on machine and deep learning has rapidly
dominated applications within the industrial field, especially in the current second level of
Industry 4.0, which is data and intelligence driven [1]. Despite such an apparent success,
machine learning-based solutions deployed into real industrial applications are still few
and mostly conducted by a small group of predominantly large companies [2]. According
to Bertolini et al. [2], production planning and control and defect analysis are examples of
emerging research topics that are already attracting significant academic and industrial
interest which is expected to continue growing in the coming years.

Particularly in problems involving defect identification and classification, visual
quality inspection is an important research topic, and images are among the most common
type of data dealt with. Several studies have proposed solutions supported by automated
image recognition using machine learning for defect detection, such as identifying material
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defects in the selective laser melting of metal powders [3], and the defect classification of
semiconductor fabrication using scanning electron microscope images [4]. However, we
note that the literature has given significantly less attention to the investigation of this kind
of problem using video data.

Although different aspects addressed in works that investigate defect identification
from images may be extremely useful when dealing with video, the latter poses unique
challenges, especially when considering the spatio-temporal patterns of input video se-
quences. In addition, video data are difficult to represent and model due to their high
dimensionality, the presence of noise, and the fact that each video segment may represent a
wide variety of events.

The problem investigated in this paper involves defect identification from video
data. In the assembly line of a TV set manufacturer, the TV’s digital decoders must be
tested to ensure that no defects occur. For instance, some possible defects are: (1) mosaic—
characterized by artifacts of a geometric pattern which may partly or completely block the
video’s frames; (2) freeze—corresponding to consecutive repetitions of the same frame;
(3) frame loss—temporal jumps that skip more than a single frame at a time; and (4) black
screen—when the complete darkening of the screen replaces one or more frames. In order
to better illustrate these defects, Figure 1 shows two different frame sequences, one with
no anomalies (Figure 1a) and another presenting all four defects (Figure 1b).

Figure 1. Example of a regular sequence of frames (a) and an anomalous sequence with simulations
of four types of defects (b).

Detecting defects in video may be considered a special case of video anomaly detection,
since the objective of this task is usually to discriminate positive events from negative and
rare ones. An anomaly is usually an outlier, a non-standard piece of data, such as defects
in surfaces [5]. Anomaly detection may be employed in a wide range of applications,
such as the identification of noisy signals [6], disease classification [7–9], and pest control
through environment surveillance [10,11]. Deep learning-based methods are considered
the state-of-the-art in video anomaly detection [12]. According to Nayak et al. [12], among
the categories of deep learning methods used for video anomaly detection, the most widely
used are supervised and semi-supervised learning. In the first category, convolutional
neural networks (CNNs) built with spatio-temporal layers—e.g., convolutional 3D or
two-stream CNN—are successfully used as video descriptors to provide discriminative
information when labeled data are available. In the second, spatio-temporal auto-encoders,
based on convolutional long short-term memory (ConvLSTM) architecture for instance,
are very popular. These models are trained in a one-class classification (OCC) fashion.
Typically, the models are trained to reconstruct normal videos with high precision, and
when presented to anomalies, they commit high reconstruction errors. That reconstruction
error may be used to decide whether the input video is an anomaly or not.
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Considering semi-supervised learning, more recent attention in the literature has
been focused on the provision of adversarial training by adopting a generative adver-
sarial network (GAN) within anomaly detection [13]. In a typical GAN procedure, the
generator provides fake samples and passes them to the discriminator, which focuses on
distinguishing fake from real samples. The discriminator is trained to be as precise as
possible in assigning correct labels to both real and fake samples, while the generator learns
to provide fake samples realistic enough to confound the discriminator. In the context of
anomaly detection, however, the process is slightly different. The common procedure is
to train one standard GAN using the OCC approach. Hence, only non-anomaly samples
are used to lead the GAN to learn a mapping from the latent space representation to the
samples. Therefore, the generator learns how to generate normal samples. In test time,
since each sample needs to be mapped to the latent space, when an anomalous sample is
encoded, a high discrimination score is expected, while a low score is likely to be indicative
of a non-anomalous sample. It is important to mention that some recent studies present
methods that use both GAN and autoencoders for anomaly detection, as in [14].

Semi-supervised approaches are particularly interesting for defect detection because
they exploit the fact that normal video instances are usually largely available in real
applications, while collecting defect data with sufficient variety, volume, and quality
is generally costly and time-consuming. However, the lack of anomalous samples for
validation may be a drawback to this strategy. GANs can mitigate this problem as they
may successfully generate anomalous samples [13]. Some examples of works proposing
GANs to solve the imbalanced data problem in the manufacturing domain are [15–17]. In
terms of videos, acquiring enough anomalous data is even harder. Consequently, common
supervised deep learning neural network training tasks cannot be carried out. Instead,
GANs may be used to generate the samples of anomalous videos.

In this work, we proposed a novel GAN-based anomaly detection model which learns
to generate samples of anomalous video in a semi-supervised way. The proposed method
requires only normal data and few instances of the non-anomalous class in the training
process. Unlike the traditional GAN whose generator component is composed of fractional
convolutional layers and its loss is calculated by taking into account the discriminator’s
classification, we propose a custom generator component to generate synthetic anomalous
instances from the normal instances. This is performed by inserting anomaly into normal
video instances using transformations such as Gaussian noise, temporal jumps and freezing.
The discriminator loss values are used as an adjustment factor by the generator. The lower
the discriminator loss is, the smoother the defects produced by the generator are. As a con-
sequence, the video samples used to train the discriminator become increasingly “harder”
as the discriminator’s loss reduce during the training process. We do so because, as pointed
by [18], it is important that the discriminator and the generator learn simultaneously, unless
the discriminator does not have ample gradients to update its weights with. Similarly, the
generator must steadily show harder anomalies, otherwise it would not have a generator
competing against the discriminator.

