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Abstract: Recent advancements in deep reinforcement learning (DRL) have led to its application in
multi-agent scenarios to solve complex real-world problems, such as network resource allocation and
sharing, network routing, and traffic signal controls. Multi-agent DRL (MADRL) enables multiple
agents to interact with each other and with their operating environment, and learn without the
need for external critics (or teachers), thereby solving complex problems. Significant performance
enhancements brought about by the use of MADRL have been reported in multi-agent domains;
for instance, it has been shown to provide higher quality of service (QoS) in network resource
allocation and sharing. This paper presents a survey of MADRL models that have been proposed for
various kinds of multi-agent domains, in a taxonomic approach that highlights various aspects of
MADRL models and applications, including objectives, characteristics, challenges, applications, and
performance measures. Furthermore, we present open issues and future directions of MADRL.

Keywords: multi-agent deep reinforcement learning; reinforcement learning; multi-agent reinforce-
ment learning; deep Q-network; applied reinforcement learning

1. Introduction

Multi-agent deep reinforcement learning (MADRL) is a group of agents (or decision
makers) that interact with each other and their operating environment to achieve goals
in a cooperative or competitive manner. MADRL extends the functions of the traditional
reinforcement learning (RL) and multi-agent reinforcement learning (MARL) with deep
learning (DL), which is the recent advancement of artificial intelligence. DL enables efficient
representation and storage of high-dimensional state, action, and reward using artificial
neural networks (ANN) [1]. Hence, DL addresses the main challenges of RL and MARL,
namely, the curse of dimensionality whereby the exponential increase in the state and
action spaces (or the number of states and actions) increases the storage requirement and
the convergence time (or the number of iterations) to the optimal action due to the large
state and action spaces.

MADRL enables multiple agents to: (a) observe their states (or decision making fac-
tors); (b) exchange knowledge (e.g., immediate rewards [2], Q-values, value functions, and
optimal policies [3]) with neighboring agents; (c) interact with their operating environment;
and (d) learn knowledge on their own and select appropriate actions in the absence of
external critics (or teachers) to supervise the learning process. This enables the agents to
coordinate their actions [4] and achieve system-wide performance enhancement [5].

MADRL has made a breakthrough in recent years due to its ability to solve complex
real-world problems, where traditional RL is unable to cope up with. MARL, in which mul-
tiple agents cooperate or compete with each other, has also shown limitations in resource
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allocation in wireless networks, traffic signal control, flood monitoring, and network rout-
ing [6]. With the rising popularity of MADRL, several surveys have studied MADRL from
different perspectives. Nguyen et al. [7] present the technical challenges in MADRL, such
as moving-target, partial observability, continuous state and action spaces, and transfer
learning. Hernandez-Leal et al. [8] examine the technical challenges of MADRL from the
emergent behaviors, communication, and cooperative learning perspectives. Oroojlooy-
jadid and Hajinezhad [9] review the cooperative setting of MADRL. Da Silva et al. [10]
review knowledge reuse in MADRL. Some literature focuses on theoretical analyses, includ-
ing Zhang et al. [11] and Gronauer and Diepold [12], who reviewed MADRL’s technical
challenges from the mathematical perspective.

This paper extends the existing literature by providing a survey of MADRL algorithms
applied to various state-of-the-art applications, and presenting a taxonomy of MADRL
attributes, including objectives, characteristics, challenges, applications, and performance
measures. The MADRL algorithms are classified, analyzed, and discussed based on
the taxonomy, and their open issues are explained. To the best of our knowledge, our
explanations from these perspectives have not been presented in the literature. Table 1
presents a summary of recent surveys of MADRL in terms of foci, approach, and the
targeted multi-agent environment. The table also shows details about our paper. Ultimately,
this paper aims to outline active and recent research areas in MADRL applications and
motivate future research.

The rest of this paper is organized as follows. Section 2 presents RL and its multi-agent
approaches. Section 3 presents the theory behind MADRL and its representation. Section 5
presents the attributes of MADRL in a taxonomy. Section 6 presents various applications
of MADRL based on the taxonomy. Section 7 presents open issues and future directions.
Section 8 concludes the paper.

Table 1. Summary of the foci, approaches, and targeted multi-agent environments of recent and our surveys.

Reference, Year Foci Approach Multi-Agent Environment

Nguyen et al. (2020) [7] The use of transfer learn-
ing in MADRL approaches
for non-stationarity and
partial observable multi-
agent environments

Deep Learning • Collaborative
• Competitive

Hernandez-Leal et al.
(2018) [8]

An overview of the
MADRL literature on the
use of RL and MARL in
multi-agent environments,
and the computational
complexity of MADRL

Deep Learning • Collaborative

Oroojlooyjadid and Ha-
jinezhad (2019) [9]

Enhancement of MADRL
approaches and algo-
rithms (i.e., independent
learners, fully observable
critic, value function fac-
torization, consensus, and
learning to communicate)

Deep Learning • Collaborative

Da Silva et al. (2020) [10] Transfer learning in
MADRL

Deep Learning • Collaborative
• Competitive
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Table 1. Cont.

Reference, Year Foci Approach Multi-Agent Environment

Zhang et al. (2021) [11] Theoretical analysis of
MADRL convergence
guarantees

Game Theory • Collaborative
• Competitive
• Mixture

Gronauer and Diepold
(2021) [12]

Theoretical analysis of
MADRL approaches in
terms of training schemes
and the emergent patterns
of agent behavior

Deep Learning • Collaborative
• Competitive
• Mixture

This survey MADRL models and algo-
rithms applied to various
multi-agent environments

Deep Learning • Collaborative
• Competitive
• Mixture

2. Background of Multi-Agent Deep Reinforcement Learning: Reinforcement
Learning and Multi-Agent Reinforcement Learning

This section explains RL and MARL, which serve as the fundamentals for MADRL.

2.1. Reinforcement Learning

The traditional RL approach [13], which is formulated based on Markov decision
process (MDP) [8,12,14,15], enables a single agent (or a decision maker) to interact with its
operating environment in a trial and error manner, learn a policy (e.g., a control policy),
and perform sequential decision making for optimizing system performance. One of the
popular SARL (single-agent reinforcement learning) (called RL for simplicity henceforth)
approaches is Q-learning.

In Q-learning, an agent learns action-value functions, and it has three main advantages
in that an agent: (a) models the system performance, instead of individual factors affecting
the performance; (b) does not require prior knowledge about the dynamic operating
environment; and (c) does not require transition probability. Q-learning enables an agent
i to observe state si

t ∈ S and select the best possible action ai
t ∈ Ai at time t, and then

receive an immediate reward ri
t+1(s

i
t+1) at time t + 1. Subsequently, the agent i updates

Q-value Qi
t(s

i
t, ai

t) that represents the appropriateness of taking action ai
t under state si

t for
the state–action pair (si

t, ai
t) as follows:

Qi
t+1(s

i
t, ai

t)← (1− α)Qi
t(s

i
t, ai

t) + α[ri
t+1(s

i
t+1) + γmaxa∈AQi

t(s
i
t+1, a)] (1)

where α ∈ [0, 1] represents the learning rate, γmaxa∈AQi
t(s

i
t+1, a) represents the discounted

reward, and γ ∈ [0, 1] represents the preference for the discounted reward compared to the
immediate reward. A two-dimensional look-up Q-table is used to store |Si| × |Ai| entries of
agent i’s Q-values; hence, the Q-table size increases exponentially with increasing number
of states |Si| and actions |Ai|, particularly in complex operating environments, resulting
in the disadvantages of the curse of dimensionality and longer convergence time to the
optimal action.

Algorithm 1 shows the Q-learning algorithm. An agent i observes the current state
si

t (step 2) and chooses an action ai
t (step 3) at time t. The agent i selects one of the two

types of actions: (a) the exploitation action ai
t = argmaxa∈AQi

t(s
i
t, a) has the maximum

Q-value, and it is chosen to maximize value function vi
π(si

t); and (b) the exploration is a
random action, and it is chosen to discover better actions in order to adapt to the operating
environment. The agent can use techniques such as ε-greedy [16] and the softmax [13]
approach, to achieve a balanced trade-off between exploration and exploitation based on
the dynamicity of the operating environment. The agent i receives immediate reward
ri

t+1(s
i
t+1) (step 4) and updates Q-value Qi

t+1(s
i
t, ai

t) using Equation (1) at time t + 1 (step
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5). The steps are repeated as time goes by. The algorithm assumes a single agent in the
operating environment, and so it optimizes the local performance regardless of the global
performance. Q-learning converges to the optimal Q-value Q∗ when: (a) the environment
has discrete and finite state and action spaces; (b) each state–action pair is observed
infinitely; (c) the sum of the learning rate goes to infinity; and (d) the sum of the squares of
the learning rates is finite [17–19].

There are two main types of RL, namely, temporal difference (TD) [20] (i.e., Q-learning)
and Monte Carlo (MC). Both TD and MC are model-free and learn based on experience
without the need for prior knowledge or the transition probability, and each state and action
must be visited often to ensure convergence. In an MC method, such as the policy gradient
method, the value function vπ(st) is estimated based on the average return received at
the end of each episode. In the TD method, the value function is estimated based on the
reward received at each step, and so it achieves faster convergence [7].

Algorithm 1: Q-learning algorithm.

1: Procedure
2: Observe current state si

t

3: Select action

ai
t =

{
random, if exploration
argmaxa∈AQi

t(s
i
t, a), if exploitation

4: Receive immediate reward ri
t+1(s

i
t+1)

5: Update Q-value Qi
t+1(s

i
t, ai

t) using Equation (1)
6: End Procedure

2.2. Multi-Agent Reinforcement Learning

The traditional MARL approach [21], which is formulated based on a Markov game [22],
enables multiple agents to interact with its operating environment and neighboring agents
in a trial and error manner, learn a policy (e.g., a control policy), and perform sequential
decision making for optimizing system-wide performance. A Markov game is the general-
ization of the MDP in the multi-agent and shared environment; specifically, it represents
the I-agent MDP problem (S, A1 × . . . × Ai, R1, . . . , Ri, P), where I = 1, . . . , i, . . . |I| is a
set of interacting agents solving a cooperative task [23], S is the global state represented
by the set of states observed by the |I| agents, and ai ∈ Ai is an action, as part of the
set of joint action A1 × · · · × Ai, selected by agent i. The transition probability function
P : S× A1 × · · · × Ai → P(S) describes the state transition from st ∈ S to st+1 ∈ S. Each
agent i receives its own reward, given the reward function Ri : S× A1 × · · · × Ai → R
that provides the immediate reward ri

t+1(s
i
t+1) ∈ Ri as a feedback signal for each agent

i. Specifically, (a) each agent i ∈ I observes state si
t ∈ S, and selects and executes action

ai
t ∈ Ai based on individual policy πi : S → P(Ai) at time step t; (b) the environment

transits from the current state st ∈ S to next state st+1 ∈ S; and (c) each agent i ∈ I receives
immediate reward ri

t+1(s
i
t+1) ∈ Ri based on the joint action A1× · · · × Ai and the transition

probability P. Unlike RL, the aim of the agents in MARL is to change their policies in a way
that maximizes expected long-term system-wide rewards in the future.

In Markov games, it is assumed that each agent i observes state si
t that captures

all decision-making information of the system. However, in practice, agents may have
partial observations about the complex environment only, and so they make sequential
decisions under uncertainty. This is referred to as the partially observable Markov game [24]
(commonly called partially observable Markov decision process), which is a generalization
of both Markov game and MDP, represented by (S, O1 A1× . . .×Oi Ai, R1, . . . , Ri, P), where
oi ∈ Oi is the observation of a local state, as part of the global state S, observed by agent i.
Hence, agent i learns individual policy πi : Oi

t → P(Ai) that maps local observations to
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individual actions at time step t. For simplicity, an agent i observation oi
t is represented by

a local state si
t. To solve a Markov game, MARL enables multiple agents to interact with the

operating environment and exchange knowledge (e.g., Q-value Qi
t(s

i
t, ai

t) and immediate
reward ri

t+1(s
i
t+1)) among themselves, to learn the best possible joint policy π(a1

t , . . . , ai
t|st)

in order to achieve global optimization in a collaborative manner as time goes by.
While the state transition in RL is attributed to the environmental dynamics of an agent

only, the local state transition in MARL is attributed to both environmental dynamics and
the non-stationary policies of neighboring agents learning at the same time. Hence, each
agent’s actions can cause further dynamicity in the operating environment. This problem
is called moving target [25], whereby an agent’s best possible policy can affect other agents’
performances, hence their policies, since all agents select and take their respective actions
simultaneously in a shared operating environment. In this case, the convergence property
of MDP no longer applies, so the single-agent RL approach may not converge when it is
applied in a multi-agent environment. Knowledge exchange enables agents to consider
their own and others’ performances in order to address the moving target problem. The
knowledge sharing feature of MARL has the advantage of achieving higher scalability,
because a complex system-wide optimization problem can be decomposed into a set of
distributed problems solved by individual agents in a distributed manner with faster
learning [26,27].

