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Abstract: Rolling bearings are the most fault-prone parts in rotating machinery. In order to find faults in
time and reduce losses, this paper presents an intelligent diagnosis method for rolling bearings. At present,
the deep residual network (RESNET) is the most widely used convolutional neural network (CNN) and
has become one of the hotspots in fault diagnosis. However, the fully connected layer of the deep residual
network has the disadvantage of too many training parameters, which makes the model training and
testing time longer. So, we proposed a new network structure which the global average pooling (GAP)
technology replaces the fully connected layer part of the traditional RESNET. It effectively solves the
problem of too many parameters of the traditional RESNET model, and uses data enhancement, dropout,
and other deep learning training techniques to prevent the model from overfitting. Experiments show
that the accuracy of fault diagnosis of the improved algorithm reaches 99.83%, training time has been
shortened. Also, the whole process of rolling bearing fault detection does not need any manually extract
features, and this “end-to-end” algorithm has good versatility and operability.

Keywords: fault diagnosis; improved deep residual network; deep learning; GAP

1. Introduction

Hydropower Units, Large wind power equipment, and other rotating machinery are
developing towards high precision machinery field. A reliable health detecting system is
key for the steady operation of mechanical equipment [1]. Rolling bearing affects the overall
performance of Rotating machinery [2]. Fault diagnosis of rolling bearings has attracted more
and more attention. It can minimize maintenance costs and increase system reliability [3].

Rolling bearing fault diagnosis is mainly to extract features from vibration signals
that was collected, and to identify and classify faults. The fault diagnosis methods based
on signal processing have been widely studied. A.H. Zamanian, et al. developed a fault
diagnosis method based on the Gaussian correlation of vibration signals and wavelet
coefficients for gear [4]. Wei Fan a, Gaigai CAI put forward fault diagnosis modus based
on sparse representation in wavelet basis for gearbox and it is superior to empirical mode
decomposition (EMD) especially in transient feature extraction [5]. Kang, M., Kim, J.,
Kim, J.-M. proposed a fault diagnosis scheme based on a binary bat algorithm (BBA), that
is superior to other dimensionality [6]. Su, Z., et al. uses supervised extended local tangent
space alignment (SE-LTSA) for dimensionality reduction to make better the effectiveness of
fault diagnosis in rotating machinery [7]. Yu, D., et al. put forward a new morphological
component analysis (MCA) method used for the complex fault diagnosis of gearboxes [8].
Dolenc B examines a method based on vibration analysis for diagnosis of distributed
bearing faults [9]. An, X., et al. proposed a new vibration analysis method based on the
adaptive local iterative filtering used for a hydropower unit [10]. Hu, A., et al. presented a
novel method based on linear transformation of intrinsic time-scale decomposition (ITD)
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and the cubic spline interpolation. Also, this method was used for diagnosing wind turbine
faults with decomposing nonstationary vibration signal, that it did identify wind turbine
gearbox fault. The method can solve the problem that is recognizing fault conditions when
two or more fractal dimensions are close to each other [11]. From these features, fault
detection and classification can be done through various machine learning techniques [12].
A support vector machine (SVM) is to detect bearing faults using harmonics of fault-related
frequencies from vibration signals [13]. It also involved an ANN for bearing faults using
a genetic algorithm [14]. Support vector machine (SVM) and Artificial neural network
(ANN) are the two most popular intelligent diagnosis methods.

Although traditional intelligent diagnosis methods have made a great contribution to
rolling element-bearing fault diagnosis, they still have some shortcomings. For example,
feature extraction or selection relies heavily on expert knowledge and extensive human
labor [15]. Furthermore, Artificial intelligence methods, such as SVM and ANN are shallow
learning models. It is difficult for the shallow learning model to learn complex nonlinear
relationships effectively [16–18]. Hence, deep learning has been investigated for automatic
and effective fault feature learning of rolling-element bearing in recent years.

Deep learning is no longer a new concept [19]. At first, deep learning was used
in image processing, audio processing, and other related fields, and has achieved great
success [20,21]. Therefore, researchers have introduced deep learning into fault diagnosis.
Wang, X., et al. proposed a new data-driven remaining useful life (RUL) estimation
approaches of bearings based on Deep Spatiotemporal Convolutional-Neural-Network [22].
Feng, J., et al. applied deep neural networks to conquer the flaw of the before-mentioned
intelligent diagnosis methods [23].