In addition, we introduce in this paper three novel video datasets that simulate real-
world industry-oriented failures. The datasets provide video-level annotations, i.e., a video
is labeled as anomalous or anomalous, but the timestamps of the anomalies within each
video are unknown. We compare the results achieved by our proposed GAN against
five different models. More specifically, four supervised methods: a custom 3D CNN, 3D
ResNet-34 [19], Mobile Video Networks (MoViNet-A2) [20], and Convolution 3D (C3D) [21];
and one semi-supervised method: an autoencoder model composed of residual blocks,
ConvLSTM, and ConvCNN layers, recently proposed in [22].

The remainder of this paper is organized as follows. A short review of the state-of-the-
art involving spatio-temporal deep learning-based methods for video anomaly detection
is presented in Section 2. An in-depth description of the datasets created and the GAN
proposed, as well as the additional models investigated in this paper, is provided in
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Section 3. Section 4 describes experiments and results. Finally, conclusions and future work
are presented in Section 5.

2. Related Work

In this section, we discuss works focused on detecting abnormal events in video,
such as action recognition and surveillance videos. As mentioned in the introduction,
the detection of abnormal events has attracted significant attention in the image process-
ing domain [23] but is not yet a much-explored research issue when video is involved—
especially in the context of industrial applications. Moreover, the most popular approaches
in the literature deal with three-dimensional (3D) data considering 2D images which may
limit detecting temporal (motion) patterns. Therefore, the works described here are spatio-
temporal models, i.e., they simultaneously focus on both spatial (appearance) and motion
features, applied in different tasks. These works are divided into three categories: (1) CNN
based; (2) autoencoders; and (3) GAN based.

2.1. CNN-Based Approaches

The first group of works adopted the most explored technique based on supervised
learning, precisely CNN. These solutions may be divided into two approaches: two-stream
CNN and 3D-CNN.

In [24], Sha et al. proposed extracting spatial and temporal features separately using a
two-stream CNN approach to detect abnormal behaviors in an electrical industry, such as
“illegal cutting” and “running”. DenseNet is the base CNN architecture used in both spatial
and temporal stream networks. The main difference between the two-stream network
members is the input data. The spatial one is the traditional DenseNet working with 2D
standard RGB image frame sequences, while optical flow (DeepFlow) is responsible for
encoding motion information. The extracted optical flow is transformed into grayscale
images and used as input to the temporal stream network. The loss function is focal loss,
which is appropriate for training two-stream CNNs in the presence of imbalanced data.
Considering the fact that two separate models are trained, the final decision is made using
a weighted sum function to combine their predictions. The authors reported that this
two-stream CNN approach performed better than traditional and other deep learning-
based methods. It is also important to mention that the best fusion function trade-off
was obtained by adopting a weight five times higher for the temporal stream network.
However, even though optical flow is widely used to describe motion information, a 3D
convolutional kernel may improve the extraction of temporal patterns.

This is the main focus in [25], whose author proposed a two-stream 3D-CNN archi-
tecture to detect anomalous events in videos. This architecture is also a two-stream CNN
approach composed of a network to handle spatial information and another one to handle
temporal information. Here, however, both networks are 3D-CNNs. More precisely, the
author employed the inflated 3D architecture (i3D) in each stream network. In this type of
architecture, instead of directly creating a network with 3D convolutions, a 2D convolution
network is used, inflating its filters and pooling kernels with the addition of a temporal
dimension. The network responsible for the spatial information accepts an RGB video
as input, whilst the member dealing with temporal information accepts an optical flow
stream as input. Both networks were initialized with weights pre-trained on ImageNet
and Kinetics databases—a large collection of video clips for human action recognition. The
models were then trained and fine-tuned on a customized dataset created to represent
several anomalous events, such as violence, loitering and falling. The final layer of each
network is a Softmax layer used to provide predictions from both models to make a final
decision, which is obtained by the weighted summing of each network’s prediction. The
results showed that transfer learning from a related problem, e.g., action recognition, in ad-
dition to the use of 3D architectures, were the reasons for which this approach outperforms
other architectures. On the other hand, optical flow is an expensive and time-consuming
step, which could be avoided by directly extracting temporal information from raw data.
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The work presented by Wei Lin et al. [26] differs from the two previous approaches as
it does not depend on optical flow. Moreover, rather than using i3D, they directly employ
3D convolutions. The authors proposed a 3D-CNN using 3D ResNet as base architecture
to detect anomalous events in crowd scenes. This architecture works with convolution
layers, adding an extra dimension to the convolution filters to deal with motion patterns
in videos. In addition to 3D ResNet, the proposed method works with a self-attention
mechanism to simultaneously capture temporal and spatial features. This mechanism is
a non-local neural network. However, the model failed when tested on real data, since it
was originally designed using a database composed of synthetic videos generated using
scenes from the Grand Theft Auto V (GTA V) game. As a consequence, the authors applied
a Cyclic 3D GAN to eliminate the difference between the source and target domains, which
was performed using GAN to turn synthetic videos into realistic monitoring videos. The
results showed that the proposed model was able to surpass the simple 3D ResNet adopted
as the baseline, as well as other video classification models such as LSTM, in real and
synthetic databases.

2.2. Autoencoders

Another popular approach to carry out anomaly detection in video is based on deep
autoencoders. These methods are trained with normal data only and are categorized as
semi-/weakly supervised approaches. The reconstruction error is used as a threshold to
detect anomalies because it is expected that the reconstruction error will be lower for the
normal data and higher for the abnormal data. We discussed in this section autoencoder
models focused on providing spatio-temporal representations [22].

In [27], autoencoders are used to detect anomalies in various benchmark datasets such
as anomaly detection in crowded scenes. The authors proposed two different autoencoders:
(1) a fully connected one working with handcrafted features extracted to represent spatio-
temporal information; and (2) a fully convolutional feed-forward autoencoder to learn
spatio-temporal patterns and provide classification in an end-to-end learning framework.
Handcrafted motion features consisting of histograms of oriented gradients (HOG) and
histograms of optical flows (HOF) with improved trajectory capability are computed and
fed as input to the first autoencoder. In its turn, the convolutional feed-forward autoen-
coder is designed to learn regular motion signatures directly from video, avoiding the work
involved in handcrafting. This second autoencoder is composed of: an encoder containing
three convolutional layers and two max pooling layers; and a decoder with a reverse en-
coder structure. Its input is a temporal cuboid obtained by stacking several frames together.
The experimental results showed that both methods reached a competitive performance
compared to other state-of-the-art anomaly detection methods. However, the convolutional
autoencoder showed an advantage since it is not a handcrafted-based approach.