Algorithm 2 shows the MARL algorithm. MARL enables an agent i ∈ I to observe its
state si

t ∈ Si (step 2), exchange knowledge (steps 3 and 4), and select the best possible action
ai

t ∈ Ai at time t in an independent manner (step 5), and then receive an immediate reward
ri

t+1(s
i
t+1) at time t + 1 (step 6). Subsequently, agent i updates its Q-value Qi

t+1(s
i
t, ai

t) using
the Q-function (step 7) as follows:

Qi
t+1(s

i
t, ai

t)← (1− α)Qi
t(s

i
t, ai

t) + α[ri
t+1(s

i
t+1) + γ ∑

j∈N
ηi,jmaxaj∈AQj

t(s
j
t+1, aj)] (2)

where ∑j ηi,j = 1, ηi,j represents the importance of neighboring agent j ∈ Ji at agent i, and
Ji represents a set of agent i’s neighboring agents. The joint action at = (a1

t , . . . , ai
t, . . . , aN

t )
generates immediate reward rt+1(st+1) = (r1

t+1(s
1
t+1), . . . , ri

t+1(s
i
t+1), . . . , rN

t+1(s
N
t+1)) and

converges to the optimal joint action as time goes by.

Algorithm 2: MARL algorithm.

1: Procedure
2: Observe current state si

t ∈ S

3: Send Q-value Qi
t(s

i
t, ai

t) to neighboring agents Ji

4: Receive maxaj∈AJ Qj
t(s

j
t, aj) from agent j ∈ Ji

5: Select action

ai
t =

{
random, if exploration
argmaxa∈AQi

t(s
i
t, a), if exploitation

6: Receive immediate reward ri
t+1(s

i
t+1)

7: Update Q-value Qi
t+1(s

i
t, ai

t) using Equation (2)
8: End Procedure

There are two types of MARL systems [12]: (a) the cooperative environment in
which each agent maximizes ri

t+1(s
i
t+1) ∈ R as part of the global reward R in order

to maximize the system performance; and (b) the competitive environment in which each
agent maximizes its own local reward, which may minimize neighboring agents’ rewards,
rather than the global reward, and so the sum of rewards of all agents equal to zero
R = ∑N

i=1 Ri
(

si, ai, si′
)
= 0 [28]. This is also known as the zero-sum Markov game [29].



Appl. Sci. 2021, 11, 10870 6 of 40

3. Multi-Agent Deep Reinforcement Learning

This section explains MADRL, which serve as the fundamentals for the discussion
in Section 6.

3.1. Deep Reinforcement Learning

DRL addresses the shortcomings of RL and MARL—particularly the curse of dimen-
sionality, whereby storing knowledge in a tabular manner is unable to cater for large scale
and complex problems—by using neural networks as function approximators to generalize
and approximate the value function. Deep Q-network (DQN), which is a value-based
method is a popular single-agent DRL approach [30]. Using DQN, a single agent: (a) ad-
dresses the curse of dimensionality using DNN to represent and store states, actions, and
knowledge; and (b) ensures convergence and increases the convergence rate to the optimal
joint action (or increases the learning speed) using distinguishing features, particularly
replay memory and target network. This enables DQN to solve complex problems. For
instance, in [31], DQN was embedded in a centralized agent to gather global information
from distributed agents, learn, select optimal actions, and then send the selected actions
back to the distributed agents that performed the selected actions.

The MADQN approach, as shown in Figure 1, consists of multiple agents interacting
with the operating environment and with each other. Each agent is based on the single-
agent DQN approach. Hence, each agent in the multi-agent environment has: (a) a main
network with a fully connected DNN to provide Q-value Qi

t(s
i
t, ai

t; θi); (b) a target network,
which is a duplicate of the main network, to provide a stable target for learning; and (c) a
replay memory to store the agent’s experiences. The fully connected DNN has: (a) the
input layer which consists a set of neurons to receive a state that consists of substates;
(b) the hidden layer; and (c) the output layer which consists a set of neurons to provide the
Q-value Qi

t(s
i
t, ai

t; θi) of each possible action ai
t ∈ Ai. Each link between neurons ki and ji

has a weight wk ji, and the output of neuron ki is as follows:

yi
k = ϕ(

m

∑
j=0

wi
kj.x

i
j) (3)

where ϕ is an activation function (e.g., sigmoid function); the input xi
j is assigned a weight

wi
kj representing its importance compared to other inputs (xi

0, . . . , xi
j, . . . , xi

m). DQN has
two types of networks that use the fully connected neural network architecture, namely,
the main network and the target network. The main network produces Q-values for all
the possible actions Ai in its output layer, and the action ai

t with the maximium Q-value is
selected during exploitation. The target network, which is a duplicate of the main network
every C steps, produces a stable target for learning.
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Figure 1. An example of a MADQN architecture. Two agents exchange information (e.g., Q-values) used to update their
respective Q-values. Each agent observes and stores its state and reward from the operating environment in replay memory
for training, and selects its own action. Agent 1 is enlarged to show: (a) the replay memory; (b) the main network that
produces Q-values for all possible actions given a particular state; and (c) the target network that produces a stable target
used to compute the loss of the selected action.

Algorithm 3 shows the DQN algorithm. There are two main phases. During the action
selection phase, the agent i observes the current state si

t (step 3) and chooses an exploitation
or exploration action ai

t (step 5) at time t. The agent i receives immediate reward ri
t+1(s

i
t+1)

and next state si
t+1 (step 6), and stores the transition (or experience) (si

t, ai
t, ri

t+1(s
i
t+1), si

t+1)

in its replay memory Di
t (step 7). During the training phase, the agent i selects a mini-batch

of samples randomly from its replay memory Di
t to train the main network (step 8). The

agent i calculates a target yi
j using a target Q-value Qi

j(s
i
j, ai

j; θi,−), which is generated using

the target network θi,−, over several steps j = 1, . . . , N (step 10). The target network θi,− is
a duplicate of the main network θi. The target yi

j is used to compute the loss Li
j(θ

i) of the

selected action ai
j; and the loss Li

j(θ
i), which is expected to reduce as time goes by, is used

to train the main network (step 11). The loss Li
j(θ

i) is calculated as follows:

Li
j(θ

i) = Esi
j ,a

i
j∼p(.)[(y

i
j −Qi

j(s
i
j, ai

j; θi))2] (4)
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where p(s, a) is the probability distribution of a state–action pair. The agent i performs
gradient descent on the loss Li

j(θ
i) and updates the weight of its main network θi. The

gradient of the loss function ∇θi Li
j(θ

i) is as follows:

∇θi Li
j(θ

i) = Esi
j ,a

i
j∼p(.):si

j+1∼ε[(y
i
j −Qi

j(s
i
j, ai

j; θi)∇θi Qi
j(s

i
j, ai

j; θi)] (5)

Algorithm 3: DQN algorithm.

1: Procedure
2: for episode = 1 : M do
3: Observe current state si

t
4: for time t = 1 : T do
5: Select action

ai
t =

{
random, if exploration
argmaxa∈AQi

t(s
i
t, a; θi), if exploitation

6: Receive immediate reward ri
t+1(s

i
t+1) and next state si

t+1
7: Store experience (si

t, ai
t, ri

t+1(s
i
t+1), si

t+1) in replay memory Di
t

8: Sample a minibatch of N experiences (si
t, ai

t, ri
t+1(s

i
t+1), si

t+1) from replay
memory Di

t
9: for step j = 1 : N do
10: Set target

yi
j =

{
ri

j+1(s
i
j+1), if episode m terminates

ri
j+1(s

i
j+1) + γmaxaQi

t(s
i
j+1, a; θi,−), otherwise

11: Perform gradient descent on (yi
j −Qi

t(s
i
j, ai

j; θi))2 with respect to main

network parameters θi using Equation (5)
12: end for
13: Perform θi,− = θi every C steps
14: end for
15: end for
16: End Procedure

3.2. Multi-Agent Deep Q-Network

The multi-agent deep Q-network (MADQN) is based on DQN, and so it uses DNN to
address the curse of dimensionality, and replay memory and target network to increase
the convergence rate to the optimal joint action. Most importantly, MADQN extends the
single-agent DQN approach. Multiple agents exchange knowledge among themselves in
order to achieve global optimization in a collaborative manner, and so it addresses the
moving target problem. Knowledge exchange enables agents to consider their own and
neighboring agents’ performances [32].

Algorithm 4 shows the MADQN algorithm. MADQN enables an agent i ∈ N to
observe its state si

t ∈ Si (step 3), exchange knowledge (steps 4 and 5), perform steps 5 to 13
in Algorithm 3, and update its Q-value Qi

t+1(s
i
t, ai

t) using the Q-function (step 9). The agent
uses the exchanged knowledge (i.e., Q-value) to calculate the Q-value of each state–action
pair as follows [33]:

Qi
t+1(s

i
t, ai

t) = (1− α)Qi
t(s

i
t, ai

t; θi) + α[ri
t+1(s

i
t+1)

+γmax
a∈Ai

Qi
t(s

i
t+1, a; θi,−)−Qi

t(s
i
t, ai

t; θi)]

+ ∑
j∈N

ηi,jQj
t−1(s

j
t−1, aj

t−1; θ j)

(6)

The traditional DQN approach and MADQN approaches have been applied in a
multi-agent environment with centralized and distributed agents. The traditional DQN
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approach can be embedded in the centralized agent to: (a) gather data, information, or
observations from distributed agents; (b) learn from the gathered data and update Q-values
to maximize the expected long-term system-wide rewards; and (c) send optimal actions
to the distributed agents, which execute the optimal actions accordingly. For achieving
scalability, DQN can be embedded in the distributed agents with two assumptions [34]:
(a) each agent ignores the presence of the rest of the agents’ actions and assumes that
they are part of the operating environment; and (b) the changes of the rest of the agents’
actions in response to each agent’s actions being part of the dynamicity of the operating
environment. Unfortunately, these assumptions can cause instability, particularly when
the rest of the agents start learning and their actions become non-stationary, causing the
agents to fail to converge on the optimal joint action. Hence, MADQN enables agents to
exchange knowledge with each other and learn the best possible actions in order to achieve
scalability (O.5).

MADQN can be embedded in distributed agents so that each of them is aware of
the rest of the agents. To enable this, agents exchange knowledge and use it to update
their respective Q-values, Qi

t+1(s
i
t, ai

t; θi), based on a weighted sum of delayed rewards or
value functions from themselves and neighboring agents using Equation (6), where Ji is
a set of agent i′s neighboring agents, and ηi,j represents the importance of neighboring
agent j at agent i. For instance, with ∑j ηi,j/|Ji|, the Q-value for neighboring agent j
has an equal effect on an agent i′s Q-value Qi

t+1(s
i
t, ai

t; θi). Therefore, the agents select
their respective actions while ensuring that the global Q-value converges to a unique and
optimal equilibrium. The agents may exchange knowledge via direct communication or
through prediction. For instance, the agents create the models of the operating environment
and neighboring agents to predict their Q-values. As an example of an extension to DRL,
MADRL uses actor–critic networks [35,36]. Each agent has unique actor and critic networks:
(a) the critic network corrects the immediate reward using temporal difference; and (b) the
actor network updates the Q-values using the temporal difference. Table 2 highlights the
differences between RL methods and their convergence criteria.

Table 2. A summary of comparisons between MADQN and other preceding approaches.

Method Description Advantages Disadvantages Convergence Criteria

RL A single agent interacts
with the operating en-
vironment to learn the
optimal policy, such as
the action-value func-
tion (or Q-value) in Q-
learning

• Models the sys-
tem performance
instead of indi-
vidual factors af-
fecting the perfor-
mance

• Does not require
prior knowledge
about the dy-
namic operating
environment

• Does not require
transition proba-
bility

• Not suitable
for distributed
agents in
multi-agent
environments

• Suffer from the
curse of dimen-
sionality

• Discrete and finite
action state spaces

• Each state–action
pair is observed
infinitely

• The sum of the
squares of the learn-
ing rates is finite
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Table 2. Cont.