Tra, V., et al. presented a novel method using Convolutional Neural Networks and
the Stochastic for detecting early bearing defects under changeable operating speeds [24].
Xia, M., et al. developed a new approach based on convolutional neural network (CNN)
and multiple sensors for fault diagnosis of rotating machinery [25]. Khan MA et al. pro-
posed a new DL model according to a dilated convolutional neural network (D-CNN) used
for bearing faults detection in induction motors (IMs) [26]. Kumar, A., et al. put forward
method that was applied to recognize faults of the centrifugal pump using advanced
convolution neural network (ACNN) and acoustic images [27]. Shao, Y., et al. combine
support vector machine (SVM) and convolutional neural network to propose a new hybrid
intelligent fault diagnosis frame which is better than some traditional fault diagnosis meth-
ods and has high precision for rolling bearings [28]. Qin, Y., et al. applied the Optimized
Deep Belief Networks with Improved Logistic Sigmoid Units for Planetary Gearboxes
of Wind Turbines [29]. Jun, P., et al. developed a LiftingNet which achieved layer wise
feature learning and effectively classify mechanical failure data even with different speeds
and under the effects of random noise [30]. Zhou Q et al. combine convolutional neural
networks and nonlinear auto-regression neural networks to put forward a new method for
imbalanced fault diagnosis of the rotating machinery [31]. Azamfar, M., et al. put forward
a method based on motor current signature analysis and 2-D convolutional neural network
used for gearbox fault diagnosis [32]. Xie, S., et al. presented a new convolutional neural
network with a one-dimensional structure (ODCNN) for the automatical fault diagnosis of
rolling bearings [33]. However, these methods have too many parameters, and the network
convergence speed is slow and cannot be used to practical projects.

To solve this issue, this paper developed an improved deep residual network for
developing an intelligent fault diagnosis system. By changing the deep residual network
structure, the network training time can be shortened, and the fault recognition accuracy
can be improved. The novel method can extract features from the raw vibration signal
and avoid manual feature extraction. The method is more reliable and effective than
traditional fault diagnosis methods. Based on the excellent performance of the improved
deep residual network, the rolling element bearing fault detection technology in a one-
dimensional vibration signal is studied. Also, from the experimental results, it is validated
that our proposed ResNet model is effective. To summarize, our contributions as following:
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In this paper, the improved deep residual network structure is proposed, and GAP
is introduced to replace the full connection layer. It is an effective method to solve the
problem of too many parameters in traditional deep residual network model. The method
is validated on rolling bearing fault data of different types. Compared with existing models,
the training time of this model is shortened, and the classification accuracy is higher.

The rest of arrangement of this article is as follows. Section 2 presents the background of
ResNet. In Section 3, the particulars of the proposed fault diagnosis method are presented.
Section 4 presents one comprehensive case study of fault diagnosis for rolling element bearings
to illustrate the effectiveness of the presented method. Section 5 is the summary of paper.

2. Deep Residual Network (ResNet)

ResNet was proposed by Dr. He in 2015 [34]. The ResNet model is an updated
version of the ConvNet model. However, it is different from traditional deep learning. The
ResNet adds identity mappings, it is convenient for the backpropagation of errors and
the optimization of model parameters, and further reduces the training difficulty of deep
neural networks. It has generated great outcomes in computer vision-related tasks such as
image segmentation, image recognition, and target positioning. Therefore, ResNet is used
in this study. ResNet principally consist of a certain amount of residual building blocks,
several convolutional layers, a global average pooling, and a fully connected output layer.
This section introduces the theory of ResNet in detail.

2.1. Convolutional Layer

In the convolutional layer, the inputs and the convolutional kernels are convolved to
get the feature maps. Meanwhile, the weights of the convolutional kernels are allocated
over the input. So, this significantly reduces the number of parameters required to train.
The mathematical form of the convolutional operation can be expressed by:

X(l)
r′ =

K

∑
r=1

w(l)
rr′ ∗ x(l−1)

r (1)

where l Indicates layer number of the network; w(l)
kk′ is the convolutional kernel, x(l−1)

r is the input

of feature map, X(l)
r′ is the output of feature map, r is the index of the input feature maps, r′ is the

index of the output feature maps. The convolution operation can also be understood from Figure
1. Input is 4 by 4, r = 1, There are two kernels, each kernel is 2 by 2, r′ = 2.

Figure 1. Convolution operation.