The architecture of convolutional autoencoders has evolved as a consequence of the
evolution of different deep learning techniques. For instance, the authors in [23] proposed
a spatio-temporal architecture capable of detecting anomalies in video using convolutional
long short-term memory (Conv.LSTM) in addition to a convolutional autoencoder (Con-
vAE). The additional component (Conv.LSTM) is responsible for providing both spatial
and temporal information from the input videos. It is also an end-to-end trainable model
whose architecture consists of two encoder–decoder components: (1) a spatial and (2) a
temporal encoder–decoder. In the first, two convolution layers compose the encoder and
there are two deconvolution layers in the decoder part. This first member is designed to
learn the spatial structures of each video frame. The temporal encoder–decoder is placed in
between the encoder and decoder components of the spatial autoencoder. It contains three
Conv.LSTM layers for detecting the motion patterns of the encoded structures. The authors
concluded that the Conv.LSTM layers were suitable to tackle the spatio-temporal data
due to its inherent convolutional structure. They compared this architecture to methods
based on 2D autocoders in various benchmark datasets. The results showed the proposed
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architecture was superior in detecting fewer false negatives. On the other hand, depending
on the complexity of the handled video, the model may produce more false negatives.

ConvAE and Conv.LSTM are also components of the OF-ConvAE-LSTM [28] method,
proposed to detect unusual events in surveillance videos. The difference between OF-
ConvAE-LSTM and the model proposed in [23] is the use of a dense optical flow technique
which is applied to assimilate the speed and direction information of the foreground objects.
The dense optical flow map of each video frame was extracted as a pre-processing step and
fed as input to the model. As in [23], there are two encoder–decoder components (spatial
and temporal) in this architecture. The ConvAE contains two convolution layers in the
encoder and two deconvolution layers in the decoder. The Conv.LSTM layers (three) are in-
between the spatial encoder and decoder parts. Again, the Conv.LSTM layers are expected
to capture the temporal dynamics of video sequences along with spatial information. The
experimental results indicated that OF-ConvAE-LSTM is effective in detecting anomalies
in videos. In addition, the model was able to outperform the oldest approaches. However,
as previously mentioned, optical flow increases the model complexity.

In [22], a spatio-temporal residual autocoder (R-STAE) architecture was proposed
to obtain visual patterns more accurately than other types of deep spatio-temporal au-
tocoders. The R-STAE architecture is composed of layers common in other autocoder
architectures used in video anomaly detection tasks such as: 3D convolution, deconvolu-
tion and Conv.LSTM layers. The difference in R-STAE are the residual blocks added to the
architecture, used to avoid the vanishing gradient problem. The architecture is composed
of three convolution layers and one Conv.LSTM layer in the encoder component, while
the decoder consists of three deconvolution layers and one Conv.LSTM layer. The residual
blocks are located between the encoder and decoder components. As the preceding meth-
ods, R-STAE is built as an end-to-end learning framework guided by the reconstruction
loss. The experimental results on anomaly detection in surveillance videos showed that
the addition of residual blocks to the network helps achieve lower reconstruction loss
compared to the network with no residual blocks. In addition, R-STAE outperformed
other methods considered state-of-the-art. However, due to the different types of layers
involved, the setup of some hyperparameters is difficult and may critically affect the per-
formance of the model. For instance, a very low number of hidden units in the Conv.LSTM
layer can lead to information loss, whilst the opposite can introduce redundancy in the
latent representation.

2.3. GAN Based

Generative adversarial networks (GANs) are gaining popularity in conducting anomaly
detection tasks in a semi-supervised manner. They work by creating structures from normal
data, which represents standard data distribution, since the generator is trained to repro-
duce normal data and the discriminator is used to discriminate normal from non-normal
data. In the context of quality and/or defect classification tasks, GANs may be applied
to increase the minority class of unbalanced datasets, as the so-called data-unbalancing
problem is a typical issue in real industrial applications. In line with this objective, some
works have explored the recent advancements in GAN-based approaches that enable these
models to effectively generate synthetic training data as a way to augment scarce training
sets in manufacturing quality control tasks. The works discussed in this section were
mainly concerned with improving the generator to increase the generation quality, and
consequently, the discriminators’ capability.

For instance, Peres et al. [29] initially performed the traditional GAN approach, which
involves training two networks simultaneously: one generator and one discriminator. The
error signal provided to the discriminator is obtained from ground truth normal instances
indicating whether a sample is real or synthetic. A similar error signal is used to train the
generator (via the discriminator), enabling it to generate synthetic images with improved
quality. The main difference in this work is that it addresses the problem of increasing
data variety and volume in a manufacturing quality control task by applying transfer
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learning from StyleGAN2-ADA [30]. StyleGAN2-ADA is the TensorFlow official GAN im-
plementation, which provides a discriminator adapted with an augmentation mechanism
with the aim of stabilizing training in limited data regimes, accelerating convergence and
reducing data requirements. Their results have shown that the performance reached by the
models trained on the balanced dataset augmented using GANs was not only superior but
also much more harmonized across all classes. Nonetheless, this method was designed
to handle 2D data, which may be deemed to be a limitation, due to the fact that 2D-based
approaches tend to ignore temporal structures.