Method Description Advantages Disadvantages Convergence Criteria

MARL Multiple agents ex-
change knowledge
with each other and
interact with the op-
erating environment
to learn the optimal
policy

• Agents exchange
knowledge to
solve complex
tasks

• Ensures global op-
timization in the
multi-agent envi-
ronment

• Higher com-
plexity com-
pared to RL

• Knowledge must be
exchanged and pro-
cessed with a cer-
tain level of recur-
rence to ensure sta-
bility among agents

DQN A single agent interacts
with the operating
environment to learn
the optimal policy
using DNN with ex-
perience replay and
target network, which
addresses the curse
of dimensionality
(or high-dimensional
state–action spaces)

• Has efficient
representation
of states, actions,
and knowledge

• Uses target net-
work to provide
stable Q-value for
learning in order
to ensure conver-
gence

• Uses replay mem-
ory to provide
experiences for
learning in or-
der to improve
convergence rate

• Not suitable
for distributed
agents in the
multi-agent
environment

• Higher mem-
ory and
computation
requirements
compared to
RL and MARL

• Replay memory
must be of large
size to ensure inde-
pendent transitions
among samples,
and break sample
correlations [37]

• Small network
parameters so that
agents focus on
important aspects
and achieve a faster
convergence [38]

MADQN Multiple agents ex-
change knowledge
with each other and
interact with the op-
erating environment
to learn the optimal
policy using DNN
with experience replay
and target network,
which addresses the
curse of dimensionality
(or high-dimensional
state–action spaces)

• Agents exchange
knowledge to
solve complex
tasks

• Ensures global op-
timization in the
multi-agent envi-
ronment

• Has efficient
representation
of states, actions,
and knowledge

• Uses target net-
work to provide
stable Q-value for
learning in order
to ensure conver-
gence

• Uses replay mem-
ory to provide
experiences for
learning in or-
der to improve
convergence rate

• Higher com-
plexity com-
pared to RL,
MARL, and
DQN.

• Replay memory
must be of large
size to ensure inde-
pendent transitions
among samples,
and break sample
correlations [37]

• Small network
parameters so that
agents focus on
important aspects
and achieve a faster
convergence [38]

• Knowledge must be
exchanged and pro-
cessed with a cer-
tain level of recur-
rence to ensure sta-
bility among agents
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Algorithm 4: MADQN algorithm.

1: Procedure
2: for episode = 1 : M do
3: Observe current state si

t
4: Send Q-value Qi

t(s
i
t, ai

t) to neighboring agents Ji

5: Receive maxaj∈AQi
t(s

j
t, aj

t) from agent j ∈ Ji

6: for t = 1 : T do
7: Preform steps 5 to 12 in Algorithm 3
8: end for
9: Update θi,− = θi every C steps
10: Update Q-value Qi

t+1(s
i
t, ai

t) using Equation (6)
11: end for
12: End Procedure

The convergence criteria of RL are not similar to those in MADRL, due to the non-
stationarity of multi-agent environments [12]. Nevertheless, some works [21,39,40] have
shown that the convergence criteria of RL can also be applied to a multi-agent environment.
However, the underlining assumption of these works is that agents learn equally (i.e.,
actions and rewards of all agents are observable), which may not be possible practically [41].
Due to the complexity of multi-agent environments, most MADRL models and algorithms
show convergence empirically. Convergence in cooperative MADRL using a single learning
algorithm has been shown in [42,43]. In practice, there is lack of investigation on the
convergence of MADQN [18,44,45], although the convergence rate has been shown to be
higher for policy gradient methods (e.g., proximal policy optimization [46]) and actor–
critic methods (e.g., asynchronous advantage actor–critic (A3C) [47]) as compared to
value-based methods (i.e., DQN). The traditional DQN approach has been extended to
several variants. For instance, double DQN reduces the overestimation issues [48] of the
traditional DQN approach, and the dueling-DQN architecture decomposes the Q-value
into two learning parts (i.e., state value and advantage value) and combines them in the
final layer to estimate Q-value [49]. Moreover, in continuous environments (e.g., physical
control), policy gradient methods such as deep deterministic policy gradient (DDPG)
enhance the traditional DQN approach by slowly updating the target network rather than
directly copying the weights (or network parameters), as seen in the traditional DQN
approach. Additionally, A3C improves the training efficiency of the traditional DQN
by enabling parallelized asynchronous training, in which multiple tasks can be solved
simultaneously [50].

4. Research Methodology

The literature search was conducted using relevant search keywords shown in Table 3.
There are three main topics, namely, general topics related to this research area, single-
agent approaches applied in multi-agent environments, and multi-agent approaches. Our
search identified 28 related papers in four widely used literature databases: Web of Science,
ScienceDirect, Multidisciplinary Digital Publishing Institute (MDPI), and IEEE Xplore
Digital Library. The selected papers presented DRL models and algorithms, including
multi-agent approaches and single-agent approaches applied in multi-agent environments.
The selected papers had to present the DRL designs and applications, along with a simu-
lation and empirical results. Based on the related papers, there are 12 categories of DRL
approaches that have been applied in a multi-agent environment. As shown in Figure 2,
nine papers explain the use of the SADRL approach in a multi-agent environment; three
papers explain the SADRL approach in a hierarchical multi-agent environment; three
papers explain the MADRL approach with actor–critics applied to distributed entities; two
papers explain the SADRL approach with actor–critics applied to centralized entities in
a hierarchical multi-agent environment; and one paper explains each of the rest of the
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categories. Subsequently, we review the enhancements and performance of the traditional
SADRL and MADRL approaches with a taxonomic approach to highlight various aspects
of the enhancements, including objectives, characteristics, challenges, applications, and
performance measures.

Table 3. Search keywords and their topics

Topic Keyword

General • Markov decision process (or MDP)
• Applied reinforcement learning

Single-agent approaches
applied in multi-agent en-
vironments

• Single-agent deep reinforcement learning (or
SADRL)

• Deep reinforcement learning (or DRL)
• Deep Q-network (DQN)
• Q-learning
• Actor–critic network

Multi-agent approaches • Multi-agent learning
• Multi-agent system
• Multi-agent optimization
• Multi-agent deep reinforcement learning (or

MADRL)
• Multi-agent deep Q-network (MADQN)
• Knowledge sharing
• MADRL applications
• MADRL convergence
• Cooperative MADRL
• Competitive MADRL

Figure 2. Categories of related papers in the literature.

5. Attributes of Multi-Agent Deep Reinforcement Learning

This section presents the taxonomy of MADRL attributes, as shown in Figure 3.
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Figure 3. Taxonomy of MADRL attributes.

5.1. Objectives

MADRL has been applied to achieve the following objectives in the literature:

O.1 Higher stability ensures the convergence to the optimal joint action. It mitigates
instability caused by several factors: (a) the dynamic and unpredictable operating
environment; and (b) the dynamic and unpredictable actions are taken in a simulta-
neous (or nonsequential) manner by multiple agents. As an example, in order to
improve the stability of the multi-agent environment: (a) distributed agents apply
knowledge from the centralized entity to select their respective actions [35]; and
(b) a common reward is given to distributed agents to encourage cooperation among
themselves [51].

O.2 Higher learning (or convergence) speed reduces the number of iterations required
to converge to the optimal joint action in the presence of large state and action
spaces. As an example, in order to improve the learning speed in a multi-agent
environment: (a) distributed agents select samples based on their priorities from the
replay memory, whereby learned samples are prioritized, and redundant samples
are removed [52,53]; and (b) distributed agents prioritize knowledge received from
adjacent agents and scale down knowledge received from non-adjacent agents in
order to increase the effects of local knowledge which is more correlated with their
local states.

O.3 Lower complexity reduces the computational and hardware implementation complex-
ities of DNN in multi-agent environments. It addresses the complexity of learning
among distributed agents and the large number of iterations required for training
(e.g., computing the value function). As an example, in order to reduce complex-
ity in a multi-agent environment: (a) distributed agents segregate and distribute
a complex task among themselves according to their respective capabilities [35];
and (b) the loss function of each training step is sampled and differentiated with
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respect to network parameters in order to update the Q-network with reduced
complexity [52].

O.4 Lower signaling overhead reduces the frequency of message exchange between cen-
tralized and distributed entities. It addresses the increase of message exchange
when the system size grows. A lower signaling overhead has been shown to reduce
co-channel interference and improve fairness among distributed agents in wireless
networks [52]. As an example, in order to reduce signaling overhead in a multi-
agent environment: (a) distributed agents transfer the complex training process to
the centralized entity [52]; and (b) the centralized entity gathers data from selected
distributed agents rather than all of them [35].

O.5 Higher scalability enhances a system with a large number of agents. It addresses
the challenges of segregating a centralized scheme and the need of exchanging a
large amount of knowledge or information [35]. For example, distributed agents
select a subset of states from a large complex set of states [35]. Higher scalability
helps to improve various aspects of a system with a large number of distributed
agents, including achieving a higher learning speed, a lower complexity, and a
lower signaling overhead.

5.2. Characteristics

MADRL possesses the following characteristics in the literature:

X.1 Collaborating entities represent the agents that share knowledge in a multi-agent
environment as follows:

X.1.1 Neighboring agents indicates that an agent shares knowledge with neighbor-
ing agents only.

X.1.2 All agents indicates that an agent shares knowledge with all agents in
the environment.

X.2 Relationship indicates the relationship between agents in a multi-agent environment
as follows:

X.2.1 Competitive indicates that agents compete with each other for network
services or resources (e.g., transmission opportunities).

X.2.2 Collaborative indicates that agents collaborate with each other to achieve a
common goal.

X.3 Centralized entity represents the centralized controller with a higher amount of
resources (e.g., higher computing power) to perform centralized and complex tasks
in a multi-agent environment. Thus, distributed agents perform distributed and
simple tasks.

X.3.1 Involvement from the centralized entity indicates that the centralized controller
performs complex tasks in a centralized manner.

X.3.2 Non-involvement from the centralized entity indicates that distributed agents
perform complex tasks in a distributed manner.

5.3. Challenges

MADRL has been applied to address the following challenges in the literature:

C.1 Ultra-densification is attributed to the presence of a large number of agents (e.g., user
devices) in the operating environment. Consequently, it affects the capability of
multiple agents to exchange knowledge among themselves in a shared operating
environment. For instance, in [35], the centralized entity performs learning by
gathering data from a predefined number of neighboring distributed agents, and
distributes knowledge to them so that they can select actions independently.

C.2 High dynamicity is attributed to the rapid changes of the operating environment
(e.g., due to high mobility of agents), including states and rewards. Consequently, it
affects learning and decision making. For instance, in [6], historical information (i.e.,
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actions) related to distributed agents are part of the input information (i.e., state) of
the DNN in order to adapt to the highly dynamic operating environment.

C.3 High dimension is attributed to the presence of a large state and action spaces. For
instance, in [54], distributed agents receive knowledge about each other (e.g., de-
layed rewards and Q-values), use a function approximator to store and keep track
of a smaller number of features instead of a large number of state–action pairs, and
then use them to select their respective actions.

5.4. Applications

The main applications of MADRL in the literature are as follows:

A.1 Resource allocation and sharing enable agents to allocate and manage resources, such
as distributed renewable energy sources (e.g., power grids) [55], and meet system
demands in a distributed manner. In [35], in a wireless network, a node pair,
which is a distributed agent, selects its operating channel for device-to-device
(D2D) communication in a distributed manner. D2D enables neighboring nodes
to communicate with each other directly without passing through a base station.
MADRL can mitigate the instability of a multi-agent environment, whereby a
centralized entity learns and shares learned knowledge with the node pairs, who
subsequently make decisions independently. This helps to increase throughput.
In [56], in a home network, a controller switches on or off home appliances based on
their activities in the past 24 h and the user’s presence to meet the user’s resource
(i.e., energy) demands and reduce resource consumption. MADRL addresses ultra-
densification in which resources are limited in the presence of a large number of
distributed agents. The centralized agent learns and performs action selection rather
than the distributed agents, which also helps to increase energy efficiency.

A.2 Traffic signal control in vehicular networks enables traffic signal controllers at inter-
sections to manage and control traffic, such as selecting traffic phases (e.g., the
north–south and west–east bounds) following traffic rules (e.g., vehicles cannot
make a right turn) for reducing congestion at intersections [57,58]. In [33], traffic sig-
nal controllers select their respective traffic phases in a distributed manner. MADRL
addresses the ultra-densification and high dynamicity challenges using actors and
critics that share knowledge (i.e., historical actions) with neighboring distributed
agents cooperatively in order to select their respective actions. This helps to reduce
the congestion level.

A.3 Network routing enables source nodes to establish routes and send packets to destina-
tion nodes in networks with dynamically changing traffic patterns. In [6], MADRL
addresses the ultra-densification, high dynamicity, and high dimension challenges
by learning based on historical knowledge while making optimal decisions in route
selection. This helps to reduce latency.

