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Abstract: Event-Related Desynchronization (ERD) or Electroencephalogram (EEG) wavelet is essen-
tial for motor imagery (MI) classification and BMI (Brain–Machine Interface) application. However,
it is difficult to recognize multiple tasks for non-trained subjects that are indispensable for the
complexities of the task or the uncertainties in the environment. The subject-independent scenario,
where an inter-subject trained model can be directly applied to new users without precalibration, is
particularly desired. Therefore, this paper focuses on an effective attention mechanism which can be
applied to a subject-independent set to learn EEG motor imagery features. Firstly, a custom form
of sequence inputs with spatial and temporal dimensions is adopted for dual headed attention via
deep convolution net (DHDANet). Secondly, DHDANet simultaneously learns temporal and spacial
features. The features of spacial attention on each input head are divided into two parts for spatial
attentional learning subsequently. The proposed model is validated based on the EEG-MI signals
collected from 54 subjects in two sessions with 200 trials in each sessions. The classification of left
and right hand motor imagery in this paper achieves an average accuracy of 75.52%, a significant
improvement compared to state-of-the-art methods. In addition, the visualization of the frequency
analysis method demonstrates that the temporal-convolution and spectral-attention is capable of
identifying the ERD for EEG-MI. The proposed machine learning structure enables cross-session and
cross-subject classification and makes significant progress in the BMI transfer learning problem.

Keywords: machine learning; brain machine interface; attention; motor imagery; classification

1. Introduction

Motor imagery (MI) classification based on electroencephalogram (EEG) event-related
synchronization (ERS) and event-related desynchronization (ERD) phenomena is a measure
of the neuron extent when people image body movements [1–4].

In recent years, two typical and general approaches make important achievements
in EEG-MI recognition and brain–machine interface (BMI): optimizing the hand-crafted
features and extracting the ERS/ERD features by deep learning. For the former approach,
common spatial pattern (CSP) filters and Riemannian Manifold [5–8] are two popular
and effective methods. The CSP method is optimal for discrimination of the filtered time
series data, and it forms a low dimensional spatial-subspace for the acquired multi-channel
EEG data and derives a covariance matrix for each MI class [9]. Guan’s group introduced
Filter Bank Common Spatial Pattern (FBCSP) as an extension of the original CSP algorithm
and gained attention by winning the 2008 BCI Competition IV-2a [10,11]. The FBCSP
algorithm recognized that not all frequency bands contain discriminative information,
and it optimized the data-driven spectral filter and spatial filter. The Riemannian based
dimension reduction algorithm is derived to construct a low-dimensional embedding
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from high-dimensional Riemannian manifold. Li’s group used the geodesic distance
of Riemannian manifold to determine the adjacency and weight in Riemannian graph,
and then proposed bilinear regularized locality preserving (BRLP) to address the problem
of high dimensions frequently arising from BMIs [6]. Ref. [7] proposed Riemannian distance
and Riemannian mean was directly adopted to extract tangent space (TS) features from
spatial covariance matrices of the MI EEG trials. Researchers in [12] utilized a scheme for
transfer learning to use the Riemannian geometry of symmetric and positive definite(SPD)
matrices, tightly connected to the BMI transfer learning work. Ref. [13] proposes a time-
frequency decomposition-based weighted ensemble learning (TFDWEL) method, which
aims to improve the classification performance of motor imagery EEG signals. In recent
years, EEG power topography is used for MI classification [14,15].

However, few of these methods are subject-independent explorations. There are cur-
rently a number of approaches targeting the subject-independent EEG signal analysis via
machine learning. In this area, several studies had made progress via CNN (Convolutional
Neural Network). Sakhavi et al. [16] combined multiple one-versus-rest CSP features on
CNN for multi-classes MI classification. In [17], a 3D representation is generated by trans-
forming EEG signals into a sequence of 2D arrays which preserve spatial distribution of
sampling electrodes. Then, the work proposed a multi-branch 3D CNN and a correspond-
ing classification strategy to preserve temporal-spatial features. In [18], a Convolutional
Recurrent Attention Model (CRAM) is built to encode the EEG signals and a recurrent
attention mechanism is proposed to explore the temporal dynamics of the EEG signals.
Majoros et al. [19] recognized 10 volunteers MI activities with a feedforward, multi-layer
perceptron network and convolutional neural network in combination with different data
pre-processing methods. In addition, one dimension-aggregate approximation is also
employed to extract effective MI signal representation for long short-term memory (LSTM)
networks, such as [20,21]. In [21], not only the time and frequency domain features but
also a Random Forest (RF) was used to evaluate feature weights.