It is worth noting that GANs can be employed to efficiently generate and reconstruct
videos, reconstruct 3D objects from 2D data and even generate complete 3D models.
In [31], the authors presented an efficient framework able to generate 3D object shapes. In
this work, a 3D-Mask-GAN was used to predict 3D structures from a single-view image.
The framework is composed of three major steps: (1) one image encoder responsible for
receiving a 2D image, which should be compressed and processed; (2) one generator, whose
output is a 3D object created from the 2D input image; and (3) one discriminator network
to distinguish real masks from generated ones. This work differs from previous methods
as the generator is followed by a projector which works with a 4-by-4 transformation
matrix that includes a camera calibration matrix and extrinsic parameters to create 2D
masks to be fed as input to the discriminator. Consequently, the discriminator evaluates
the masks provided by the projector instead of a 3D volume. Even though this method
manages to recreate 3D volumes from 2D shapes, only isolated objects were concerned,
such as the chair, car, plane, etc. This may lead to drawbacks when the entire 3D-scene
evaluation is intended.

Enhancers are important alternatives in this case. These methods try to improve
existing models by using GANs to iteratively enhance raw 3D reconstructed models using
meshes and textures, for instance. One example is 3D-Scene-GAN, proposed in [32]. It is a
weakly semi-supervised framework (labeled real-time 2D images are used) that may be
applied to successfully generate very complicated 3D reconstructed scenes. As in several
current works, the traditional architecture of generator and discriminator models was
used. However, the authors employed a distinct use of data acquisition and processing.
3D-Scene-GAN works by obtaining 2D scene images from reconstructed 3D scenes to
make up pairs of 2D images from reconstructed and real 3D scenes in order to improve
the discriminator model. To obtain the 2D images from the reconstructed scenes, the
reconstructed 3D model is imported into the Blender and OpenDR [33]. A virtual camera
was setup in the Blender with optical parameters as a real camera to collect 2D images
along the real camera trajectory. OpenDR is responsible for mapping 3D models to 2D
images. The results indicated the superior performance of 3D-Scene-GAN when compared
to state-of-the-art 3D reconstruction methods. On the other hand, the required real-time
2D images may be an expensive and time-consuming step.

Similarly to previously mentioned works, in this paper, we also employed GAN to aug-
ment and generate virtually unlimited synthetic training data. Despite being able to create
non-anomalous video instances similar to the target class, a traditional three-dimensional
generator creates non-accurate anomalous videos, especially due to the fact that some
errors, e.g., freezing, black screen and mosaic, can occur at very short intervals. These
limitations of traditional generators, as well as current works available in the literature,
motivated us to propose in this paper an artificial generator to reproduce online anomalies
closer to real anomalies. Our discriminator was designed to learn how to differentiate
between anomaly and normal videos, instead of differentiating between fake and real
instances. The proposed method is detailed in the next section.

3. Materials and Methods

We describe in this section the datasets generated to evaluate the models employed in
this work. Then, we present the proposed GAN as well as other investigated methods.
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3.1. Datasets

We introduced in this paper three novel video datasets that simulate real-world
industry-oriented failures. The datasets are called 60frames, DenserGlitch and The_1R—
listed in their chronological order of acquisition and complexity. Aiming to generate
videos representing the real use-case scenario, the 60frames dataset represents the most
controlled environment since its instances were obtained frame-by-frame. The instances of
the remaining datasets were obtained in real time as the videos were played in one of the
devices used.

All three datasets contain instances from two classes: (1) regular video segments; and
(2) anomalous ones. All samples were generated from a single base video composed of
2399 frames sampled at 30 frames per second, leading to roughly 79 s of duration. The
videos were collected in a controlled environment similar to the one used in the assembly
line producing TV sets. To increase the variability of the data, two different television
manufacturers and screen sizes were used, and the camera was moved around several
times during the capture. It must be noted that none of the datasets contain any real
anomaly. The defects were simulated based on observations of real anomalies. The details
pertaining to each dataset are presented below.

3.1.1. 60frames

A camera Basler acA2500-14uc USB 3.0 equipped with C125-0418-5M-P f4mm lens
was used to generate instances for this dataset. Each frame of the original video was
displayed in the television’s screen and captured by the camera before changing to the next
frame. Taking into account the fact that there were originally 2399 frames, 47,980 frames
were collected for each class, since 10 camera positions were used for each of the two
devices (32-inch and 43-inch screen size). The original resolution of the captured images is
2590 × 1942. However, the following preprocessing steps were conducted: crop—to only
preserve the pixels inside the screen, obtaining an ROI with roughly 1152 × 824 pixels; and
resize to 224 × 224. Only one type of anomaly (mosaic) was simulated before the instances’
capture. Each capture alternated between original frames and frames with the simulated
mosaic so that later on, while constructing the videos, it was possible to insert other defects
in any desired position, allowing the full control of where the anomalies would be placed
and how long they would last.

Defective frames with mosaic were simulated using the glitch-this module, version
1.0.2, randomly alternating the glitches’ intensity between levels 2 and 10. Freezes, by
adding multiple copies of a given frame, and darkened frames are examples of additional
defects simulated after the frames’ capture. In addition, the defects’ duration was randomly
chosen according to a normal distribution with a mean of 12 and standard deviation
of 4, to determines the number of defective frames for each anomaly event. Finally,
the produced frames provided 6240 video segments—among which precisely 4680 are
anomalous instances (75%) and 1560 are normal (25%). Each video is composed of 60 frames,
in order to increase the amount of examples for each class, and the last 30 frames of each
sample overlap with the first 30 samples of the next one. As a consequence, the dataset
was partitioned into training, validation and test sets, taking the frames shared by different
videos of the same camera position into account so that all instances collected with a given
camera position were placed in the same partition.

3.1.2. DenserGlitch

For this dataset, a Basler acA1300-200uc camera was employed due to the need to
collect all frames using 30 frames per second as the sample rate. As a consequence of
this change, the resolution of the captured frames decreased to 1280 × 1024. The mosaic
simulation procedure is also different since it is based on real anomalous instances obtained
through experiments with signal attenuation performed to induce defects. Figure 2 shows
a comparison between real mosaic anomalies (Figure 2a) and those simulated on 60frames
(Figure 2b) and DenserGlitch (Figure 2c) datasets, respectively.
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Figure 2. Examples of anomalous frames showing the real mosaic (a) and the simulated mosaic in
the 60frames (b) and DenserGlitch (c) datasets, respectively.