A.4 Flood monitoring enables distributed agents to sense and monitor water levels based
on real-time data to predict the complex flood levels [59,60]. In [61], multiple aircraft
update their respective positions in a distributed manner, enabling them to predict
and report water levels at different locations. MADRL addresses the challenge of
high dimension by enabling the distributed agents to share a common reward in a
cooperative manner. This helps to increase the accumulated reward.

A.5 Service migration enables intelligent devices, such as connected vehicles, to offload
computing-intensive tasks (e.g., video and data processing, route planning, and
traffic management in networks) from resource-limited distributed entities (e.g.,
vehicles and local servers) to centralized entities (e.g., edge servers at the edge
of the network, and data centers) with extensive computing resources in order to
achieve the expected service level. In [62], a service entity chooses whether or not
to offload tasks to edge servers based on the utility (e.g., latency and energy) of a
vehicle. MADRL addresses the ultra-densification and high dynamicity challenges
by enabling distributed agents to share knowledge (i.e., historical actions) with
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neighboring distributed agents cooperatively in order to select their respective
actions. This helps to reduce latency.

A.6 Games enable agents to achieve the goals of games, such as winning the games
or increasing human players’ engagement. In [63], two players select their move-
ments (i.e., up or down) in a pong game. MADRL addresses the challenge of high
dynamicity using a common reward received after winning a game to encourage
cooperative behavior among the players. This helps to increase the accumulated
rewards.

5.5. Performance Measures

MADRL has been applied to improve the following performance measures in the literature:

P.1 Lower outage (or blocking) probability reflects the reliability of a system to sustain
its normal operation (e.g., achieving a required data rate in networking) based on:
(a) internal factors (e.g., a higher amount of internal resources reduces the outage
probability [31]); and (b) external factors (e.g., a communication channel with a lower
interference level reduces the outage probability [35]).

P.2 Higher accumulated reward increases the total immediate rewards received by agents
over time [35].

P.3 Higher quality of service reflects better system performance, such as higher throughput [35],
lower end-to-end delay (or shorter packet delivery time [6]), and lower blocking
probability (or the probability of an agent being denied of services due to poor
system performance) [31].

P.4 Higher energy efficiency reduces energy consumption of devices, such as sensors and
smart sockets embedded in wireless modules [64]. A balanced adjustment of on-time
and off-time during the peak and non-peak times, respectively, increases energy
efficiency [56].

P.5 Higher fairness reflects an equal distribution of network resources among distributed
agents. A centralized entity may pool together network resources from distributed
agents to provide shared network resources [52,65].

P.6 Lower congestion levels reduces the congestion caused by the high traffic volume
during peak hours or due to disturbances (e.g., rainfalls) in traffic networks [66,67].

6. Application of Multi-Agent Deep Reinforcement Learning: State of the Art

This section presents the state-of-the-art MADRL approaches proposed for a diverse
range of applications. This section also presents an application of the traditional DRL
approach (or the single-agent deep reinforcement learning (SADRL) approach), in a multi-
agent environment. Table 4 presents a summary of MADRL attributes applied to the
state-of-the-art applications. In Table 4, the non-involvement of centralized entity attribute
is not shown because MADRL has been applied to all distributed agents in multi-agent
environment. Table 5 presents a summary on how the MADRL models in Section 6 extend
the traditional MADRL.

6.1. SADRL Applied to Distributed Agents in a Multi-Agent Environment

The traditional SADRL approach (see Section 3.1) has been applied in distributed
agents to handle large state and action spaces. For instance, the resource allocation
scheme (A.1) in [51,68–70] address the challenge of high dynamicity (C.2) and enhance the
throughput performance (P.3) of distributed agents in 4G networks. Using the SADRL
approach, distributed agents: (a) do not exchange local information among themselves, and
so the signaling overhead is reduced (O.4); and (b) use a lesser amount of data, including
states and actions, for learning, and so it increases scalability (O.5) with a lower compu-
tational complexity. Nevertheless, applying SADRL in distributed agents has two main
shortcomings, whereby distributed agents: (a) are unstable and unable to converge to the
optimal joint action; and (b) are unable to solve complex tasks due to limited information.
Hence, various approaches have been proposed. For instance, Nan et al. enable distributed



Appl. Sci. 2021, 11, 10870 17 of 40

SADRL agents to use historical knowledge to ensure stability (O.1) in [69], and Arjit et al.
detects missing data for improved reliability of medical image analysis in [71]. The rest of
this section presents the SADRL approaches applied to multi-agent environments.

6.1.1. Chen’s SADRL Approach in a Multi-Agent Environment

In [31], Chen et al. embedded SADRL in brokers to select routes across multiple
domains from source nodes to destination nodes based on the local operating environment
of the domains, and reserve resources (i.e., bandwidth) along the routes in multi-domain
optical networks (A.3). The brokers maximize their individual rewards in a competitive
(X.2.1) manner. Each domain is an independent network with its own local operations, rules,
and management. The proposed approach addresses the challenge of high dynamicity
(C.2) due to the dynamic condition of the network, whereby the bandwidth availability
changes with the demands from the domains and inter-domain routes.

Each broker i represents state si
t with a four-tuple information, including: (a) the

source and destination node pair; (b) bandwidth request of the route; (c) the number of
routes served by a domain in the current episode; and (d) the available bandwidth of each
candidate route. The action ai

t represents a selected route. The reward ri
t+1(s

i
t+1) = 1 is

awarded when the selected route is established successfully; otherwise, ri
t+1(s

i
t+1) = −1.

The traditional SADRL approach has been shown to increase accumulated reward (P.2) and
reduce blocking probability (P.3).

6.1.2. Vila’s SADRL Approach in a Multi-Agent Environment

In [72], Vila et al. embedded SADRL in base stations to select physical resource
blocks, particularly the available radio resources, for sharing with other base stations
efficiently (A.1). The base stations maximize the global reward in a collaborative (X.2.2)
manner. The proposed approach addresses the challenge of high dynamicity (C.2) due to
the dynamic condition of the environment, whereby the amount of traffic load varies with
the transmission power and frequency of the operating channel.

Each base station i represents state si
t with a two-tuple information, including the

number of occupied and available physical resource blocks, respectively. The action ai
t

represents selected resource blocks. The reward ri
t+1(s

i
t+1) represents the degree to which

the network performance requirements are satisfied. The traditional SADRL approach has
been shown to increase throughput (P.3).

6.1.3. Shilu’s SADRL Approach in a Multi-Agent Environment

In [63], Shilu et al. embedded SADRL in mobile nodes to offload compute-intensive
tasks (A.5) to a centralized entity (i.e., the base station) (X.3.1) based on their computational
resources and the delay incurred in traffic offload. The mobile nodes maximize the global
reward based on the shared information from base stations in a collaborative (X.2.2) manner.
The proposed approach addresses the challenges of ultra-densification (C.1) caused by
a large number of mobile nodes, and high dynamicity (C.2) due to the high mobility of
mobile nodes.

Each mobile node i represents state si
t with a four-tuple of information, including: (a)

computational tasks; (b) the delay incurred in traffic offload; (c) the available computational
capacity of the base station; and (d) the energy consumption of the base station, which
has limited energy, for processing computational tasks uploaded from mobile nodes. The
action ai

t represents whether to perform computational tasks locally or offload them to
base stations. The reward (or cost) ri

t+1(s
i
t+1) represents the delay incurred. The traditional

SADRL approach has been shown to reduce delay (P.3).
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Table 4. Summary of MADRL approaches applied in various state-of-the-art applications.

MADRL Approach Reference, Year Objective Characteristic Challenge Applications Performance Measure
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SADRL applied to distributed agents

Chen et al. (2019) [31] × × × × ×
Vila et al. (2020) [72] × × × ×
Shilu et al. (2020) [63] × × × × × ×
Ruoyun et al. (2020) [73] × × × ×
Shing’s et al. (2019) [56] × × × × ×
You et al. (2019) [6] × × × × × × ×
Zhao et al. (2019) [54] × × × × × × × ×
Luis et al. (2021) [74] × × × × × × ×
Chen et al. (2021) [75] × × × × × × ×

SADRL for hierarchical MA environ-
ment

Donghan et al. (2020) [76] × × × × × × × ×

SADRL with AC applied to central-
ized entities in hierarchical MA envi-
ronment

Li et al. (2019) [35] × × × × × × × ×
Ishan et al. (2020) [52] × × × × × ×
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Table 4. Cont.

MADRL Approach Reference, Year Objective Characteristic Challenge Applications Performance Measure

SADRL with AC applied to dis-
tributed entities in hierarchical MA
environment

Chen et al. (2019) [77] × × × × × ×
Xu et al. (2020) [70] × × × × × ×
Zou et al. (2019) [78] × × × ×

MADRL with AC applied to dis-
tributed entities

Chu’s et al. (2019) [79] × × × × × × × × ×
Hurmat et al. (2020) [80] × × × ×
Li et al. (2021) [81] × × × × ×

MADRL using target updated with
neighboring agents’ states and actions

Wu et al. (2020) [36] × × × × × × × × ×
Qingyong et al. (2020) [82] × × × × × × ×

MADRL using target updated with
neighboring agents’ Q-values

Ge et al. (2019) [33] × × × × × × × × ×

Bootstrapping MADRL Tian et al. (2020) [83] × × × × × × ×

MADRL with shared reward Baldazo et al. (2019) [61] × × × × × × ×

MADRL with action discovery strat-
egy

Lei et al. (2019) [55] × × × × × ×

Distributed MADRL with hierarchi-
cal characteristics

Yu et al. (2020) [84] × × × × × ×

MADRL with concurrent learn-
ing

Elhadji et al. (2017) [85] × × × × ×
Zhang et al. (2020) [86] × × × × × × ×
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Table 5. Summary of MADRL extensions and their advantages.

MADRL Approaches Description Advantages

Actor–critic • Agent has unique actor–critic networks, in
which: (a) the actor network predicts Q-
values; and (b) the critic network provides
a stable target for learning

• Suitable for environments with centralized en-
tity and distributed agents, in which: (a) the
centralized entity gathers experiences from
distributed agents, stores them in a replay
memory, learns, and distributes the weights
of the actor networks to distributed agents

• Overcomes the shortcomings
of separate centralized and
distributed entities

• Achieving higher scalability
(O.5) and stability (O.1), and
a lower signaling overhead
(O.4) and less complexity
(O.3)

MADRL with knowledge
exchange

• Distributed agents exchange knowledge with
neighboring agents (X.1.1), estimate Q-values,
and select their own actions

• Provides a partial observation
of the operating environment
since the agents collaborate

• Achieving a higher learning
speed (O.2) and stability (O.1)

Bootstrapped MADRL • Distributed agents perform multiple actions
and learn at the end of an episode rather than
right after taking an action

• Suitable for distributed agents to share the
critic network for learning and use the main
network for action selection

• Achieving a higher learning
speed (O.2)

MADRL with action dis-
covery

• Distributed agents explore, evaluate, and
store explored actions for training

• Distributed agents use a cost function to ex-
plore more actions when seeking optimal ac-
tions, and use potential functions to replace in-
appropriate actions with newly explored ones

• Achieving a higher learning
speed (O.2)

MADRL with concurrent
learning

• Distributed agents with different decision-
making capabilities select their own actions to
achieve a common global goal, in which they
receive joint states and rewards

• Achieving a higher stability
(O.1)

6.1.4. Ruoyun’s SADRL Approach in a Multi-Agent Environment

In [73], Ruoyun et al. embedded SADRL in a service function chain (SFC), which
is a chain of connected network services, to migrate virtual machines (VMs) to a data
center based on the energy consumption and delay requirements of SFC users. The data
center possesses virtual network functions (VNFs), including virtualized routers, firewalls,
and network address translation services (A.5). The SFCs maximize the global reward
that directs an SFC to a common target in a collaborative (X.2.2) manner. The proposed
approach addresses the challenge of high dynamicity (C.2) due to the dynamic condition
of the traffic.

Each SFC i represents state si
t with a two-tuple information, including the amount of

resources required from VNF and the amount of VNF resource remaining. The action ai
t

represents whether or not to migrate VMs to VNF, and if yes, which VNF to migrate to.
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The reward (or cost) ri
t+1(s

i
t+1) represents the delay incurred by the nodes. The traditional

SADRL approach has been shown to increase energy efficiency (P.4).