Fields like Natural Language Processing (NLP) and even computer vision have been
revolutionized by the attention mechanism. Recent advances in interpreting deep model
behaviors, including the employment of attention mechanism [18,21,22] and utilization of
several types of inputs from frequency or time domain or both, have significantly enhanced
the classification accuracy. However, to the best of our knowledge, the cross-task and
cross-subject classification is still challenging.

Deep ConvNets [9] and EEGNet [23] can be applied to MI classification [17,18,24],
P300 detection [25,26], workload estimation [27–29], and error- or event-related potential
decoding [30], and they become common approaches to learn the selective preprocessed
handcraft data. The work in [9] followed a famous method of FBCSP [10] to construct the
input data and then trained the data onto CNN with known training features. In particular,
Ref. [24] improved performance via a semi-supervised contrastive learning framework with
two different networks based on Deep ConvNets and EEGNet. However, the unknown
features and/or structures for training need to be explored. Another popular approach
is building 3D CNN structures with different sizes of receptive field [17]. Though the
multi-branch structure performs better than one branch network, the computational cost
grows proportionally with the number of the branches. This is a common problem with
complex CNN models which result in more training time and worse real-time performance.
In addition, LSTM and RNN also have the same disadvantage since they are slower and
take up more memory than other normal activation functions, such as sigmoid, tanh, or
rectified linear unit. To handle this problem, Conv1D is selected to learn the temporal
features. Thus far, there are many papers based on temporal-spectral features for EEG
classification, which have achieved good results, such as [27,31].

However, the existing CNN-based classification methods depend on a single convo-
lution computation, which limits the classification accuracy. In this work, we desire to
exploit valuable intermedia learning signals to enforce the feature value. Two attention
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mechanisms for temporal and spatial learning are proposed to improve the accuracy of
EEG MI classification.

In this work, a dual-attention convolution network is proposed to handle subject-
independent recognition of MI actions. First, the raw EEG data are filtered by bandpass
filter. Then, the time serialized data are divided into segments of equal length. Finally,
the dual blocks of deep learning in CNN structure are utilized to learn temporal and
spatial-spectral EEG representations. To enhance the learning ability of the MI features and
improve the accuracy of EEG MI classification, two attention mechanisms are utilized to
enforce the temporal and spatial-spectral characteristics respectively. The block diagram of
the proposed DAC-Net framework is shown in Figure 1.

Figure 1. Schematic diagram of the experimental process of the DHDANet model.

For a comparable analysis of the role of deep 1D and 2D design choices in EEG-MI
decoding, three key questions are addressed:

- What’s the impact on the proposed attention strategy through end-to-end learning?
- How to quantify or visualize the interpretability of deep DAC-Net?
- How to accelerate the learning manifestation and effectiveness from the MI raw signals

via DAC-Net for BMI recognition applications?

The remainder of this paper is organized as follows: Section 2 introduces the experi-
ment data. Section 3 describes the preprocessing of EEG signals and the overall architecture
of DAC-Net. Section 4 presents experiment results and evaluates the performance of the
proposed method. Section 5 describes the interference with data acquisition, as well as
providing the visualization of the learned features. Finally, Section 6 concludes this paper.

2. Data

The MI-EEG dataset [32] utilized in this research was recorded by the department of
brain and cognitive engineering, Korea University, which is shortened as KU-MI dataset.
Fifty-four healthy subjects (ages 24–35; 25 females) participated in the experiment. All
of them had no history of neurological, psychiatric, or any other pertinent disease that
otherwise might affect the experimental results. Thirty-eight subjects were naive BMI users
and the others had previous experience of BMI experiments.

For all blocks of this MI-EEG paradigm, the first 3 s of each trial began with a black
fixation cross that appeared at the center of the monitor to prepare subjects for the MI task.
Afterwards, the subject performed the imagery task of grasping at the appropriate hand
for 4 s after the right or left arrow appeared as a visual cue. The MI experiment consisted
of training and test phases; each phase had 100 trials with balanced right and left hand
imagery tasks. Hence, 21,600 (54 subjects × 2 sessions × 200 tails) trials segmented from
the continuous training and testing data can be fetched.