The same preprocessing steps performed for the previous database were also con-
ducted for this second dataset. An amount of 40 video segments with 10 s was produced.
The video segments were balanced, i.e., 20 presented no anomalies in any frames while
the remaining 20 presented mosaic in all frames. These videos were recorded while being
displayed in the screen of a 43-inch device, allowing the generation of 360 video segments
composed of 60 frames obtained with 50% overlap between the frames of subsequent
samples. When compared to the 60frames dataset, the mosaic simulation was expected to
be more realistic in DenserGlitch. In addition, since the frames were captured by recording
the video while it was displayed, even using a camera with the same sample rate as the
video’s, some slight oscillations of the frame rates can break the sync in a way that the
camera may capture the transition between different frames in the video. This phenomenon
may occur in a real scenario. However, this dataset presents two disadvantages: (1) it is
significantly smaller than the other two datasets; and (2) all anomalous videos contain
defects in every frame, which makes the defect detection problem less challenging.

3.1.3. The_1R

The video capture process for this dataset is similar to the process used to generate
the DenserGlitch dataset, including the same camera. Again, two different screen sizes
and 10 different camera positions were used per device, providing 78 video segments for
each class. The samples were generated using digital image processing before the data
capture. Therefore, 60-frame video segments presenting anomalies added as needed were
provided, allowing the generation of 3120 samples (1560 per class). The 78 anomalous
segments produced for each camera position were equally split into four types of defects.
Besides, the amount of defects in a single video was defined according to the following
proportions: 46% of the samples contained 1 defect, 31% contained 2 defects, 15% contained
3 defects and 8% contained 4 defects. This proportion was empirically defined based on
the observed frequency of each defect in the production line.

To try to prevent possible bias towards some specific type of anomaly, samples with
2 or 3 defects were evenly split for every possible combination of anomalies. The defects’
extension was determined by a normal distribution (µ = 12, σ = 6) truncated in 1. Random
values were generated according to this distribution every time a defect was added, inde-
pendently of its type or the amount of anomalies in a given sample. When adding a defect
in a sample, the starting frame of the anomaly was randomly chosen between the positions
that could allocate the defect’s full length, as determined by the normal distribution.

The anomalies in this dataset were simulated as follows: mosaics as in DenserGlitch;
and freezes and black screens as in the 60frames dataset, except for the fact that all defects
were introduced before the videos’ capture. This way, neighbor frames between freezes or
black screen are slightly different due to tiny oscillations of the camera or other external
factors not controlled during the video capture process. There is also frame loss simulated
by skipping some intermediate frames of the videos, producing temporal jumps. During
the capture, a colorful screen was used to tag the start and end of each 60-frame segment
inside a larger video that was displayed. This strategy allowed the automatic segmentation
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of the long captured video into a series of shorter instances. Additionally, a camera sample
rate oscillations led to unintended events of frame loss in some instances. As a result,
the total length of the samples was reduced to 55 frames to enable using most of the
generated instances.

3.2. The Proposed 3D-GAN

Six different models were investigated in this paper: a proposed 3D-GAN; a custom
3D-CNN; a spatio-temporal autoencoder; 3D ResNet-34; C3D; and MoViNet-A2. The
models 3D ResNet and C3D are considered state-of-the-art methods [34] while MoViNet-A2
is a computation and memory-efficient network recently proposed to cope with streaming
video. Our proposed GAN is detailed in this section and the next section provides a short
summary of the baseline.

We proposed a solution using 3D-GAN whose custom generator is designed to gen-
erate anomalous videos. The discriminator component, on the other hand, learns only
from the normal class data. This way, the proposed method simultaneously generates
the anomalous samples and is capable of anomaly detection. Therefore, instead of the
traditional fake vs. real adversarial competition, anomalous instances generated from the
real ones will be recognized.

When analyzing the results achieved by the classical generator network of a GAN,
we observed that the instances generated were not similar enough to real anomalies.
Regarding this analysis, we decided to build a custom non-neural network-based generator
for providing anomalous videos from the normal ones. This was performed by inserting
the anomaly into normal video instances using two groups of transformations: (1) spatial;
and (2) temporal. The first group was composed of the following transformations:

• Gaussian noise;
• Salt-and-pepper noise;
• Poisson noise;
• Failure in a color channel;
• Defective pixels on display;
• Jitter;
• Digital channel packet loss.

It is important to note that these defects are mainly observed as spatial features.
However, since temporal anomalies can occur in the digital channel problem, the generator
was also responsible for generating the temporal-based defects below:

• Freezing;
• Temporal jumps;
• Black screen;
• Glitch between frames.

All transformations employed by our generator have parameters. For instance, the
Gaussian noise depends on two parameters: mean and variance. Taking into account that
the mean can be considered zero or simply removed, the variance is the only parameter
that controls the noise intensity, i.e., the higher the variance, the higher the severity of
the noise. Another example is the black screen transformation, whose parameter is the
number of black frames to be inserted into the video. In this case, the number of black
frames defines the severity of the anomaly. As explained in the next paragraphs, the
transformation parameters are dynamically adjusted according to the loss provided by the
discriminator network.

Figure 3 shows the learning process of the model. In each cycle, a batch of normal
videos is randomly selected to be fed to the discriminator. The same batch of normal videos
is also provided to the generator, which applies temporal and spatial transformations
to each normal video in order to generate anomalous instances. The generator provides
anomalous videos using the discriminator loss function as an adjustment factor to better
generate these instances. Hence, parameters that determine the severity of the anomaly,
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such as the number of anomalous frames for the black screen transformation and the
variance of the Gaussian noise, vary with the discriminator loss. For instance, the variance
of the Gaussian noise reduces with the loss of the discriminator. Thus, the better the
discriminator, the smoother the generated anomalies will be and the more difficult they
will be to detect. For each type of anomaly, upper and lower limits were defined. Therefore,
both the anomaly types and their parameters are experimentally adjustable.