6.1.5. Shing’s SADRL Approach in a Multi-Agent Environment

In [56], Shing’s et al. embedded SADRL in controllers to serve resource-limited
distributed entities (e.g., home appliances, sensors, and smart sockets). There are two
main mechanisms. Firstly, the controllers gather data from some distributed entities (i.e.,
based on the activities of home appliances), rather than all distributed entities, to reduce
signaling overheads (O.4) and resource consumption of the resource-limited distributed
entities. This helps to increase scalability (O.5). Secondly, the controllers perform adaptive
learning since they receive updates (i.e., rewards) over a long time period (i.e., after one
day from action selection and execution), and subsequently switch on/off home appliances
based on their activities to improve the comfort of user experience in home area networks
(A.1). The controllers maximize the global reward to ensure a comfortable level in a
collaborative (X.2.2) manner. The proposed approach addresses the challenge of ultra-
densification (C.1) caused by a large number of sensors, including smart sockets [64],
motion sensors, temperature sensors, and door sensors.

Each controller i represents state si
t with a four-tuple information, including: (a) the

high-conflict state, whereby switching an appliance on or off can cause a major conflict
to user experience; (b) the possible conflict state can cause a moderate conflict to user
experience; (c) the low-conflict state can cause a minor conflict to user experience; and
(d) the battery state, including the residual energy and the energy consumption in the past
24 h. The action ai

t represents: (a) whether or not to switch on a home appliance when
its state is either high-conflict or possible conflict; (b) when to switch on or off a home
appliance when its state is low-conflict; and (c) whether to charge or discharge the battery
based on its battery state. The reward ri

t+1(s
i
t+1) represents: (a) the idle time when the

home appliance is switched off in the high-conflict and possible conflict states; and (b) the
energy cost, the peak value of energy consumption, and the peak-to-average ratio of energy
consumption based on the battery state when the home appliance is switched on in the
low-conflict state. The traditional SADRL approach has been shown to increase energy
efficiency (P.4).

6.1.6. You’s SADRL Approach in a Multi-Agent Environment

In [6], You et al. embedded SADRL in distributed agents, which are the source and
intermediate routers, to find the optimal route to the destination router independently
based on routing metrics (i.e., the number of hops and reliability of a route) (A.3). The
agents maximize their individual rewards in a competitive (X.2.1) manner. The key feature
is that distributed agents observe local states and learn from historical knowledge (e.g.,
previous actions), rather than exchanging knowledge with neighboring agents, which
reduces the signaling overhead (O.4), and hence increasing scalability (O.5). The proposed
approach addresses the challenges of: (a) ultra-densification (C.1) caused by a large number
of node pairs; (b) high dynamicity (C.2) due to the dynamic condition of the operating
channels (i.e., the changes of the traffic patterns); and (c) high dimension (C.3) with large
state and action spaces.

At each transmission opportunity, the source router i represents state si
t with a two-

tuple information: (a) the destination router of the current packet and the next packet; and
(b) the historical actions (i.e., the selected action executed right before the current action) of
the source router i. The action ai

t represents a selected neighboring (or next-hop) router j.
The reward ri

t+1(s
i
t+1) represents the total queuing time at router i and the transmission

time to the selected next-hop router. Each agent i find the optimal route to minimize the
average packet delivery time. The traditional SADRL approach has been shown to reduce
end-to-end delay (P.3).
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6.1.7. Zhao’s SADRL Approach in a Multi-Agent Environment

In [54], Zhao et al. embedded SADRL in user equipment (UEs) to select and associate
itself with one of the base stations (A.1) that provides the best possible transmission
opportunities (i.e., operating channels and time slots) for data transmission based on
channel quality (i.e., the signal-to-interference-plus-noise ratio (SINR) levels). The UEs
measure and report the SINR level of their selected operating channels to centralized
entities (X.3.1), which are the associated base stations. The associated base station gathers
data from neighboring distributed agents and distributes it to UEs. This enables UEs to
learn and select actions based on network-wide data. The UEs maximize their individual
rewards in a competitive (X.2.1) manner. The proposed approach addresses the challenges
of high dynamicity (C.2) due to the dynamic condition of the operating channels, and large
state spaces (C.3) with the large number of UEs in a heterogeneous environment.

For each UE i, the state si
t represents whether or not the QoS requirements are met. The

action ai
t represents a transmission opportunity, which includes the base station, operating

channel, and time slots. The reward ri
t+1(s

i
t+1) includes: (a) utility, which is a positive value

covering the selected base station and the transmission power; and (b) an action selection
cost, which is a negative value. The reward is applicable whenever the SINR of agent i
meets the minimum QoS requirements; otherwise, the reward is a negative value. The
traditional SADRL approach has been shown to increase throughput (P.3), and to reduce
computational complexity (O.3) and the communication overhead (O.4).

6.1.8. Luis’s SADRL Approach in a Multi-Agent Environment

In [74], Luis et al. embedded SADRL in a centralized agent, which is the centralized
controller, to coordinate the trajectories of distributed agents, which are autonomous
surface vehicles (ASV), based on whether an area has been visited or not within a time
period in order to monitor the contamination level of an area of water resource (A.4). The
agents maximize the global reward in a collaborative (X.2.2) manner. The ASVs select
the next movement and report it to the centralized controller (X.3.1). The centralized
controller guides the ASVs by rejecting possible disturbances using the experiences of
all ASVs. The key feature is that distributed agents observe local states and learn from
common experiences rather than exchanging knowledge with neighboring agents, which
reduces the signaling overhead (O.4), and hence increasing scalability (O.5). The proposed
approach addresses the challenges of high dimension (C.3) due to the large state–action
spaces with a large number of ASVs in the multi-agent environment, and the dynamic
condition of the operating channels, and the large state spaces (C.3) with a large number of
ASVs in a heterogeneous environment.

For each ASV i, the state si
t represents a 3-channel (RGB) image of the area of water

resource. The action ai
t represents the ASV movements, which include perpendicular

(i.e., N, S, E, W) and diagonal (i.e., NE, SE, SW, NW) movements. The reward ri
t+1(s

i
t+1)

represents a positive value when the trajectory of the ASV covers the area of water resource.
Higher reward is received by the agent i when it chooses action ai

t that: (a) visits areas of
water resource which have not been visited within a long time period; (b) does not cause
collision with other ASVs; and (c) does not move out of the monitoring area.

The proposed approach extends the traditional SADRL approach so that the decoupled
and fully connected output layer of the DNN of the centralized agent can represent the
action ai

t ∈ Ai where i ∈ AN . Each distributed agent has the same sets of actions and
rules (or constraints), and each of its experience (si

t, ai
t, ri

t+1(s
i
t+1), si

t+1) is shared with the
centralized agent, contributing to the training process equally. The centralized agent uses
batches of experiences shared by all agents during memory reply. The proposed approach
has been shown to increase accumulated reward (P.2).

6.1.9. Chen’s SADRL Approach in a Multi-Agent Environment

In [75], Chen et al. embedded SADRL in a centralized agent, which is the roadside
units (RUs), to control the mobility of distributed agents, which are autonomous vehicles
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connected to the RUs, based on traffic conditions in order to manage the congestion
level in vehicular networks (A.2). The agents maximize their individual rewards in a
collaborative (X.2.2) manner. The autonomous vehicle sends local information (e.g., speed,
location, lane position, and intention) to the RUs (X.3.1). Each RU gathers data from a set of
autonomous vehicles connected to it and neighboring RUs, and then distributes global data
back to the vehicles. This enables autonomous vehicles to learn based on local and network-
wide data. The key feature is the use of dense rewards, which is received at each time step
instead of when a vehicle exits a ramp, contributing to an increased learning speed (O.2).
The proposed approach addresses the challenges of ultra-densification (C.1) caused by a
large number of autonomous vehicles connected to a RU, and high dynamicity (C.2) due
to the dynamic condition of the road traffic pattern.

Each RU i represents state si
t with three information: (a) node features containing

speed, position, location, and moving direction; (b) the vehicular network topology; and
(c) the set of autonomous vehicles connected to the RU. The action ai

t represents a lane
change (i.e., change to the left or right lane, or keep in the current lane). The reward
ri

t+1(s
i
t+1) represents a positive value when vehicle moves to appropriate lanes. The

proposed approach has been shown to reduce congestion levels (P.6).

6.2. Donghan’s SADRL Approach for a Hierarchical Multi-Agent Environment

In [76], Donghan et al. embedded SADRL in a centralized agent, which is the cen-
tralized controller, to coordinate the traffic phases of distributed agents, which are traffic
lights (A.2), based on traffic conditions in order to manage the congestion level. The agents
maximize their individual rewards in a competitive (X.2.1) manner. The key features are
that: (a) distributed agents use neighboring agents’ knowledge from the last time step
rather than the current time step, which increases stability (O.1) and learning speed (O.2);
and (b) the centralized agent forwards knowledge to distributed agents according to their
roles and positions in the multi-agent environment, which ensures higher scalability (O.5).
The proposed approach addresses the challenges of high dynamicity (C.2) due to the dy-
namic condition of the road traffic pattern, and high dimension (C.3) with a large number
of state–action pairs characterizing the large numbe of vehicles at an intersection.

At an intersection, the traffic light i, which is a distributed agent, represents state si
t

with a four-tuple information, including: (a) the cumulative delay of the first vehicle in
each incoming lane; (b) the total number of vehicles along each incoming lane within a
distance (e.g., 50 m) from an intersection; and (c) the historical Q-values. The action ai

t
represents a selected traffic phase. The reward (or cost) ri

t+1(s
i
t+1) represents the queue

length of vehicles along each lane.
The proposed approach extends the traditional MADRL approach with two main

mechanisms. Firstly, each agent has an enhanced communication-learning mechanism
with three main blocks to overcome the shortcomings of partial observations among
distributed agents: (a) the information extract block extracts relevant information from
high-dimensional raw data, and uses local states and Q-values of the distributed agents in
the last time step rather than that in the current time step to increase robustness against
delay; (b) the information exchange block has a centralized agent that learns the significance
of the information of each distributed agent, and sends the information to the rest of
the distributed agents; and (c) the policy learning block predicts the Q-values of the
actions of each distributed agent based on the observations and information gathered
by the information extract and exchange blocks. In short, this mechanism enables each
distributed agent to use relevant information based on its significance. Secondly, an
enhanced communication among agents. The hierarchical approach provides three main
advantages: (a) provides the abstraction of complex problems; specifically, agent i learns
from relevant information rather than high-dimensional raw data; (b) enables agent i to
learn over temporal spans using knowledge from the last time step; and (c) provides
the segregation of agents into smaller groups based on their capabilities (i.e., roles and
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positions), which naturally helps to decompose complex problems into smaller ones. The
proposed scheme has been shown to reduce the congestion level (P.6).

6.3. SADRL with Actors and Critics Applied to Centralized Entities in a Hierarchical
Multi-Agent Environment

DRL can be implemented using actor and critic networks, in which an agent i has: (a) a
critic network to calculate the temporal difference (TD)-error, which represents the quality
of agent i’s current action, based on the states and actions of all distributed agents; and
(b) a actor network to update its Q-values or policy using temporal difference, rather than
the immediate reward. The actor–critic approach has been shown to expedite learning.

In Figure 4, the centralized entity i gathers the (si
t, ai

t, ri
t+1(s

i
t+1), si

t+1) experience from
distributed agents N = I, stores it in a replay memory Di, learns, and distributes learned
knowledge (i.e., the weights of the actors µ) to distributed agents. At each time step, the
centralized entity i selects a random set of experiences from the replay memory D and
updates four networks as follows:

• Actor network µ = (µ1(s1|θ
µ
1 ), . . . , µI(sI|θ

µ
I )) is parameterized by weight θµ = (θ

µ
1 , . . . , θ

µ
I ).

It updates the weight θ
µ
i of agent i using sampled policy gradient according to ∇θ

µ
i

Ji =

Es,a∼D[∇ai Qi(s, a|θQ
i )|ai=µi(si)

]∇θ
µ
i
µi(si|θ

µ
i ) where Ji = E[Ri] and E represents envi-

ronment.
• Target actor network µ′ = (µ′1(s1|θ

µ′

1 ), . . . , µ′I(sI |θ
µ′

I )) is a copy of the actor network that

updates the weight θ
µ′

i ← τθ
µ
i + (1− τ)θ

µ′

i slowly (e.g., with a small τ = 0.01 value)
to ensure convergence.

• Critic network Q = (Q1(s, a|θQ
1 ), . . . , QI(s, a|θQ

I )) is parameterized by weight θQ =

(θQ
1 , . . . , θQ

I ). It updates the weight θQ
i of agent i by minimizing its loss Loss(θQ

i ) =

Es,a,ri ,s′ [(Qi(s, a|θQ
i )− yi)

2] where yi = ri + γQ′i(s
′, µ′(s′|θµ′

)|θQ′
i ).