EEG signals were recorded at a sampling rate of 1000 Hz and collected with 62 Ag/AgCl
electrodes. The EEG amplifier used in the experiment was a BrainAmp (Brain Products;
Munich, Germany). The data were obtained from 20 MI cortices [33–35] of FC1-6, C1-6,
CP1-6, Cz, and FPz (see Figure 2).
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Figure 2. The channel configuration of the International 10–20 system. The red masked electrodes
are the selected inputting data onto learning. The serial numbers of annotation are the arrangement
way of the input data matrix constructed by reading channel sequence.

3. Method

In this section, we discuss the main components of our method. First, we design a
dual-input preprocessing method (Section 3.1). Next, we exploit two custom attention
mechanisms respectively for temporal and spatial feature extraction (Section 3.2). Finally,
we discuss how we train our model from the dual-input EEG (Section 3.3). Figure 3 contains
an overview of our method.

3.1. Input Data

In this work, a trial-wise strategy evaluating two approaches to defining is adopted.
The input examples and the corresponding labels are identical to the cropped extracted
samples. As shown in Figure 4, the first input is earlier than the second input according
to the configured time parameter which is called transferring time in milliseconds. Since
different EEG electrodes reflect the electrical fluctuations of different brain areas, there
are strong relations between different EEG electrodes [36]. Thus, small local filtering has
limited abilities to explore the important spatio-temporal representation of EEG signals.
A cropped training strategy was exploited to handle the EEG data by presenting the input
as a 2D−array with the number of window sizes as the width and the electrode number
on the MI area as the height.

The corresponding crop label is utilized as a target to train the DAC-Net. Such a
generic architecture was selected for three reasons: first, to cover event-related desynchro-
nization (ERD) or event-related energy (ERE) features, the window sizes of EEG data are
cropped to 3000 ms that are introduced in Section 5. Second, the structure of the input data
was fit for learning temporal-spatial features and the data were intercepted to 1000 ms.
Meanwhile, 1100 ms of previous data was fetched to apply to the standard DAC-Net as a
general-purpose tool for brain signal tasks in real time. For example, if the stride step time
and transferring time are 100 ms, and the time sizes are 1100 ms, 600 segment data could
be obtained from each subject session data, as 3 segments × 200 tails.
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Figure 3. DHDANet architecture. This network consists of three parts. First, the Maxpooling
1D+Conv 1D+key-value attention structure extracts the temporal dimension. Second, the Conv
2D+self attention+Maxpooling 2D structure learns the spatial and spectral dimensions. Third,
the classification structure includes a fully connected layer with a nadam activation function.

Training ERD/ERS examples are inherently sequential, which contains many features
as longer sequence lengths. However, the memory and/or GPU used in the experiment
limit the processing of BMI in real time. To overcome this problem, the raw data are
down sampled to remove jitters by setting the trigger timing to a sampling rate of 256 Hz
and band-pass filtering at 4∼40 Hz. Down-sampling the data helps to increase the out-
put speed of each electrode, but in order to achieve real-time processing, it should be
avoided. For a given group (training or testing), all data were loaded into a single three-
dimensional Numpy array. The dimensions of the array are [samples, ime steps, channels],
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or rather [∑ Ni, 400, 34], which maps the total sample number from ten-folder-cross subjects,
400 records, and 34 channels.

Figure 4. The data cropped strategy. (a) is the binary class MI paradigms; (b) is the cropped method in each trail; (c) is the
segment function for dual inputs in each cropped.

We built a set of crops with crop size T′ as time slices of the trial: Cj = X j
S,W,F,E, where

S is the segmental sample number, W is the data window size, F is the number of frequency
bands with 22 in this paper, and E is the number of electrodes on 20 MI areas were selected.
All of these Cj crops are new training data examples of our decoder and will have the same
label yj as the original trail.

Crops were collected starting on trial cue, with the last ending of 4 s after the cue
ends. Overall, this resulted in 3100 crops and label predictions per trial for each subject.
Di =

{(
x1, y1), (x2, y2), · · ·,(xNi

, yNi
)}

, where Ni denotes the total number of cropped

data onto subject i. The input matrix xj ∈ RT×E of cropped j, 1 ≤ j ≤ Ni contains the
preprocessed signals of E-recorded electrodes and T-discretized time steps recorded per
window size. In addition, the number of samples, ∑

len(subs)
i=1 ∑N

k=1 S(ri, eik,w,s), is the total
number of cropped in any given raw signal data files.