Normal
samples

Generator

Anomalous
samples

Batch

Batch

3D Discriminator

L
o
s
s

Figure 3. Architecture of the proposed GAN during training. The generator takes normal video
samples and creates anomalous ones. Each training batch contains normal samples and anomalous
samples—75% of which come from the generator and 25% of which come from real data. At each
step of the training, the loss of the discriminator is used to update the discriminator’s weights and
also as a parameter to tune the generator.

In order to extract features only provided by a physical camera as similar as possible
to the actual device used in real tests, a small number of real captured anomalous instances
(equivalent to 25% of the number of normal instances) was used in our method. When
a real anomalous instance was used, a Gaussian smoothing filter was employed before
the instance was fed to the discriminator to prevent possible over-adjustments due to the
differences between real captured instances and the generated instances. Our preliminary
experiments indicated that this process allows the model to achieve better generalization.
In addition, based on observations conducted in the assembly line, the generator chooses
the group of transformations to be inserted into the normal instances according to the
following fixed distribution: 50% for spatial transformations; 30% for temporal transfor-
mations; and 20% for real anomalous instances. The transformations from each group are
randomly chosen.

As mentioned before, the artificial generator uses the discriminator loss function
as an adjustment factor, generating “more complex” anomalous videos as the discrim-
inator learns. Figure 4 shows examples of anomalous frames generated by employing
the Gaussian transformation to a normal frame. The original normal frame is shown in
Figure 4a. Since the noise severity is defined according to the loss of the discriminator, the
anomalous frame in (c) shows high severe noise as a result of the high loss provided by
the discriminator, whilst it becomes more realist and smoother as the discriminator loss
is reduced.

In terms of the discriminator component, Table 1 summarizes its architecture. This
network is composed of 3 convolutional layers with Leaky ReLU as the activation function,
which allows a small and non-zero gradient when the unit is not active. We also added a
dropout hidden layer with a 0.3 dropout rate to mitigate overfitting. Due to the possibility
that the fully connected layers are prone to overfitting, thus hampering the generalization
ability of the overall network [35], we also applied GlobalMaxPooling3D to take the
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maximum value of each feature map. This results in a vector being directly fed into the
sigmoid layer.

Figure 4. Two illustrative examples of anomalous frames obtained by the proposed generator using
Gaussian noise applied to the normal frame in (a). The noise severity is higher at the beginning of
the discriminator learning process, as shown in (c). It becomes smoother and more realistic as the
discriminator loss decreases, as observed in (b).

Table 1. Architecture of the customized discriminator component of the 3D-GAN designed to detect
anomalies in video data.

Layer Input Output

Conv3D (224, 224, 55, 3) (112, 112, 55, 64)

LeakyReLU - -

Dropout - -

Conv3D (112, 112, 55, 64) (56, 56, 55, 128)

LeakyReLU - -

Dropout - -

Conv3D (56, 56, 55, 128) (28, 28, 55, 128)

LeakyReLU - -

Dropout - -

GlobalMaxPooling3D (28, 28, 55, 128) (128)

Dense (128) 1

3.3. Baselines

Four supervised approaches were investigated in this paper: (1) a 3D-CNN we cus-
tomized for the specific-purpose application; and (2) three pre-trained methods: 3D ResNet-
34, C3D and MoViNet-A2. The first model was described in the next section and the remain-
ing CNNs are summarized in Section 3.3.3. Moreover, we also employed a semi-supervised
method: an autoencoder described in Section 3.3.2.

3.3.1. Customized 3D-CNN

The architecture defined for the 3D-CNN is summarized in Figure 5. It is composed
of 5 3D convolution layers, each followed by a max-pooling and a batch normalization
layer. Despite not being clear in the literature whether to use dropout and/or batch
normalization to optimize the model focusing on generalization, our experiments pointed
out batch normalization layers as a better option. It is worth mentioning that similar results
were observed in [36]. Their results indicate that batch normalization improved model
accuracy without considerably increasing the training time. The opposite was observed
when using dropout layers, since these incurred a reduction in the model accuracy of
evaluating anomalies. These authors concluded that batch normalization layers allowed
the model to increase its performance.
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The weights were initialized using Glorot Normal Initialization [37] and the convolu-
tion layers employed the rectified linear unit (ReLU) as the activation function. After the
last convolutional layer, the global average polling 3D process for temporal data is carried
out. In this process, the final normalization of the feature maps is performed to allow each
feature map to be converted into a single value. Then, a dense layer is added after the
Global Average Polling 3D layer. Finally, dropout is used to focus on reducing overfitting.
In addition, since this is a binary problem, the last layer employs sigmoid as the activation
function. Therefore, the prediction reaches values close to 1 when an anomaly is detected
and close to 0 otherwise. Finally, the remaining hyperparameters applied are: cross entropy
and Adam—using a learning rate of 10−4—as the loss function and optimization algorithm,
respectively. All hyperparameters were experimentally tuned.

Figure 5. Architecture of the customized 3D-CNN designed to detect anomalies in video data.

3.3.2. Autoencoder

A semi-supervised learning approach was also investigated in this paper. Precisely, we
employed the spatio-temporal residual autoencoder (R-STAE), recently proposed in [22].
As described in Section 2.2, this architecture is composed of ConvAE and Conv.LSTM
layers, with the addition of residual blocks that result in lower reconstruction errors.

To employ this model using our datasets, the input size was modified to 224 × 224. In
addition, Adam with a learning rate of 10−4 was the optimizer employed, as was performed
for the customized 3D-CNN. The mean squared error (MSE) was used to calculate the
average squared difference between the reconstructed and real frames. This method assigns
a label to the input instance based on the normality score calculated using the equation
below, also employed in [22].

normscore = 1 − (MSE − min(MSE)/max(MSE)) (1)

The normality score values are expected to be higher for normal instances and lower
for the anomalous ones. Hence, the score taken from Equation (1) is compared against an
empirically defined threshold.