2.2. Max Pooling Layer

The pooling layer primarily performs a down-sampling operation. In this study, the
input signal is the time domain signal. So, we use the maximum pooling function. The
advantage is that you can obtain location-independent features. It’s important for time-
domain signals. The pooling operation can be understood from Figure 2. We are taking
2 × 2 region, and taking a stride of 2. Since we start from this pool kernel is like a 2 × 2
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region, which gives you the 9. Also, then, you step it over two steps to look at this region
to give you the 2. The mathematical form of the max pooling operation is expressed by:

Pl
ij= max

(
al−1

mn

)
(2)

Figure 2. Maximum Pooling operation.

2.3. Residual Building Block

ResNet is often composed of several residual building blocks, and it is the core
component of the model. Two common residual building blocks are shown in Figure 3 [35].
Figure 3a is the original residual building block, Figure 3b is the proposed residual building
block. The old residual building block and the presented residual building block are
consisted of two convolutional layers, two batch normalizations (BN), and two ReLU
activation functions, but the location of the ReLU activation function is different. Enter
the residual path and the identity mapping passed and add them before the next ReLU
activation function of the original building block. BN and ReLU before each convolutional
layer in the proposed residual building block. So, the proposed residual building block has a
path directly connecting the input and output. It is more conducive to the backpropagation
of errors in the neural network, and thus easier to train and improve generalization.
Therefore, the proposed residual building block is used in this paper.

Figure 3. Residual building block. (a) original. (b) Proposed.

The frequently used activation function is the rectified linear unit (ReLU) which can
accelerate convergence. ReLU activation function rarely encounter the gradient vanishing
problems in that its derivative is either 1 or 0. The activation function can be expressed as:

Y(x) = max {0, x} (3)

where x is the input of the ReLU and Y(x) is the output of the ReLU, accordingly.

2.4. Global Average Pooling

To avoid overfitting, Global Average Pooling (GAP) layer is adopted in the ResNet.
A brief introduction of GAP is presented below. The fully connected layer is usually
located in the last two layers of traditional CNN. It can be connected with traditional neural
network and convolutional structure. The full-connection layers make predictions, such
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as classification while the convolutional layers extract features and output feature maps.
However, due to large number of parameters in the full connection layers, overfitting is
easy to occur. To address this problem, GAP is introduced into the deep residual network.
In CNNs, GAP instead of full connection layer was firstly proposed in their work by Lin
et al. [36] GAP averages the feature maps and outputs a single value and to obtain a vector,
which can be interpreted as the category of the classification confidence map. GAP layer
has no parameters to optimize. So, this greatly decreases the number of parameters to
avoid overfitting.

2.5. The Objective Function

First, the output layer uses the softmax activation function. It achieves an event probabil-
ities distribution over different event. The objective function calculates the probability of each
target category in all possible target category. Softmax layer operation can be specified as:

P(yi) =
exp (yi)

∑k
j=1 exp

(
yj
) (4)

k is the classes number (health status), yi are input of the softmax function. P(yi) stand
for output feature maps of the softmax function. P(yi) can be regarded as the reckoned
possibility of an observation belonging to the ith class. Then, it calculates loss when
training the layer of ResNet. The objective function of ResNet must be reduced to the
least for precise data prediction. In multi-class classification problems, Cross-entropy error
is usually used as the target to be minimized [37]. A cross-entropy loss function can be
presented as:

CE = −
k

∑
i=1

tilnP(yi) (5)

ti and P(yi) are the target value and the forecasted value separately.

3. The Proposed Method

In this research, a deep ResNet framework for feature learning and fault diagnosis of
rolling bearing is proposed. The structure of the network composed of an input layer, a
convolution layer, a max-pooling layer, eight residual blocks, then the following are a GAP
and a softmax output layer. The RESNET is the most widely used Convolutional Neural
Network (CNN) and has become one of the hotspots in terms of fault diagnosis. However,
due to large number of parameters in the full connection layers, the convergence speed
is slow during network training. This paper proposed an improved RESNET algorithm
for intelligent fault diagnosis of rolling bearings. The complete network structure of the
presented ResNet is demonstrated in Figure 4. This method improved the RESNET struc-
ture and introduced GAP technology [36] to replace the connection layer part, reducing the
amount of training parameters and testing time of the model. The proposed method does
not need to perform any manual feature extraction and feature transformation operations
for the original data during the entire fault diagnosis process. It only needs to input the
original fault data of the rolling bearing into the improved RESNET model, and the fault
diagnosis results are automatically output. The “end-to-end” algorithm structure has better
operability and versatility.