• Target critic network Q′ = (Q′1(s, a|θQ′
1 ), . . . , Q′I(s, a|θQ′

I )) is a copy of the critic network

that updates the weight θQ′
i ← τθQ

i + (1− τ)θQ′
i slowly.

Algorithm 5 shows the SADRL with actors and critics approach embedded in the
centralized entity. The critic uses the (si

t, ai
t, ri

t+1(s
i
t+1), si

t+1) experience from agent i to
calculate the temporal difference δi

t(s
i
t, ai

t) of the state–action pair of agent i. Subsequently,
the temporal difference δi

t(s
i
t, ai

t) is used by the actor to update the Q-value Qi
t+1(s

i
t, ai

t).

Algorithm 5: Actor-Critic RL algorithm.
1: Procedure
2: /*Critic*/
3: Observe current state si

t
4: Select action ai,∗

t
5: Receive immediate reward ri

t+1(s
i
t+1)

6: Calculate temporal difference δi
t(s

i
t, ai

t)
7: /*Actor*/
8: Update Q-value Qi

t+1(s
i
t, ai

t)
9: End Procedure

SADRL with actors and critics can be applied to centralized entities (X.3.1) to receive
experiences from distributed entities, and coordinate the operations of both centralized and
distributed entities. This approach addresses the shortcomings of separate centralized and
distributed entities. For increasing scalability (O.5), the centralized agent: (a) gathers data
from some distributed agents, rather than all distributed agents, to reduce the signaling
overhead (O.4) [35]; and (b) uses less data for learning to reduce the computational load [35].
For increasing stability (O.1), the centralized agent considers the distributed agents to
take actions in a sequential manner [35]. For reducing the signaling overhead (O.4), the
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distributed agents do not exchange local information among themselves [35]. For reducing
complexity (O.3) and increasing learning speed (O.2), the centralized agent performs the
complex learning task, rather than the distributed agents [35].

Li’s Hybrid SADRL Approach with Actors and Critics

In [35], Li et al. embedded SADRL with actors and critics in the centralized agent,
which is the base station shown in Figure 4. The agent maximizes individual rewards
in a competitive (X.2.1) manner. The centralized agent gathers experiences (including the
channel information, such as channel quality and interference levels) from a predefined
number of neighboring distributed agents, learns, and distributes learned knowledge (i.e.,
the weights of the actors) to distributed agents, which are the transmitter and receiver
node pairs (or links) (X.3.1). Based on the knowledge given by the centralized agent, the
distributed agents select their resources (i.e., the transmission opportunities characterized
by the operating channel, the time of transmission, and the transmission power) for D2D
communication so that they can communicate with each other directly without passing
through the base station while meeting the SINR constraint (A.1). Node pairs use different
operating channels to reduce interference, and to increase the reliability and capacity of
both cellular communication (i.e., between the node pair and the cellular base station) and
D2D communication if they are physically close with each other. The node pairs can reuse
the same operating channels to improve spectral efficiency if they are far apart from other
node pairs. The proposed approach addresses two challenges: (a) ultra-densification (C.1)
caused by a large number of node pairs; and (b) high dynamicity (C.2) due to the dynamic
condition of the operating channels.

Figure 4. The centralized entity gathers experiences from agents 1 . . . i . . . I, stores them in its replay
memory, and performs training. Shown in the figure is one of the distributed agents, namely, agent i,
that performs action selection.

Consider a predefined set of all distributed agents N maintained by the centralized
agent, and a predefined set of neighboring distributed agents I ∈ N. Each D2D node pair
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(or link) i represents state si
t with a four-tuple information, including: (a) the channel infor-

mation of the link i; (b) the channel information of the cellular link; (c) the interference level
of the D2D link n at the previous time instant t− 1; and (d) the transmission opportunity
of the D2D link n at the previous time instant t− 1. The action ai

t represents a transmission
opportunity at time t. The reward ri

t+1(s
i
t+1) = log(1 + ξ i

t) represents the link rate of the
D2D link i, where ξ i

t represents the SINR of the receiver of the D2D link i based on the
Shannon capacity. The reward is applicable when the SINR of cellular nodes is higher than
a predefined threshold; otherwise, the reward is a negative constant value.

Each distributed agent receives the weights of the target actor µ′n(sn|θµ′
n ) from the

centralized entity, observes its state sn
t , selects action at

n independently, and receives reward
ri

t+1(s
i
t+1). Subsequently, the agent i sends the (sn

t , an
t , rn

t+1(s
n
t+1), sn

t+1) experience to the
centralized entity for subsequent learning. The SADRL with actor and critic networks
approach has been shown to increase accumulated reward (P.2) and throughput (P.3), and
reduce outage probability (P.1).

A similar approach has been applied in the literature [52]. In [52], Ishan et al.,
use this approach so that multiple distributed agents (i.e., node pairs) with different
channel conditions can select their resources (i.e., transmission opportunities) for D2D
communication (A.1), which helps them to achieve fairness (P.5) among the distributed
agents and co-exist in a dynamic environment.

6.4. SADRL with Actors and Critics Applied to Distributed Entities in a Hierarchical
Multi-Agent Environment

This section presents the use of SADRL to distributed agents so that they can learn
independently without the help of the centralized entity (X.3.2).

6.4.1. Chen’s SADRL Approach with Actors and Critics

In [77], Chen et al. embedded SADRL with actors and critics in distributed agents, which
are the users, to select their resources (i.e., channels with transmission opportunities) (A.1)
based on their own observations without knowing the channel states of other agents and
exchanging information with other agents, while reducing the signaling overhead (O.4).
The agents maximize their individual rewards by selecting the best possible channels in
a competitive (X.2.1) manner. The proposed approach addresses the challenge of ultra-
densification (C.1) caused by a large number of node pairs, and high dynamicity (C.2) due
to the dynamic condition of the operating channels.

Each user i employs a separate set of actor and critic networks. The user i represents
state si

t with the availability of its own channels. The action ai
t represents the selected

channel. The reward ri
t+1(s

i
t+1) is based on the SINR of the selected channel and whether

a collision has occurred or not. The SADRL with actor and critic networks approach has
been shown to increase throughput (P.3).

A similar approach has been applied in the literature [70]. In [70], Xu et al. embedded
this approach in distributed agents (i.e., users) to select their resources (i.e., operating
channels) (A.1) based on the the successful and unsuccessful (e.g., collision) transmissions,
while addressing the challenges of ultra-densification (C.1) caused by a large number
of users and high dynamicity (C.2), in order to increase throughput (P.3). Distributed
agents store important (or prioritized) observations, which have less noise in the channel as
estimated by a channel estimator, in the replay memory to increase the learning speed (O.2).
Long Short Term Memory (LSTM) is used to predict the next state based on historical
information (i.e., historical states and actions).

6.4.2. Zou’s SADRL Approach with Actors and Critics

In [78], Zou et al. embedded this approach in distributed agents (i.e., D2D links)
that select their resources (i.e., channels with transmission opportunities) (A.1) based
on channel quality and interference levels in order to meet the co-channel interference
constraint. The proposed approach addresses the challenges of ultra-densification (C.1)
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caused by a large number of UEs, and high dynamicity (C.2) due to the dynamic condition
of the operating channels.

Each D2D link i represents state si
t with historical knowledge, particularly selected

actions in the past. The action ai
t represents the selected time frames for transmission.

The reward ri
t+1(s

i
t+1) represents the number of sub-time frames that can be used by the

agent i, and the penalty when a collision occurs. Each D2D link selects action indepen-
dently without knowing the traffic load condition of the network, and so it is partially
observable in nature. The SADRL with actor and critic networks approach has been shown
to increase throughput (P.3), while ensuring a fair coexistence with various networks in
unlicensed channels.

6.5. MADRL with Actors and Critics Applied to Distributed Entities in a Multi-Agent
Environment

This section presents the use of MADRL among distributed agents so that they ex-
change knowledge (i.e., action, state, and rewards), learn, and perform joint actions to
increase scalability (O.5).

6.5.1. Chu’s MADRL Approach with Actors and Critics

In [79], Chu’s et al. embedded MADRL in distributed agents, which are the traffic
lights (A.2). The MADRL approach enables a distributed agent to exchange information
(i.e., policy) with neighboring agents. A multi-agent environment is collaborative (X.2.2)
in nature. Using the proposed approach, distributed agents: (a) share knowledge with
each other (X.1.1) to increase stability (O.1); and (b) scale down information from far-away
distributed agents to increase learning speed (O.2) and scalability (O.5). The proposed
approach addresses the challenges of high dynamicity (C.2) due to the dynamic condition
of the road traffic pattern, and high dimension (C.3) with a large number of state–action
pairs characterizing the large number of vehicles at an intersection.

At an intersection, the traffic light i represents state si
t with a two-tuple information,

including: (a) the cumulative delay of the first vehicle in each incoming lane; and (b) the
queue length of vehicles along each lane. The action ai

t represents a selected traffic phase.
The reward ri

t+1(s
i
t+1) represents the queue length of vehicles in each lane. Each agent i

manages the congestion level by exchanging knowledge (i.e., the last known policy π
j
t−1)

with neighboring agent j ∈ J, and use actors and critics to find the optimal policy. The latest
sampled policy π

j
t−1 of neighboring agent j and the current state si

t are included as the
inputs of agent i’s DNN. The proposed scheme has been shown to reduce the congestion
level (P.6).

A similar approach has been applied in the literature [87,88]. In [87], Yu et al., enable
distributed agents with MADRL to coexist and share knowledge with each other in a
competitive (X.2.1) and dynamic environment in order to ensure stability (O.1). MADRL
addresses the challenges of high dynamicity (C.2) and ultra-densification (C.1) in wireless
networks. The distributed agents sense spectrum, and use actors and critics to predict the
unoccupied frequency bands by licensed users. The proposed approach has been shown
to increase QoS—specifically throughput (P.3). In [88], the actor and critic networks of
distributed agents predict idle frequency bands without knowledge exchange.

6.5.2. Hurmat’s MADRL Approach with Actors and Critics

In [80], Hurmat et al. embedded MADRL with actors and critics in both centralized
agent, which is the data center, and distributed agents, which are VNFs. Both centralized
and distributed agents select actions to maximize their individual rewards, and hence
resources, particularly transmission opportunities, are allocated in a competitive (X.2.1)
manner. The centralized agent selects Internet of thing (IoT) devices to be served, and sub-
sequently the distributed agents allocate resources to the IoT devices (A.1). The proposed
approach addresses the challenge of high dynamicity (C.2) due to the dynamic condition
of the network.
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The data center i updates the system state and performs action ai
t, which is selecting

the IoT devices to be served. Each VNF n represents state sn
t with a three-tuple information:

(a) the capacity of IoT devices; (b) the number of service requests; and (c) the number of
unserved service requests in the previous time instant t− 1. The action an

t represents a
transmission opportunity and it is part of the joint action at decided by the centralized data
center i and the distributed VNF n. The reward rn

t+1(s
n
t+1) of a distributed VNF n represents

throughput. The proposed scheme has been shown to increase the overall throughput (P.3).

6.5.3. Li’s MADRL Approach with Actors and Critics

In [81], Li et al. embedded MADRL with actors and critics in distributed agents, which
are the control units at road intersections in vehicular networks (A.2). The MADRL ap-
proach enables distributed agents to share information among themselves (X.1.2), estimate
their policies, and use the estimation to select their own actions. Distributed agents select
actions that maximize individual rewards in a collaborative manner (i.e., (X.2.2)). The
MADRL approach has two main features: (a) enabling collaboration with neighboring
distributed agents to provide a partial observation of the operating environment; and (b)
addressing the curse of dimensionality due to the complexity of the joint actions of multiple
neighboring agents. The proposed approach addresses the challenge of high dynamicity
(C.2) due to the dynamic condition of the road traffic pattern.

The control unit i represent state si
t with a two-tuple information, including: (a) the

current traffic phase; and (b) the queue length of vehicles in each lane. The action ai
t

represents a control signal that extends the current traffic phase or switch to another traffic
phase. The reward ri

t+1(s
i
t+1) represents the reduction of the average delay of vehicles at

all incoming lanes associated with the control units.
The proposed approach extends the traditional MADRL approach with enhanced

knowledge sharing mechanisms. Firstly, each agent stores and updates its own observa-
tion at a centralized knowledge container. Secondly, each agent accesses the centralized
knowledge container to obtain knowledge prior to action selection. During action selection,
agents take into account their own observations and centralized knowledge. Since each
agent interprets the collective knowledge differently, the centralized knowledge container
can be reconstructed based on historical knowledge of all agents. In the proposed model,
a single shared critic network learns using observations in the centralized knowledge
container during training, and distributed actors make decisions during execution. The
proposed approach has been shown to reduce the congestion level (P.6).