3.3.3. Pre-Trained 3D-CNN

• 3D ResNet: The 3D version of ResNet-34 [19] was chosen as one of the baselines in this
paper. The input size, optimizer, and learning rate value were the same as that used
in the previous approaches. The network was built with squeeze-and-excitation[38]
layers, which improves the network resources with small computation overhead but
without increasing the network depth.

• C3D: It is a generic 3D-CNN proposed in [21] to learn video features by modeling
temporal information using pre-trained 3D convolution and 3D pooling operations.
It has 8 convolution layers (3D) and 5 pooling layers. The C3D network was originally
designed for action recognition; however, it is also very effective in other tasks such as
anomaly detection in surveillance videos [34]. In this work, the same hyperparameters
employed for the previous methods were used with this model: input size = 224 × 224;
learning rate = 10−4; and Adam as the optimizer.

• MoViNet-A2: It is a member of a family of computation- and memory-efficient 3D
CNNs (from A0 to A5) recently proposed in [20]. The three first models (MoViNets
A0, A1, and A2) are lightweight methods that can be used on mobile devices. The
model employed in this work is the MoviNet-A2, since the input dimension used
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with the previous baseline models matches its training resolution (224 × 224). Even
focusing on a trade-off between efficiency and accuracy, it is expected that MoviNets-
A2 achieves lower accuracy when compared to the other supervised CNN investigated
in this paper.

4. Experimental Results

Our experiments can be split into two main series. In the first series, all six investigated
deep learning models are compared using the three datasets generated in this work. Then,
the second series is performed by comparing the same six models on an external dataset.
The objective of this second series was to study the behavior of the investigated methods
when trained and tested on a related but different dataset. This analysis is especially
important to test the generalizability as well as the transferability of the representations
learned by the generator component proposed in this paper. First, however, we presented
a description of our experimental protocol.

4.1. Experimental Protocol

The three datasets proposed in this paper are described in Section 3.1. For each dataset,
30% of the samples were reserved as the test partition while the remaining instances were
further divided into training and validation partitions with, respectively, 40% and 30%
of the total samples. The total amount of examples for each dataset was summarized in
Table 2. The samples’ selection for each partition was not random because subsequent
videos of a given camera positioning share frames. Considering the fact that 10 different
camera positions were used for each device in each dataset, data from different positions
were divided into partitions as follows: samples from three positions from each device
for the test set; four different positions for the training set; and the remaining three for
the validation set. This guarantees that all instances from a given camera position would
always be in the same partition, preventing information leaks from the training data to the
testing data. Exploiting this strategy, the experimental results were validated using k-fold
validation (k = 3), choosing different sets of camera positions for each data partition.

Table 2. Amount of instances per partition for each of the produced datasets.

Partition 60frames DenserGlitch 1R Percentage

Train 2496 144 1248 40%
Validation 1872 108 936 30%

Test 1872 108 936 30%

Total 6240 360 3120 100%

The external dataset investigated in the second series of experiments was the Uni-
versity of Houston Camera Tampering Detection Dataset (UHCTD) [39], proposed to test
camera tampering detection methods. Tampering corresponds to an unauthorized or
an accidental change in the view of a surveillance camera. In the UHCTD dataset, this
includes covering, defocusing and intentionally moving cameras with malicious intent
such as committing theft or property damage. In our work, the tampering instances are
grouped to form the anomalous class.

The dataset consists of 576 instances of tampering induced over 288 h of video captured
by two surveillance cameras whose resolutions are 2048 × 1536 and 1280 × 960, respectively.
To maintain the same experimental protocol adopted for the other datasets investigated in
this work, videos were sampled at 55 frames, with 224 × 224 spatial resolution. However,
the data partitioning proposed by the UHCTD authors [39] was maintained, using the
traditional hold-out validation strategy. Hence, after sampling, 30,252 samples of normal
videos and 10,572 samples of anomalous videos were obtained to compose the training set.
For the test set, 60,437 and 21,140 instances composed the normal and abnormal classes,
respectively. In both sets, the class distribution is nearly 3:1, with anomalies comprising
the minority class.
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4.2. Comparing Deep Learning Approaches

The experiments conducted to compare the six investigated approaches achieved the
results summarized in Table 3. Area under the ROC curve (AUC), accuracy, precision and
recall were calculated to determine the performance of the approaches. In addition, the
number of processed frames per second (FPS) was also reported to compare the time cost.
Values in bold indicate the best result in each dataset.

Although the mosaic simulation in the DenserGlitch dataset was expected to be more
realistic, all approaches reached the highest possible performance in this dataset, except
for the autoencoder. The justification for this high performance in DenserGlitch when
compared to the results reached on the other datasets is that DenserGlitch is less complex
in nature, as it presents only one type of anomaly (mosaic) and the anomalous samples
present a mosaic in all frames. For the two datasets presenting temporal and spatial defeats,
the proposed 3D-GAN achieved a better area under the curve and higher accuracy and
recall compared to the supervised methods pre-trained and customized 3D-CNN (cust.
3D-CNN) in the 60frames dataset.

In terms of the 1R dataset, 3D ResNet was superior while 3D-GAN, C3D and cust.
3D-CNN provided equivalent performances. It is interesting to observe the results attained
by MoViNet-A2. Despite being a lightweight architecture, we can see in Table 3 a 12%
accuracy reduction in the 1R dataset compared to the best-performing model (3D ResNet).
However, in the 60frames dataset we see a much larger accuracy difference. It is important
to mention that larger MoViNets (A3–A5) would probably reduce this difference since it has
been shown that MoViNet-A5 attains state-of-the-art results in different applications [20].

Table 3. Comparison among the six deep learning 3D methods experimented upon three datasets.