3.2. Attention Module

Attention is the process of reinforcing behavior and cognition by selectively focusing
on a discrete aspect of information and ignoring other perceived information. Attention
mechanisms have become part of compelling sequence modeling and transduction mod-
els in various tasks, allowing the modeling of dependencies regardless of their distance
between the input sequence and the output [37]. For MI recognition, a suitable attention
model can be applied to new users without pre-calibration in the subject-independent
scenario [38]. The attention model of action recognition/detection helps to improve the
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judgment on actions that occur in MI by focusing on specific relevant signals in the spa-
tial–spectral–temporal domain.

In this paper, the spatial-spectrum-temporal dual attention is introduced to two steps,
which learns different focusing weights for different ERD in the temporal dimension and
different focusing weights for different EEG channels in the spatial dimension, see Figure 3.
Before elaborating the spatial-spectrum-temporal attention(SSTA), the basic notations are
presented first:

ψt(X1, X2) =

{
ϕi,j|ϕi,j = So f tmax

(
X1 · X′2√

d2

)
· X2

}
(1)

The input EEG sequence is denoted as X, which defines Xt and Xs in the processes of
temporal learning and spatial learning, respectively. The SSTA module attempts to learn
the attention W weighting the spectrum in temporal and spatial dimensions. In addition,
an attention function ψ(·) is defined for the SSTA module, which learns the weights W
from the input features X. Based on ψ, the output sequence Y generated by passing X
through the SSTA module can be defined. In the next part of this paper, subscripts t and s
are used to distinguish X, W, ψ, Y at the temporal or spatial learning level. Figure 3 shows
the whole SSTA network module.

The principles of the SSTA module are as follows:

1. The module is as simple and efficient as possible, relying on the combined operation
of convolution, pooling, normalization, and anti-overfitting.

2. The module has robust and nonlinear learning capabilities by enabling 1D CNNs in
the temporal dimension and 2D CNNs in the spatial dimension.

3. This module conducts attention learning in the temporal dimension firstly, which
helps to improve the subsequent spatial dimension learning (see Section 5.1).

3.2.1. Key-Value Attention Mechanism

The key value attention was originally used by Daniluk et al. to separate the data
structure and maintain a separate vector for the attention calculation [37]. The ERD/ERS
signal phenomenon in the time dimension is focused first. After three-dimensional
one-dimensional convolution, maximum pooling, normalization, and dropout encod-
ing, the generalized characteristics of the dual input data are obtained. Based on the global
correlation, the data characteristics are strengthened through the learning of the key value
attention mechanism. This process mainly learns the spectral characteristics of the time do-
main, referred to the TSA (Temporal-Spectrum-Attention) module. In the learning process
of the TSA module, the softmax function is used to activate X2

t to capture the enhanced
information of the corresponding feature map from X1

t . This algorithm adopts the strategy
of inductive migration and the difference between dual input data. The data characteristics
of task relevance are utilized to narrow the scope for searching features.

The information on the hidden layer is referred to as “feature map” to distinguish
it from the input data. According to the difference in each feature map, the output
feature weight vector is represented as Wt. Suppose the input information is Xi(0)

t ={
xj,k

}
∈ RT×E, i ∈ [1, 2], where T is the time window of the divided time window

with downsampling. For example, if the segmentation window is 3 s and the downsam-
pling frequency is 250 Hz, then T is 768; E is the number of the collection MI electrode
leads. The Temporal Spectrum Module (TSM) can learn the dynamic weight distribution
Wi

t =
{

wj,k

}
∈ RL×F, i ∈ [1, 2], where L Is the number of features in the time dimension,

and F is the number of output filters in the upper convolutional layer. The transfer attention
layer adopts the dual input values X1

t (11) and X2
t (11), which are abbreviated as X1 and X2

in the following formula. The algorithm function of the key value attention mechanism is
defined as Equation (1), where i and j are the two dimensions of X, d2 is the dimension of
the input weight Xi

t matrix, and ψt is the RB×D matrix. For the visualization of key value
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attention, the time-dimension eigenvalue changes of the input eigenvalues X1, X2 and the
output value ψt in each layer of the filter are captured, see Section 5.1 for details.

3.2.2. Spatial Attention

After converting the EEG 1D eigenvalues to the 2D spatial spectrum tensor Xs, the in-
termediate features are weighted by the Conv2D encoder, and then the self-attention
calculation is performed, as the second step shown in Figure 3. This mainly learns the
acquisition, and the spectral characteristics of the joint electrode space are referred to as SSA
(Temporal-Spectrum-Attention) module. The self-attention mechanism was first proposed
by IBM and applied to the hidden layer of the bidirectional LSTM [39]. The self-attention
mechanism extracts the features of sparse data onto convolution and pooling, which has
been widely used in natural language processing, especially machine translation. After cal-
culating through the attention mechanism, the dependence on external features is reduced,
and the correlation between internal features of the data [40] is strengthened.