As demonstrated in Figure 4, the input of this network is the one-dimensional time-
domain signal of the rolling bearing fault signal, and the probability distribution of each
failure type is the output of the network.

Residual block is consisted of two convolutional operations, ReLU activation func-
tions, batch normalizations (BNs), and one identity shortcut, as shown in Figure 3b. The
parameters of the convolution layer in the residual block are shown in Table 1.
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Figure 4. The complete structure of the designed ResNet.

Table 1. The parameters of the convolution layer in the residual block.

Residual Block
Parameters of the Convolution Layer

Conv1 Conv2

Res-block1 1×3, 8, 1 1×3, 8, 1
Res-block2 1×3, 8, 1 1×3, 8, 1
Res-block3 1×3, 16, 1 1×3, 16, 1
Res-block4 1×3, 16, 1 1×3, 16, 1
Res-block5 1×3, 32, 1 1×3, 32, 1
Res-block6 1×3, 32, 1 1×3, 32, 1
Res-block7 1×3, 64, 1 1×3, 64, 1
Res-block8 1×3, 64, 1 1×3, 64, 1

The size of convolution kernel in the residual block is all 1 × 3, the quantity of
convolution kernels is 1, and the main difference lies in the stride.

4. Experimental Verifications

Programming with open source Python language (version 3.5) and TensorFlow (version 2.0)
toolkit from Google to realize the ResNet model. TensorFlow, developed by Google, is an
open-source machine learning library based on TensorFlow graphs. It has the function of
automatically solving the reverse gradient to optimize the model parameters (weights and
bias), and is suitable for the rapid development of deep learning algorithms. At the same
time, the TensorFlow toolkit supports large-scale and fast matrix computations based on image
processing units, greatly reducing the training time required for the ResNet algorithm.

4.1. Experimental Data Collection

The Case Western Reserve University Bearing Data Center provides experimental data.
As shown in Figure 5, the test stands mainly composed of a torque transducer/encoder
(center), a 2 hp motor (left), and a dynamometer (right). Motor bearings were used to
inoculate faults by electro-discharge machining (EDM). The fault 0.007 inches, 0.014 inches,
and 0.021 inches in diameter were introduced separately at the inner raceway, rolling
element (i.e., ball), and outer raceway. Therefore, totally we have one normal condition
(no-fault) and nine different faults. Bearings are tested under different conditions consisting
of normal condition, ball fault (BF), outer race fault (OR), and inner race fault (IR).
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Figure 5. Test-stand.

Vibration data was collected for motor loads of 3 horsepower (motor speeds of
1730 RPM) at 12,000 samples per second.

For training our proposed ResNet model, we employ enough training samples.

4.2. Data Preprocessing
4.2.1. Signal Normalization

In order to increase the reliability of the model, the input signal needs to be normalized.
As shown in the following equation.

λ =
x− x

max(x)−min(x)
(6)

4.2.2. Data Augmentation

Data augmentation is overlapping sampling, that is, for training samples, when
training samples are recorded from the original signal, it has overlap between each segment
of signal and the next segment of the signal. When the step is smaller than the signal length
of a single sample, there is overlap between samples, and more samples can be extracted
with the fixed-length signal. This is shown in Figure 6. When the step is the same as the
data length, there is no data augmentation. In our case, the stride is 28. For each type of
vibration signal collected, data segmentation is performed. A point is inserted randomly
first, and then 1024 points are taken. In this way, 600 samples can be obtained after repeated
operation 600 times. Since there are 10 kinds of signals, a total of 6000 samples are obtained,
and then training set 4200, verification set 1200 and test set 600 are divided according to
the proportion of 7:2:1. The composition of experimental sample data is shown in Table 2.
The vibration data waveform of the bearing in 10 states is shown in Figure 7. Figure 7a1 is
the waveform of the normal state. Figure 7a2–a10 are waveforms of fault state.

Figure 6. Schematic diagram of sample augmentation.
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Table 2. Composition of experimental samples.

Condition Type Size of Samples Sample Number Label

Ball (0.007") 1024 600 F1
Ball (0.014") 1024 600 F2
Ball (0.021") 1024 600 F3

Inner Race (0.007") 1024 600 F4
Inner Race (0.014") 1024 600 F5
Inner Race (0.021") 1024 600 F6

Outer Race (0.007")@6 1024 600 F7
Outer Race (0.014")@6 1024 600 F8
Outer Race (0.021")@6 1024 600 F9

Normal condition 1024 600 H0

Figure 7. Vibration waveforms of rolling bearing in 10 states (a1) Normal condition. (a2) BF 0.007
inch. (a3) BF 0.014 inch. (a4) BF 0.021 inch. (a5) OR 0.007 inch. (a6) OR 0.014 inch. (a7) OR 0.021 inch.
(a8) IR 0.007 inch. (a9) IR 0.014 inch. (a10) IR 0.021 inch.