6.6. Wu’s MADRL Approach Using Target Updated with Neighboring Agents’ States and
Actions Information

In [36], Wu et al. embedded MADRL in distributed agents, which are the traffic
lights (A.2). The MADRL approach enables a distributed agent to exchange state and
action information with neighboring agents (X.1.1), estimate their policies, and use the
estimation to select its own actions. This enables a distributed agent to perform learning
that mimic the centralized learning approach, and select action based on local states. A
multi-agent environment is collaborative (X.2.2) in nature. The MADRL approach has
two main features: (a) enabling collaboration with neighboring distributed agents to
provide a partial observation of the operating environment; and (b) addressing the curse of
dimensionality due to the complexity of the joint actions of multiple neighboring agents.
Using the proposed approach, distributed agents: (a) share knowledge with each other
to increase the learning speed (O.2) and stability (O.1); and (b) learn in a distributed
manner to increase scalability (O.5). The proposed approach addresses the challenges of
high dynamicity (C.2) due to the dynamic condition of the road traffic pattern, and high
dimension (C.3) with a large number of state–action pairs characterizing the large number
vehicles at an intersection.

At an intersection, the traffic light i represents state si
t with a five-tuple information,

including: (a) the current traffic phase; (b) the queue length of vehicles in each lane; (c) the
location of the vehicles at each lane; (d) the velocity of the vehicles; and (e) the number
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of pedestrians waiting to cross the intersection. The action ai
t represents a selected traffic

phase. The reward ri
t+1(s

i
t+1) is a weighted value based on: (a) the sum of the queue lengths

of vehicles in all its lanes; (b) the total waiting time of vehicles in all its lanes; (c) the system
delay; (d) the total number of vehicles crossing the intersection at time t; (e) the changes of
the blinking condition, which is an intermediate signal (e.g., a flashing red signal when the
signal changes from red to green) in the current traffic phase; and (f) the total waiting time
of pedestrians waiting to cross the intersection.

Figure 5 shows the proposed MADRL architecture. Both main and target networks
are based on LSTM to use historical states and actions during training and action selection.
The target network of an agent i receives state and action information from neighboring
agents, and use this information to estimate its own Q-value Qi,j

t (si,j
t , ai,j

t ; θi,−), which is
used to generate the target yi

j, subsequently used to minimize the local loss function Li(θi)

and update the main network. In other words, each agent i uses global states and actions
in its target network to estimate neighboring agents’ policies. During action selection, each
agent i selects actions based on local states and its own policy using the main network in an
independent manner. Specifically, the proposed approach undergoes centralized learning
and distributed execution. The proposed scheme has been shown to reduce the congestion
level (P.6).

A similar approach has been applied in [82]. In [82], Qingyong et al. embedded this
approach in distributed agents (i.e., base stations) that allocate resources (i.e., transmission
opportunities) (A.1) to mobile users based on the SINR level and the capacity of the base
station (i.e., the number of mobile users served by the base station), while addressing
the challenge of high dynamicity (C.2) due to the dynamic channel conditions, in order
to increase energy efficiency (P.4). Distributed agents share experience (i.e., states and
actions) with neighboring distributed agents (X.1.1) to ensure stability (O.1) and increase
the learning speed (O.2).

Figure 5. Architecture of the coordinating MADRL model.

6.7. Ge’s MADRL Approach Using Target Updated with Neighboring Agents’ Q-Values

Similarly to [36], in [33], Ge et al. embedded MADRL in distributed agents, which
are the traffic lights (A.2), to exchange optimal Q-values (or knowledge) with neighboring
agents (X.1.1). Figure 6 shows the abstract model of the proposed MADRL approach. The
proposed approach enables agents select action collaboratively by taking into account the
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optimal Q-value from neighboring agents J (X.1.1), which is subsequently used to calculate
the loss function of the Q-network of agent i as follows:

Li
j(θ

i) =
1
m

m

∑
t=1
{ri

t − γ[max
a∈A

Qi
t(s

i
t+1, a; θi,−) + ∑

j∈N
ηi,jQj

t−1(s
j
t−1, aj

t−1; θ j)]−Qi
t(s

i
t, ai

t; θi)}2 (7)

where m is the batch size, and maxa∈AQi
t(s

i
t+1, a; θi,−) is the optimal target Q-value for all

actions under the state si
t+1. Using this loss function enables agent i to select actions based

on its own and neighboring agents’ Q-values.
At an intersection, the traffic light i represents state si

t with a two-tuple information,
including the position and speed of the vehicles in each lane entering the intersection. The
action ai

t represents a selected traffic phase. The reward ri
t+1(s

i
t+1) represents the changes

of the average queue length of vehicles at the intersection. The proposed scheme has been
shown to reduce the congestion level (P.6).

Figure 6. Architecture of cooperative MADQN.

6.8. Tian’s MADRL Approach with Bootstrapping in a Multi-Agent Environment

Similarly to [33,36,76,79], in [83], Tian et al. embedded MADRL in distributed agents,
which are the traffic lights (A.2), to enhance their exploration strategy. A multi-agent
environment is collaborative (X.2.2) in nature. The two key features are that: (a) distributed
agents use bootstrapping, whereby the value function vi

π(si
t) is sampled per episode to in-

crease learning speed (O.2); and (b) distributed agents share knowledge (i.e., rewards) with
neighboring agents (X.1.1) to ensure stability (O.1). The proposed approach addresses the
challenge of high dynamicity (C.2) due to the dynamic condition of the road traffic pattern.

The proposed approach improves exploration by identifying uncertainties in Q-value
estimation using bootstrapping. Bootstrapping enables an agent i to perform multiple
actions and learn at the end of an episode rather than to learn right after taking an action.
Figure 7 shows the bootstrapped DQN architecture that consists of k > 10 heads sharing a
convolutional network. Bootstrapped DQN uses a masking distribution M over possible
values to generate a mask mk

t , which is a binary vector of length k used to decide whether
or not the Q-value of the kth head and an experience should be updated during training at
time step t. Each head k, which is a separate DQN trained based on different data slices,
bootstraps Q-value functions for different actions in parallel. Each head k uses a DQN,
whereby the Q-value function of the main network Qi,k

t (si
t, ai

t; θi) is trained against its own
target network Qi,k

t (si
t, ai

t; θi,−). This allows the agent i, which is a traffic light, to learn the
posterior distribution over different Q-value functions Qi,k

t (si
t, ai

t; θi) to minimize the loss
function without replay memory data shared among the heads. During action selection, in
each episode, the agent i observes state si

t, samples a single optimal Q-value Qi,k
t (si

t, ai
t; θi)

per episode of interactions, takes the optimal actions ai
t according to the sampled Q-value
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function throughout the episode, receives reward ri
t+1(s

i
t+1), and then uses the mk

t mask to
select whether or not to store the (si

t, ai
t, ri

t+1(s
i
t+1), mk

t ) experience in a replay buffer Bk (i.e.,
a distinct memory buffer for the k-head). The experience (si

t, ai
t, ri

t+1(s
i
t+1), mk

t ) is used to
train the k-th head if it is activated with mk

t [k− 1] = 1.
At an intersection, the traffic light i represents state si

t with the waiting time of all
vehicles in all incoming lanes. The action ai

t represents a selected traffic phase. The
reward ri

t+1(s
i
t+1) represents the number of vehicles waiting at lanes with red signals. The

proposed scheme has been shown to reduce the congestion level (P.6).

Figure 7. Architecture of the bootstrapped MADQN approach.

6.9. Baldazo’s MADRL Approach with Shared Reward

In [61], Baldazo et al. embedded MADRL in distributed agents, which are drones, to
monitor floods (A.4) and plan relief works. The MADRL approach enables distributed
agents to exchange states with other distributed agents (X.1.2). A multi-agent environment
is collaborative in nature (X.2.2). Using the proposed approach, distributed agents: (a)
share knowledge (i.e., states) with each other to increase the learning speed (O.2); and
(b) share discounted reward, which is the mean of the independent rewards to ensure
stability (O.1). The proposed approach addresses the challenges of high dimension (C.3)
with a large number of state–action pairs related to the agents and the environment (i.e.,
the terrain).

Drones take images of surrounding areas and use DRL to detect whether or not a
flood has occured. Each drone i is a distributed agent that selects a position in the terrain
and adjusts its angle to take images using camera. Each agent i represents state si

t with
four-tuple information, including: (a) the surface water depth; (b) the position of the drone;
(c) the heading angle of the drone; and (d) the angle of the drone. The action ai

t represents
the selected angle. Each agent i receives an independent reward ri

t+1(s
i
t+1) representing

the sum of: (a) the distance from the flood; (b) the dry terrains nearby; (c) the use of high
angles; and (d) the distance to other agents. All agents share the same reward consisting
of the mean of the independent rewards. The proposed approach enables each agent i to
collect knowledge (i.e., state information of its own and all other agents (X.1.2)) and use
MADRL to optimize the strategy for trajectory planning by finding the optimal policy. The
proposed scheme has been shown to increase accumulated reward (P.2).

6.10. Lei’s MADRL with Action Discovery Strategy

In [55], Lei et al. embedded MADRL in distributed agents which are controllers in
power grids (A.1). The MADRL approach enables distributed agents to explore, evaluate,
and store new actions, and store the explored new actions as experiences for training
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purpose. This enables distributed agents to update their actions set by replacing inappro-
priate actions with more appropriate ones from time to time, and learn under random
and stochastic disturbances. The controllers maximize the global reward in a collaborative
(X.2.2) manner. Using this approach, the newly explored actions, which are more appropri-
ate, reduces the overall need for exploration, and so it increase learning speed (O.2). The
proposed approach addresses the challenge of high dynamicity (C.2) with the dynamic
conditions of the operating environment, whereby the equilibrium (or the steady state)
changes from one to another based on power supply and demand.

The agent seeks an optimal action set by exploring new actions using: (a) the cost
function c(si

t, si
t+1) that measures the transition cost from states si

t to si
t+1 in which the

action ai
t represents the carrier of the state transition; and (b) the potential function ϕ(s)

evaluates the state brought about by the newly explored action for ensuring its suitability
in improving the stability of the multi-agent environment (O.1)—in other words, whether
the newly discovered action is worth exploring in the future. The agent i chooses an action
ai

t with a bounded cost function c(si
t, si

t+1) ≤ ∞ and ignores other actions. Subsequently,
the potential function ϕ(s) is used to determine whether or not the newly explored action
is worth exploring in the future.

Each controller i represents state si
t with area control error, which is the difference

between scheduled and actual energy level dispatched in a control area of the power
grid. The action ai

t represents a selected power adjustment signal. The reward ri
t+1(s

i
t+1)

represents the stable operation of the overall controlled power grid system. The proposed
scheme has been shown to increase energy efficiency (P.4).

6.11. Yu’s Fully Distributed MADRL with Hierarchical Characteristics

In [84], Yu et al. embedded MADRL in distributed agents, which are drones, to col-
lect data from sensor nodes within fixed time periods based on the residual energy of
drones (or unmanned aerial vehicles, UAVs) (A.1). The proposed approach extends the
traditional MADRL approach using options in an extended MDP (S, A, O, R, P). Due to
the complexity of the action space of the drones, each drone selects an option (or a task),
which represents a sequence of actions based on the option’s policy for completing a task.
This allows agents to learn at the general level (or the task level) rather than the specific
level (or the action level). A multi-agent environment is competitive in nature (X.2.1)
due to the goal of maximizing the individual rewards. Using the proposed approach,
distributed agents: (a) decompose the complex problem into several sub-problems using
hierarchical MADRL; (b) use options (i.e., a generalization of actions) to incorporate se-
quences of actions in order to ensure stability (O.1); and (c) have prior knowledge about
the environment, which reduces complexity (O.3). The proposed approach addresses
the challenge of ultra-densification (C.1) caused by a large number of sensor nodes in
the multi-agent environment. The proposed model uses a fully distributed MADRL ap-
proach with options to obtain an optimal trajectory to sensor nodes. Sensor nodes are
clustered, and each UAV agent communicates with neighboring agents via a UAV-to-UAV
communication mechanism.