The last TSA module can distinguish time changes and strengthen the characteristic
information of ERD/ERS. Each lead information is processed independently. The spectral
characteristics of the spatial dimension hide the unlearned features in the network. One
problem in this process is how to convert the 1D EEG feature map composed of multiple
leads into a 2D structure conforming to the spatial information. In this case, their spatial
spectrum characteristics can be learned. To handle this problem, the input data onto EEG
electrodes is arranged in symmetrical order for the collected electrodes from front to back,
from left to right. Meanwhile, before conducting the feature learning of the self-attention
mechanism, the features of the TSA module are output first. The quantity is converted to
the input tensor X0

s =
{

xijk

}
∈ RB0×R×C of the SSA module, where B is the number of

output feature maps; R, C are the 1D feature values converted to 2D tensors Reconstruction
coefficient, R× C = D; D is the last channel dimension of the output characteristic value
of the TSA module. The convolution calculation is performed again, which is equivalent
to the initial learning of the feature value of the spatial dimension, and the distribution
weight is recalculated.

The self-attention mechanism algorithm of the SSA module combines two hidden
functions. First, according to the difference of each characteristic value Xs, the weight
distribution vector of the characteristic difference is calculated. The calculation process
follows the softmax activation function H(X)j which is RB4×R×C matrix, as exhibited in
Equation (2). The maximum pooling is used to learn each feature map H and feature weight
W to capture the feature information between each lead electrode.

ψs(X) =

H =

{
hijk|hijk =

e
xijk

∑C
l=1 eijl

}
G(W · H)

(2)

3.3. DHDANet

The Dual Head Dual Attention (DHDANet) model includes three parts, as shown in
Figure 3:

• TSA module: As for the characteristics of ERD/ERS phenomenon, the input heads
perform three sets of time-domain wave amplitude feature learning. Each set of
time-domain training includes one-dimensional convolution, maximum pooling, data
normalization, and dropout operation. Then, the Key-value attention learning is
performed, and the feature values of the dual input head correspond to the key and
value in the attention mechanism. The three sets of time-domain feature extraction
parameters are the same. It mainly performs neighborhood filtering. The parameter set
and processing process of the network are shown in Figure 5. First, one-dimensional
convolution is performed to extract different feature maps with a core of 32 and a
time interval of 0.128s (32/250) because the down-sampling rate is 250 Hz. Then,
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MaxPool 1D continues. At this time, the learning processes volatility characteristic
value at a time interval of 0.25s. Data normalization and dropout are conducted to
prevent overflow and overfitting [41,42]. After three sets of time-domain features
are extracted, each feature map covers 1s of EEG waveform feature information,
and from the analysis in Section 3.1, the time period for an ERD/ERS peak or trough
is generally between 500 ms to 1s [43,44]. It can be seen that, before entering the
key-value attention calculation, a peak or trough of ERD/ERS exists in the two input
feature maps.

Figure 5. TSA module diagram.

• SSA module: After extracting the feature value of time domain, this module focuses
on extracting the spectral features in spatial domains of the left and right hemi-
sphere. For feature extraction in the spatial domain, the amplitude information of
the ERD/ERS phenomenon cannot be extracted for convolution calculation that is
too short or too long. In particular, if the triple feature extraction is performed on the
input data of the network initially, the convolution and maximum pooling are used.
The further reduction of computing will result in the loss of valuable information,
which cannot be used for action recognition. To avoid this problem, the SSA module
in this chapter first converts the 1D feature values output by the TSA module into a 2D
tensor with a 4-column structure, Conv2D = (2,2), so that the symmetrical lead signals
of the two brain regions can be convolved to calculate the weight of the feature map.
Before and after the self-attention calculation, convolution and dropout calculations
are added. This former is to obtain dynamic weights based on the feature information
to prepare for self-attention calculations. In addition, the latter is to compress feature
values to facilitate the calculation of the next module, as shown in Figure 6.