4.2.3. Dropout

Among the deep learning algorithms in recent years, Dropout is a commonly used
method to reduce overfitting [38]. During each training iteration, some neurons are
dropped randomly by Dropout, so that the neural network only propagates forward
and updates backward the parameters of retained neurons. In this way, Dropout can
weaken the “cooperative relationship” between neurons and make each neuron function
more independently, thus achieving the effect of model regularization. In this study, the
dropout is used during training and not during testing. The dropout rate is set to 0.5 [38].
Dropout technologies were used to solve the overfitting problem.
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4.3. Hyperparameter Setup

Hyperparameters have a great influence on the fault diagnosis accuracy of residual
neural networks. According to the paper [39], the more important hyperparameters are
optimizer, learning rate, activation function, convolution kernel, and pooling kernel. The hy-
perparameters of the experiments were made on the basis of the empirical recommendation.
In our case, ReLU activation functions are selected. The convolution kernel and pooling
kernel are shown in Figure 2. Adam optimizer was used in the experiment. The learning
rate is too large to convergence, too small training is too slow. In this study, the exponential
decay learning rate is used to optimize this problem. Set the initial learning rate to 0.01, then
gradually reduce the learning rate through iteration, and the attenuation coefficient is 0.99.
The best classification effect can be achieved when the learning rate is 0.001.

4.4. Outcome of Experiment

The established ResNet method was adopted in fault diagnosis based on vibration
using a dataset collected from bearings. In the training of the improved ResNet model,
the Adam optimization algorithm was also adopted to improve the overfitting problem.
The Adam (Adaptive Moment Estimation) algorithm is an algorithm that combines Momen-
tum algorithm and RMSProp algorithm. Also, data augmentation and Dropout technology
were used to improve the overfitting problem. The mini-batch was 16, the ReLU activation
function was used, and the number of cycle iterations was 100 rounds. The final improved
ResNet has the highest accuracy of 99.83% on the test set, and its diagnostic results are
shown in Table 3.

Table 3. Comparison of fault diagnosis results.

Method Testing Accuracy Training Time per Model Testing Time per Observation

ResNet + GAP 99.83% 228.53 s 0.193 s
ResNet + FC 98.48% 245.96 s 0.270 s

By comparing with Table 3, it can be seen that the performance of the improved
RESNET algorithm is significantly improved compared with the traditional fully connected
RESNET algorithm. In terms of time, the number of model parameters is greatly reduced
and the training time is significantly reduced in the improved RESNET algorithm because
the full connection layer is removed, which is of great significance for the model to be
applied to the online rapid diagnosis and monitoring of faults. In terms of accuracy, the
accuracy of the improved RESNET algorithm has reached 99.83%, while the accuracy of
the traditional RESNET algorithm is 98.48%; Figure 8 shows the training and testing result
of one trial. Figure 8a shows the relationship between the epoch and the accuracy of the
model. Figure 8b shows the relationship between the epoch and the cross entropy.

Figure 8. Experimental result of bearing dataset. (a) Accuracy curve. (b) Loss curve.
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4.5. Discussion

In order to evaluate the accuracy of the developed ResNet more effectively, we quote
the precision and recall to evaluate the algorithm [40–42]. Precision is the probability
of actually positive samples out of all the predicted positive samples. The recall is the
probability of being predicted to be positive samples out of actually positive samples.
Precision and recall are shown as follows.

P =
TP

(TP + FP)
(7)

R =
TP

(TP + FN)
(8)

F1 =
2× TP

2× TP + FP + FN
(9)

where P is precision, R is recall. TP stands for actual 1, predicted 1, predicted correctly.
FP stands for actual 0, predicted 1, forecast wrong. FN stands for actual 1, predicted 0,
forecast wrong. F1 is the harmonic mean of precision and recall. In this study, According to
Equation (7) and (8), the precision and recall are calculated only based on the experimental
results of improved ResNet in Table 4. As shown in Table 4:

Table 4. The diagnosis result evaluation of improved ResNet.