Dataset Model AUC ACC Precision Recall FPS

DenserGlitch

Cust. 3D-CNN 1.0000 1.0000 1.0000 1.0000 242
C3D 1.0000 1.0000 1.0000 1.0000 196
MoViNet 1.0000 1.0000 1.0000 1.0000 179
3D ResNet 1.0000 1.0000 1.0000 1.0000 229
AutoEncoder3D 0.8333 0.9537 0.9152 1.0000 72
3D-GAN 1.0000 1.0000 1.0000 1.0000 400

60frames

Cust. 3D-CNN 0.9450 0.8660 1.0000 0.8220 476
C3D 0.9772 0.9775 0.9920 0.9779 211
MoViNet 0.7755 0.6631 1.0000 0.5510 215
3D ResNet 0.9714 0.9572 1.0000 0.9429 382
AutoEncoder3D 0.5519 0.7623 0.7705 0.9728 185
3D-GAN 0.9896 0.9909 0.9957 0.9921 240

1R

Cust. 3D-CNN 0.9581 0.9586 0.9984 0.9176 395
C3D 0.9578 0.9579 0.9736 0.9414 181
MoViNet 0.8570 0.8583 0.9988 0.7149 198
3D ResNet 0.9825 0.9826 0.9925 0.9723 217
AutoEncoder3D 0.6892 0.6897 0.8297 0.4756 122
3D-GAN 0.9530 0.9450 0.9930 0.8990 237

These results show that the proposed custom generator module seems to be steadily
beneficial for the anomaly detection task using 3D-GAN, since this approach consistently
achieved high performance in all datasets, even when only using 25% of labeled anomalous
instances, whilst 3D ResNet, C3D, MoViNet and the cust. 3D-CNN were trained using
100% of labeled anomalous instances. This is a very competitive advantage as it avoids the
need for a large set of manually labeled anomalous data.

The results achieved by the autoencoder, on the other hand, were significantly worse
than those of the other five methods. Despite being expected, since autoencoder is an unsu-
pervised approach, we believe this performance may still be increased by better fine-tuning
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the appropriate threshold value. While this method is strongly dependent on such a hyper-
parameter, finding its appropriate value without any validation samples of the anomalous
class is very challenging. In addition, this parameter is totally problem dependent.

In terms of time cost, the customized 3D-CNN is most likely the solution establishing
the best trade-off between the accuracy and time cost. This method reached the highest
FPS in the 60frames and 1R datasets whilst the 3D-GAN was better in the DenserGlith
dataset. In contrast, the autoencoder achieved the worst FPS values in all three datasets.
The MoViNet-A2 model achieved intermediate FPS values. This is due to the fact that this
model is determined by image resolution and FPS values. Therefore, the largest MoViNet
models are able to reach higher FPS.

4.3. Generalization Analysis

The first series of experiments has shown that the generator module proposed in this
work allowed the 3D-GAN to attain comparable and even better results than the supervised
methods, despite only using 25% of the labeled anomalous instances. However, it is not a
general-purpose generator. This may constitute a limitation as the generator cannot easily
fit a various range of problems. In order to analyze this aspect, in this second series, we
conducted experiments using the external dataset UHCTD.

The results shown in Table 4 indicate an order relation between the CNN-based
methods investigated for the UHCTD dataset in terms of performance. C3D reached
the highest AUC, accuracy and precision. Then, 3D-ResNet was slightly better than the
customized 3D-CNN, except in recall. Finally, MoViNet was 8% worse in AUC when
compared to C3D. On the other hand, it provided the highest recall among the CNN-based
methods. All supervised methods outperformed the 3D-GAN model, while, again, the
autoencoder provided the worst results. As expected, the reason for the significantly
degraded performance of the 3D-GAN in UHCTD is probably the problem-dependency of
the custom generator. Especially noteworthy is the recall rate obtained using the 3D-GAN
model, which was the lowest recall performance among all models investigated. This result
indicates how unsuccessful the 3D-GAN was in trying to identify all anomalies. In terms
of FPS, the customized 3D-CNN was also the best approach.

Table 4. Comparison among the six experimented deep learning 3D methods on the external
UHCTD dataset.

Dataset Model AUC ACC Precision Recall FPS

UHCTD

Cust. 3D-CNN 0.9563 0.9530 0.8697 0.9632 489
C3D 0.9828 0.9730 0.9836 0.9110 214
MoViNet 0.9040 0.8644 0.6590 0.9881 222
3D ResNet 0.9572 0.9672 0.9373 0.9363 259
AutoEncoder3D 0.5800 0.7708 0.7385 0.1794 173
3D-GAN 0.6048 0.6177 0.5789 0.0778 278

However, if the generator is customized, e.g., by providing some modifications in the
defects used to generate the anomalous instances, for a specific-purpose application, the
final performance will improve. Taking into account the fact that the 3D-GAN method
used in this paper is semi-supervised, considering all the available data as normal and the
existence of a few anomalous instances to customize and train the generator, the 3D-GAN
approach is highly recommended.

5. Conclusions

In this paper, we propose a GAN-based anomaly detection model by using a custom
generator component to generate samples of videos presenting spatio-temporal defects.
The two components (discriminator and generator) are adversely trained to simultaneously
generate anomalies along with learning to perform anomaly detection. The proposed
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method only requires normal data and few instances of the non-anomalous class in the
training process. We applied our method to three datasets with defects of TV digital
encoding which were introduced in this paper to simulate real-world industry-oriented
failures. Moreover, we investigated the generalizability of representations learned by
the proposed generator in an external dataset created to test camera tampering detection
methods. Finally, we compared the results to a custom 3D CNN model, an autoencoder
model and three pre-trained CNN, precisely C3D, MoViNet and 3D ResNet.

The main results of our experiments successfully demonstrated that the proposed
generator helped the 3D-GAN model to achieve a performance compared to the results of
the supervised state-of-the-art 3D ResNet and C3D, as well as the lightweight MoViNet,
without an increased time cost. However, due to the problem dependency of the proposed
custom generator, we observed a significant degraded performance of the 3D-GAN in
the external dataset. In the future, we will try to extend our approach to be a more
general-purpose method for irregularity detection.
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