• Feature classification learning module: This module is to classify the temporal and
spatial features learned in the training network and build a classifier. This module
uses two fully connected layers, and the basic operation of fully connected is the
matrix vector product. The first completely connected layer of the module aims to
weight the probability of the existence of each neuron feature. After common machine
learning operations with unique data and over-fitting, the second fully connected
layer classifies the feature weights output by the previous connected layer absolutely.
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Each training cycle of the DHDA net uses the Nadam activation function, which has a
certain range and a Nesterov momentum term for the learning of each iteration, making
the parameters more stable and the learning rate more restrictive. In addition, a direct
effect on updating the gradient is imposed by this function. Inspired by algorithms such as
FBCSP [10,11,45] and SBLFB [46], two frequency bands including 8–20 Hz and 20–30 Hz
are used to build a DHDA model, according to the law of motor imagery.

Figure 6. SSA module diagram.

4. Experiments and Results

The DHDANet network has two key points. Firstly, the input data contain event-
related desynchronization (ERD) or Event-related energy (ERE) function; secondly, the spa-
tial feature is retained in the process from a one-dimensional temporal feature map to a
two-dimensional structure. In addition, a two-dimensional nonlinear calculation algorithm
is performed, and the parameters must be appropriate for extracting the features.

The experimental results and the advantages of the proposed method in the end-to-
end model of EEG across subjects are shown in this section. The data acquisition method
of the dual-input mechanism is exhibited first. The effectiveness and advantages of using
the attention mechanism algorithm based on the dual-input in the time domain and the
spatial domain are then proved. Finally, the comparison of DHDANet to the best method
in the literature is based on the classification performance through the data collection on
the KU-MI data set.

All experiments are implemented with Python and Tensorflow running on an NVIDIA
GTX 1080 Ti GPU.

4.1. Data PreProcessing

This experiment includes two stages of training and testing (or two sessions). In each
stage, imagine the left and right hand grasping actions 100 times. Therefore, the KU-MI
data set has a total of 21,600 samples generated by 54 subjects × 2 sessions × 100 times of
each MI action × 2 types of MI actions.

According to the data segmentation strategy in Section 2, the sliding step λ = 100 ms,
and the time window of the input training EEG signal is 3 s. Due to dual inputs, the interval
between the front and back is 100 ms, and the actual information segmentation window is
ω = 3100 ms. 4 s of motion image and nine input samples can be divided each time, so
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there are 194,400 experimental samples in total. It is sufficient to analyze the reliability of
these samples with confidence, and the results will be shown in Section 5.1.

This paper aims to realize an end-to-end machine learning model and an online
brain–computer interaction interface, and the data preprocessing supports real-time data
collection. TensorFlow and Keras are used in this work to build a DHDA learning network.
In the training process, the learning rate and batch size of DHDA are set to 0.001 and 1024,
respectively. For this data preprocessing strategy, the cluster-level statistical permutation
is tested. Figure 7 shows the statistics result about the left hand MI action corresponded
to the right in the C3, Cz, and C4 electrodes. The result calculated with permutations and
cluster-level correction(see Figure 7) shows that the max distinguishing point is at 3.5 s.

(a)

(b)

Figure 7. Cont.
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(c)

Figure 7. The cluster level permutation test for the evoked response between right and left MI action.
(a) C3; (b) Cz; (c) C4.

4.2. Result

According to the analysis in Section 2, the input data finally used in this chapter comes
from: down-sampling rate of 250 Hz, band-pass filter at 4 to 40 Hz, extraction of KU-MI
data from 20 acquisition points in the motor imaging area, and intercepting induced events
according to the law of ERD/ERS. The data in the next 2 to 6 s is based on a time window
of 3 s, a step length of 100 ms, and double input. Meanwhile, the latter input is delayed by
100ms than the previous one. This paper uses ten-fold crossed validation which is loaded
from an component of sklearn package.model_selection KFold to test the performance
of the DHDA model and compare it with the other four methods. Before the training of
each model, the input data are randomly mixed, and the training data and test data are
distributed at a ratio of 9:1. The learning rate is 0.001 and training is performed iteratively
100 times. The strategy for saving the model in training is as follows:

• Validation loss rate must be lower than the previous iteration before this model
is saved.

• If the test loss rate of the trained model does not decrease within 30 iterations, the train-
ing is automatically stopped.

The batch size of the DHDA model is 512, and it is trained 393 times in each Epoch.
The learning process of the model is exhibited in Figure 8. Generally, after 60 times of
iterative training, the accuracy of the test no longer changes, but the loss value still increases,
indicating an overfitting. The suite of hyper parameters in DHDANet’s and the superiority
of the model algorithm can be verified.