Label Precision (%) Recall (%) Observations

H0 98.36 100 600
F1 100 100 600
F2 100 100 600
F3 100 100 600
F4 100 100 600
F5 100 100 600
F6 100 100 600
F7 100 98 600
F8 100 100 600
F9 100 100 600

Average 99.83 99.8 600

In order to further show the ability of the improved ResNet algorithm to identify
minor faults and the details of the fault misjudgment, we introduce the multi-classification
confusion matrices [37] to conduct a detailed quantitative analysis of the fault results. The
confusion matrices comprehensively reflect the diagnosis precision and the number of
misjudgments of bearings under different fault grades, as well as the information of the
real fault types being misjudged. The confusion matrices quantization diagram of bearing
corresponding to Table 4 is shown in Figure 9.

The confusion matrix of the improved ResNet is shown in Figure 9. The X-axis
represents the predicted category of the fault, and the Y-axis represents the true label of the
fault. The numbers on the main diagonal represent the accuracy of the improved ResNet
algorithm for the correct diagnosis of each type of fault state.

Depending on the confusion matrix, two among the ten health states present misclas-
sifications. F1 was misjudged as F2, F7 misjudged as F4. By analyzing the types of fault
misclassifications, it can be seen that the above misclassifications are all errors between
different fault categories, which basically belong to small faults misjudged as larger faults,
which is meaningful for risk prediction. The recognition accuracy of this algorithm is 100%
between the normal state and the fault state. It can be seen that the comprehensive fault
identification rate can reach 99.8%. Experimental show that the improved ResNet algorithm
has superior identification ability and higher diagnostic accuracy for the micro-faults of
rolling bearings.
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Figure 9. Confusion matrix demonstrating classification performance using testing data.

4.6. Performance Comparison

We did a comparison for the designed method with the modified CNN, SVM, KNN
and DPBN. The results are shown in Table 5. The modified CNN gets an accuracy of 98.2%.
The accuracy achieved using KNN is 91.9%. The accuracy of Support vector machine (SVM)
is 94.1%. The accuracy of the DPBN is 92.3%. The comparison confirms that the improved
ResNet method designed in this paper conducts better performance than the methods such
as DPBN, SVM, and KNN and the existing CNN.

Table 5. A comparison of the proposed method Vs existing methods.

Diagnosis
The

Improved
ResNet

The
Improved

CNN
SVM KNN DPBN

Training time 228.53 s 229.53 s 2.264 s 0.049 s 327.09 s
Testing time 0.193 s 0.198 s 0.829 s 1.322 s 0.141 s

Fault category Accuracy %

H0 100 100 100 96.25 100
F1 100 100 96.72 78.00 92.86
F2 98 92.01 92.01 86.31 93.55
F3 100 98.36 98.31 90.15 98.36
F4 98 98.36 100 97.00 100
F5 100 98.33 93.25 92.85 66.59
F6 100 96.77 95.24 96.59 96.08
F7 100 100 87.32 100 100
F8 100 100 100 100 100
F9 100 98.31 78.59 81.69 75.56

Averages 99.6 98.2 94.1 91.9 92.3

This has been possible for the reason of the GAP involved in the improved ResNet.
The GAP assures fewer amount of training parameters are needed and keep away overfit-
ting troubles to training data. This GAP realizes deep learning and guarantees excellent
defect identification result even if the data is unseen.
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5. Conclusions

This paper developed an improved deep residual network for defects identification in
the bearing. Modeling of modified ResNet is produced by using vibration signals attained
by celerometers. Conclusions of the study are as following:

RESNET acquired better performance by modifying its FC layer. GAP replaced the full
connection layer part of the traditional RESNET model. Also, accordingly, the amount of
training parameters is reduced and over-fitting of ResNet is avoided. This GAP realizes deep
learning and guarantees high accuracy of defect identification even if the data is unseen. A
contrast has also been done for the proposed method with the present machine learning
methods and deep learning methods. Result states that the reliability of the designed
method is up to 99.8%, which is much higher than the present machine learning methods
and the existing deep learning methods when to ascertain defects of the rolling bearing.

The improved ResNet algorithm needn’t to do any manual feature extraction of the
original fault data but inputs the original fault data directly as the model, then automat-
ically outputs the fault classification results. The “end-to-end” model has much better
versatility and operability. Furthermore, Dropout, adaptive variable learning rate and data
enhancement can also be used to effectively decrease training parameters and calculation
time of the model while preventing model overfitting

This method is verified based on experimental data, and the actual engineering data
needs to be verified.
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