As an example, the “opening a door” option consists of: (a) controlling (or twitch) the
body muscles; (b) standing up; and (c) moving to the door. As another example, the “going
to school” option consists of: (a) controlling the body muscles; (b) getting dressed; and (c)
riding the bus. As for the “collecting data within a fixed time period” option, it consists of:
(a) flying to sensor nodes and collecting data; (b) flying to a charging station and getting
charged for a fixed time period; and (c) flying to the charging station when the mission is
completed. Since more than a single action can be taken in an option, the state may change
several times between two decision epochs. Specifically, each option in the option space
oi

t ∈ O has three components: (a) G represents the condition that initiates a task; (b) π
represents a deterministic policy for an option oi

t; and (c) B represents the condition that
terminates the task.
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At time instant t, an agent i observes state si
t ∈ G and selects an option oi

t based
on the option learning policy µ. Then, the agent performs a sequence of actions in the
selected option ai

t ∈ oi
t, and receives reward ri

t+1(s
i
t+1) when the selected option terminates

at B. Each drone i represents state si
t with three-tuple information: (a) the amount of data

collected by sensor nodes; (b) its position in the terrain; and (c) its residual energy. The
action ai

t is either flying to a certain sensor node, getting charged, or collecting data. The
reward ri

t+1(s
i
t+1) represents the maximum time that an agent i needs to finish its task

(or for an option to terminate). Each agent i is punished when it runs out of battery. The
proposed scheme has been shown to increase energy efficiency (P.4).

6.12. Elhadji’s MADRL with Concurrent Learning

In [85], Elhadji et al. embedded MADRL in distributed agents, which are computer
players in a pong game (A.6). The agents have global goals (i.e., winning as a team) and
independent decision-making capabilities influenced by one another’s decisions. Each
agent has its own DQN, receives a common reward, and attempts to improve the team
score via concurrent learning to ensure stability (O.1). Concurrent learning is used to obtain
a coordinated policy among distributed agents to address the challenge of policy adaption
in a shared environment, in which distributed agents must adapt to others’ current policies.
The MADRL approach is collaborative in nature (X.2.2). The proposed approach addresses
the challenge of high dynamicity (C.2) due to the players’ high mobility.

There are two distributed agents in the environment. Each player i represents state
si

t that contains the screen pixels. The action ai
t represents the agent’s movement (i.e., up,

down, or stay at the same place). The reward ri
t+1(s

i
t+1) = 1 is awarded when the agent

wins; otherwise, ri
t+1(s

i
t+1) = −1. Figure 8 shows two agents with joint states, rewards,

and actions that perform concurrent learning. The agents must learn to divide their area of
responsibility in the pong game for a collaborative play. One of the agents may select a
non-optimal action and loose the ball. Thus, both agents jointly learn to cooperate. The
proposed scheme has been shown to increase accumulated rewards (P.2).

Figure 8. Architecture of MADRL concurrent learning.

A similar application has been applied in [86]. In [86], Zhang et al. embedded MADRL
in distributed agents, which are controllers that control the energy consumption of electric
generators to distribute energy (A.1) based on the voltage levels of all buses, while address-
ing the challenge of high dynamicity (C.2) (e.g., time variation of distributed and generated
loads) in power grid systems in order to increase energy efficiency (P.4). Distributed agents
share knowledge with all agents (X.1.2) to ensure stability (O.1) and increase the learning
speed (O.2). The approach performs concurrent learning with centralized training and
decentralized execution in a shared environment [7].

MADRL models and algorithms presented in this section can be applied to real-world
multi-agent scenarios. Table 4 presents a comparative analysis of the MADRL and SADRL
attributes, including applications, of the state-of-the-art approaches presented in Section 6.
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For example, In Table 4, the MADRL approach [84] ensures stability (O.1) while reducing
complexity (O.3) by enhancing the traditional MADRL approach using options, which
generalize the complex set of agents actions in order to address the challenge of ultra-
densification (C.1) caused by a large number of agents in the multi-agent environment.
The proposed approach is applied to increase energy efficiency (P.4) in resource sharing
and allocation (A.1), which have a competitive multi-agent environment (X.2.1). Hence,
MADRL and SADRL approaches enhance the traditional MADRL and solve various real-
world problems.

7. Open Issues and Future Directions

This section presents open issues that can be pursued in this research area.

7.1. Enhancing Communication between Agents in Large Scale MADRL

Communication plays a critical role in achieving coordination and improving tasks
that require synchronization. In large-scale MADRL, the amount of information ex-
changed between agents is large. Some MADRL algorithms require agents to share ac-
tions and observations during training, which performs well in both collaborative (X.2.2)
and competitive (X.2.1) environments [89]. However, agents do not generally develop a
form of communication based on past experiences, which hinders scalability (O.5) [90].
The frequent information exchange between agents can increase the complexity (O.3)
of the MADRL approach. Communication between agents faces the challenges of ultra-
densification (C.1) due to the large number of agents in the environment, high
dynamicity (C.2) due to the rapid changes in the operating environment, and high
dimensionality (C.3) due to the large number of state and action spaces characterizing
the operating environment of the large number of agents. Communication can be reduced
by enhancing the learning mechanism [76] that normally stores knowledge exchanged with
neighboring agents in a memory device [91]. However, a memory device has a limited
capacity which is suitable for a small number of agents only. Communication in large-scale
MADRL can be enhanced by: (a) Limiting communication between interacting agents.
For example, agents know which agents to send their information to, and when to scale
down information received from some agents (e.g., far away agents). (b) Enabling agents
to remember at least the current and past experience gained from interactions with their
operating environment [91]. Enhancing communication enables agents to ensure a higher
QoS (P.3) in synchronization and coordination tasks.

7.2. Ensuring a Balanced Trade-off between Complexity and Network-Wide Performance
in MADRL

In general, the MADRL applications in the literature consider that agents have similar
(or homogeneous) capabilities in terms of resources (e.g., computational abilities) while
contributing to the same decision-making process. However, in real-world applications,
agents may be heterogeneous with different decision-making capabilities, although agents
may have similar goals. As an example, in [62], MADRL is embedded in vehicles with
different computational resources, and they are cooperative with a common goal of offload-
ing computationally intensive tasks to base stations (A.5). Agents may also have different
goals, such as finding the shortest path in network routing applications (A.3), and they are
competitive with each other. In this case, agents with higher computational capabilities
are able to find the shortest path faster than those with lower computational capabilities,
causing unfairness and lower overall network-wide performance. Moreover, deriving
optimal solutions comes at the cost of computational complexity (O.3) [9]. Hence, dis-
tributed approaches ensure a lower computational complexity (O.3), and they can achieve
a lower network-wide performance due to the heterogeneous capabilities of distributed
agents, particularly in competitive (X.2.1) multi-agent environments. While centralized
approaches can achieve a fair network-wide performance, it has a high computational
complexity (O.3). One possible solution is to use a hybrid approach that consists of cen-
tralized and distributed approaches. Hybrid approaches can help to achieve globally and
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locally optimal network performances, such as achieving a balanced complexity (O.3),
while ensuring energy efficiency (P.4).

7.3. Ensuring Convergence in Cooperative MADRL

The changes of an agent’s policy during learning, and the agent being part of the
operating environment in the presence of other agents, results in a non-stationary en-
vironment. In addition, the delay incurred in information exchange between agents in
MADRL, which is important to learning, can reduce the convergence rate, causing the
agents to take a longer time to select an optimal joint action. While centralized learning
approaches [92] improve convergence in cooperative MADRL, they face the challenge of
ultra-densification (C.1) due to the large number of cooperating (X.2.2) agents. Parameter
sharing [93], which enables agents to share parameters (e.g., weights) for cooperative
learning, and so learning may take place in a single network and then the knowledge is
used by all agents. Hence, parameter sharing enables multiple agents to share a single
learning algorithm; specifically, each agent can train the learning algorithm for a faster
convergence and increase the total accumulated reward (P.2) in a cooperative MADRL. Pa-
rameter sharing has two main limitations, namely, it: (a) can only be applied to cooperative
environments [93]; and (b) can only be applied to a set of homogeneous agents (i.e., the
policy of one agent can be traded with other agents without affecting the behavior or the
outcome) [92]. To overcome these limitations, information about an agent can be included
in the policy (i.e., the policy of an agent can include the agents that it sees) to distinguish
each agent for learning an optimal policy. Existing parameter sharing approaches do not
enable agents to communicate with each other, instead they share their respective learning
networks, and so investigation can be made to enable communication among agents for
faster convergence.

7.4. Enhancing Training Performance in MADRL Using Delayed Rewards

In some MADRL environments, agents select actions and receive delayed rewards,
whereby the reward of an action is received after it has been taken for some time. The low
frequency of rewards can hinder the training performance of MADRL to meet the additional
needs of agents in competitive (X.2.1) and collaborative (X.2.2) environments. Moreover,
training in MADRL with delayed binary rewards [94] becomes significantly difficult when
agents receive binary rewards 1 or 0 only without intermediate rewards in between because:
(a) delayed binary rewards are free from traditional reward shaping and are prone to
developers’ bias and domain knowledge; and (b) agents in MADRL environment with
delayed binary rewards may visit state transitions that never produce any rewards, which
makes learning more difficult. MADRL with delayed rewards faces the challenge of
high dimension (C.3) due to the large state–action spaces. Training performance can
be enhanced by: (a) enabling agents to receive rewards at each training step, including
dense reward function that produces reward values for majority of transitions, enabling
agents to receive rewards in almost every time step, particularly at the early stage of
learning [95], for achieving optimal accumulated reward; (b) tailor-made reward functions
by experts to assign rewards to behaviors that lead to optimal goal with faster learning
speed (O.2); and (c) using credit assignment (or reward shaping [94]) that assigns credits to
an action that produces reward to identify the particular action that triggers the reward [92].
Overall, properly designed reward functions ensure a higher convergence speed (O.2) and
accumulated reward (P.2).

7.5. Enhancing Learning in Large Scale MADRL

Learning in MADRL is more complex than that in SADRL [28]. Agents in MADRL
learn to coordinate with each other, and they share experience (e.g., state, action, reward,
and Q-values) with each other to improve their individual or joint actions as time goes
by. The presence of multiple learning and interacting agents results in the moving target
problem [96], which can cause instability in learning due to a partial observation of the
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operating environment. Learning in MADRL faces the challenge of ultra-densification (C.1)
with a large number of interacting agents required to explore a joint action space. By en-
abling agents to inform each other’s behavior, they can coordinate among themselves using
decentralized approaches to reduce complexity (O.3). The decentralized approaches train
agents to predict other agents’ behavior, while giving only their own local observations [97],
which fosters the predictability of agents and promotes coordination. Promoting coordina-
tion can also be done by enabling agents to recognize different situations and select the
corresponding sub-behaviors, which is also called the sub-policy selection [97,98]. Improv-
ing coordination, particularly collaborative tasks, can increase accumulated rewards (P.2)
and QoS (P.3).

Enhancing Learning in large scale MADRL can be achieved by investigating six main
open issues. Firstly, a light-weight MADRL algorithm can be designed to reduce the
high computational power requirement while addressing real-world complex problems.
Secondly, an efficient framework with low computational complexity can be designed for
MADRL agents. Thirdly, MADRL has been used to solve small-scale problems, and it
can be extended to large-scale complex problems with heterogeneous agents. Fourthly,
model-based MADRL enables agents to learn optimal policies with a higher learning
speed (O.2) based on a model of the operating environment. While it has been applied in
the single-agent environment, it can be extended to MADQN in a multi-agent environment.
Fifthly, learning in a competitive environment (X.2.1) requires multiple agents to exchange
knowledge with neighboring agents to maximize their individual accumulated rewards,
although agents can learn from historical actions rather than exchanging knowledge [6].
However, such a partial observation requires agents to remember the current state (or ac-
tion) and past states (or actions), which requires high computational efficiency. Sixthly, both
centralized and distributed agents can collaborate with each other to achieve a balanced
trade-off between local and global network performances.

8. Conclusions

In this paper, MADRL models, algorithms, and applications were presented. Exam-
ples of the state-of-the-art applications are resource allocation and sharing, traffic signal
controllers in vehicular networks, network routing, flood monitoring, and service mi-
gration and games. MADRL aims to achieve five main objectives (i.e., higher stability,
higher learning speed, lower complexity, lower signaling overhead, and higher scalability),
and addresses three main challenges (i.e., ultra-densification, high dynamicity, and high
dimension). The MADRL models are attributed to three main characteristics: (a) collabo-
rating entities (i.e., agents either collaborate with neighboring agents or all agents); (b) the
relationship between agents (i.e., competitive or collaborative); and (c) the involvement of a
centralized entity (i.e., whether the complex task is performed in a centralized or distributed
manner). The MADRL models have shown to provide six main performance measures:
less outages (or blocking probability), higher accumulated reward, higher quality of service
(QoS), higher energy efficiency, higher fairness, and a lower congestion level. Towards
the end, this article provided open issues and future directions expected to contribute to
MADRL research, and to motivate researchers to investigate this research area.
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