The proposed algorithm is compared with the four methods on the KU-MI data set, all
of which use ten-fold cross-validation. Among them, CSP-cv [32] uses the CSP algorithm.
The team introducing CSP-cv is also the designer and data collector of the KU-MI data set
experimental paradigm, marking the subjects in the KU-MI data set as the first. There are
33 people who performed the motor imagery experiment of this experimental paradigm
at one time (generally inexperienced subjects will have poorer quality in completing the
specified tasks); Deep ConvNet [47] and EEGNet [23] both use a compact for EEG Shallow
ConvNet. The former is designed as a general architecture, not limited to specific functional
types, and the latter model is as parameterized as possible. Both models can be used to
classify and identify classification tasks of different brain–computer interface paradigms.
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In addition, FBCNet [48] performs a heuristic convolutional neural network based on the
neurophysiology of motor imagery.

Figure 8. The classification accuracy and loss values for training and testing in the DHDANet.

Since CSP-cv is not subject to an end-to-end machine learning, it is used as a reference
method for the other end-to-end learning methods. Based on the experimental results
shown in Table 1, FBCNet and DHDANet are better than CSP-cv. The DHDANet model
used in this work achieves 2.08% higher average classification accuracy than the latest
FBCNet. Moreover, compared with the other four algorithms, DHDANet has a high
recall rate, indicating that the recognition rate of poor samples is satisfactory. Meanwhile,
the speciality is also high, indicating a low false positive rate for samples with non-motor
imagery. DHDANet has high sensitivity and specificity for MI recognition, which confirms
the superiority and is a popular choice for high performance diagnostics.
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Table 1. Classification accuracy, recall, and specificity of the five algorithms in the MI data set of
Korea University

Model Accuracy (%) Sensitivity (%) Specificity (%)

CSP_CV 71.21± 14.79 73.69± 13.52 68.73± 16.47
Deep ConvNet 65.72± 13.96 65.89± 17.56 65.56± 17.88

EEGNet 66.75± 14.25 64.11± 16.95 69.39± 12.67
FBCNet 73.44± 14.37 76.37± 12.63 70.50± 18.47

DHDANet 75.52± 11.72 77.58± 10.85 73.46± 13.59

5. Analysis and Discussion

In this section, we prove the advantage of DHDANet by comparing the recognition
effect with or without our custom attention (Section 5.1). Then, we put forward the next
step of our work based on this work (Section 5.2).

5.1. Why Use the Attention Mechanism Algorithm?

In order to verify the effectiveness of the dual-input dual-attention mechanism al-
gorithm for the recognition and classification of motor imagery machines, five network
frameworks are built in this work through the combination of “single or dual input” and
“with or without an attention mechanism learning module”. The frameworks are shown
in Figure 9, where NAF means no attention framework; SAF means only self-attention
framework; DAF means dual (transferring and self) attention framework; TAF means only
transferring attention framework.

Figure 9. Five compared frameworks which differ in whether or not they contain the attention layer.

The experimental results of these frameworks are shown in Figure 9, and the statistical
results of classification accuracy are shown in Table 2. The order from low to high is:
SHNA→SHSA→SHDA→DHTA→DHDA. Comparing the result of SHDA and DHDA,
it can be seen that the dual-input mechanism has 8.89% higher accuracy, indicating a
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significant improvement in the classification and the necessity of dual-input. Based on the
comparison between SHNA and DHTA, the key-value attention mechanism in the dual-
input time domain contributes to 6% higher classification accuracy, showing the necessity
of a key-value attention mechanism in the time domain. Comparing between SHDA and
SHSA, it can be seen that the classification accuracy of the self-attention mechanism in the
airspace increases by 1.36%, verifying the necessity of the self-attention mechanism. In
addition, the classification accuracy continues to increase by 7.53% by adding double input.
The analysis shows that it is necessary to first learn from the time domain to strengthen the
ERD/ERS characteristics of the airspace.

From the comparison of pre- and post-calculation of key-value attention feature maps
with SHSA and SHDA in Figure 9, it can be seen that the key-value attention algorithm
enables the ERD/ERS feature to strengthen the main features and weaken the unnecessary
features. Meanwhile, it is helpful for subsequent SSA model learning because this attention
mechanism reinforced the features.

Table 2. The classification accuracy in five network frameworks.

SHNA SHSA SHDA DHDA DHTA

Accuracy 63.01% 65.27% 66.63% 75.52% 69.24%

The classification effect of Lee et al. [32] on the KU-MI data set marked by novices (as
shown in Figure 10 subject ID circled in red) and non-beginners is further analyzed through
statistical analysis of the box line between the two shown in Figure 11a. There is much
more clutter for the non-MI illiteracy subjects to do the MI experiment, and this indicates
the superiority of DHDANet in the extraction of generalizable features and proves that
DHDANet has higher performance. The DHDANet model achieves more concentrated
classification accuracy for non-initialists than other algorithms, and it obtains the high-
est average value. This shows that the brain–computer interface implemented with the
DHDANet model for repeated users has better stability. The classification accuracy of the
DHDANet model for the beginners is shown in Figure 11b. The distribution concentration
and average accuracy are second to CSP-cv and FBCNet, respectively. This result shows
that the subjects’ brains are not fixed and the machine interaction application scenario has
a high recognition rate and stability.

Figure 10. Classification accuracy of each subject in the KU-MI data set in the five models.
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(a)

(b)

Figure 11. Comparison of classification accuracy of five algorithms based on whether they are
illiterate or not for MI. (a) non-MI illiteracy subjects; (b) MI illiteracy subjects.

5.2. Feature Works

In order to realize an end-to-end cross-subject brain–computer interaction, the sim-
ilarity feature can be searched before the identification is performed and submitted in
real time. Bai et al. [49] proposed an adaptive similarity metric, which is consistent with
k nearest neighbor search, an original similarity function used as the kernel function to
calculate the hash code to achieve fast search. Inspired by the self-hashing method [50],
the EEG data are retrieved through a hash retrieval algorithm, and similar data are stored
in the corresponding hash sets. When the data are represented by a high-dimensional
vector, the hash operation is usually used as an effective solution for similar search. Hash
search and bash search are two methods that can be tried to improve EEG similarity feature
search [51,52]. In addition, the number of selecting MI electrodes has an impact on the
dimension of learning data structure and speed of training. For this, we will conduct
research on an automatic electrode selection method [53] in future work.

As for learning the focusing weights for different frames in the temporal dimension
and different channels in the spatial dimension, some biological research gives us a good
idea, such as [54] extract and learning a set of informative features from a pool of support
vector machine-based models trained using sequence-based feature descriptors. In addition,
ref. [55] used a feature representation learning strategy that automatically learns the most
discriminative features from existing feature descriptors in a supervised way, which can
improve the performance for action recognition and detection tasks on EEG. Additionally,
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We plan to use predictive tools to select predictive features that will help find the most
effective [56]. There are benefits for BCI researchers to use control strategies and conduct
the interactive feedback applications [57].

6. Conclusions

This paper proposed a neurophysiologically motivated DHDANet architecture for
classification of motor imagery EEG data. While being completely interpretable, the
proposed architecture offered a significant increase of +2.08% in classification accuracy.
DHDANet is based on the two-level attention model from brain waves. The features of
the ERD/ERS and the frequency spectrum through the temporal and spatial feature are
learned by DHDANet. Experimental results showed that DHDANet can outperform the
best methods in the literature. Three innovations are made in this work:

• To learn the ERD/ERS features in the time domain, double-input EEG data are used.
Meanwhile, the features are handled by the key value attention mechanism. Experi-
mental results confirm that the key value attention mechanism is beneficial for both
the recognition of motor imagery in the time domain and the follow-up learning of
spatial EEG characteristics.

• Clever conversion methods are used to transform time domain features to spatial
domain features. In addition, the EEG collection point information input into the
network is combined into a two-dimensional matrix according to front-back and
left-right symmetry in the brain area, to retain characteristics of the left and right brain
activities when handling a three-dimensional matrix conversion.

• In the spatial feature learning module, a reasonable nonlinear computer system is
constructed to extract features. In addition, a self-attention mechanism algorithm is in-
troduced to further strengthen the features of motor imagery in the spatial dimension,
see the comparison of the before and after feature maps of the key-value attention
calculation in b and c in Figure 12.

(a)

Figure 12. Cont.
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(b) (c)

Figure 12. The cluster level permutation test for the evoked response between right and left MI action. (a) Input data;
(b) before the key-value attention calculation; (c) after the key-value attention calculation.

In addition, the proposed method only needs to be fine-tuned according to different
paradigms before it can be applied to the classification and recognition of different types
of features, reducing the calibration time in actual use. This algorithm is suitable for
multi-classification tasks such as intra-subject motor imagery, and enhances the generality
of classification.
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