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Abstract: Estimating the bearing capacity of piles is an essential point when seeking for safe and
economic geotechnical structures. However, the traditional methods employed in this estimation
are time-consuming and costly. The current study aims at elaborating a new alternative model for
predicting the pile-bearing capacity based on eleven new advanced machine-learning methods in
order to overcome these limitations. The modeling phase used a database of 100 samples collected
from different countries. Additionally, eight relevant factors were selected in the input layer based
on the literature recommendations. The optimal inputs were modeled using the machine-learning
methods and their performance was assessed through six performance measures using a K-fold
cross-validation approach. The comparative study proved the effectiveness of the DNN model,
which displayed a higher performance in predicting the pile-bearing capacity. This elaborated model
provided the optimal prediction, i.e., the closest to the experimental values, compared to the other
models and formulae proposed by previous studies. Finally, a reliable and easy-to-use graphical
interface was generated, namely “BeaCa2021”. This will be very helpful for researchers and civil
engineers when estimating the pile-bearing capacity, with the advantage of saving time and money.

Keywords: pile-bearing capacity; machine learning; deep neural network; K-fold cross-validation
approach; sensitivity analysis

1. Introduction

Pile foundations are used to transmit construction loads deep into the ground in
order to ensure structure stability [1,2]. Furthermore, computing the bearing capacity of
piles is essential when designing economic and safe geotechnical structures [3]. To date,
numerous approaches have been conceived for the sake of creating alternative methods
and techniques that contain numerical, experimental, and analytical approaches aiming at
predicting the bearing capacity of piles [4–6]. Among the most frequently used methods
is the Cone Penetration Test (CPT), known for producing accurate results in a variety
of situations [7,8]. This is probably due to the fact that CPT-based methods have been
modeled in harmony with the CPT results, which were proven to estimate more effective
different geotechnical properties, and make more precise pile capacity predictions [6].
Other semi-empirical methods have been widely utilized, such as Meyerhof’s formula,
which could yield an acceptable pile-bearing capacity [4]. On the other hand, the High-
Strain Dynamic Load Test (HSDLT) and the Static Load Test (SLT) have been employed
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considerably for predicting the pile-bearing capacity [9]. The HSDT is preferable to the
SLT, because it operates with a faster, more advanced, and economic technology [2]. This
quality supports its paramount importance addressed by the American Standards Test
Methods to standardize the HSDT method [1]. The literature on bearing capacity values
revealed a relatively close accuracy in both the HSDT and the SLT [1]. Momeni et al. [10]
added that HSDT is faster and more economic compared to SLT, but it generally requires
several HSDT tests for each project to obtain a reliable result [11]. Hence, increasing the
number of HSDT tests is extremely undesirable since it may increase the total project
budget. Moreover, other empirical researchers have proposed traditional methods for
estimating the bearing capacity [12–15]. The quality of easiness and common usage has
made these methods very important. However, determining the bearing capacity of bored
and driven piles by means of the aforementioned methods is found to be time-consuming
and costly [16]. This is probably due to the complex behavior of piles, heterogeneity of
the soil around piles, material and shape of piles, and their installation. Accordingly, all
the proposed methods/models in the literature yielded ineffective predictions [17]. On
the other hand, currently, due to emerging new easy-to-use performance software such as
PLAXIS, utilizing finite element analysis for which the system is discretized into a number
of meshes to obtain axial capacity is of interest [18]. For this reason, numerical methods
based on the finite element approach have recently become well-known for the evaluation
of bearing capacity, yielding effective results [19,20]. Recently, the application of some new
advanced techniques, namely “artificial intelligence (AI)” or “machine learning (ML)”, has
witnessed a spectrum of interest, and they provided exceptional results in solving several
issues by learning from the available data [21,22].

Subsequently, the use of machine-learning methods to predict pile-bearing capacity
has witnessed considerable development since the early 1990s [21–24]. Several studies
are now able to estimate the pile-bearing capacity with a higher degree of precision in
comparison to traditional methods. Among the fundamental research dealing with the
pile-bearing capacity, Nawari et al. have used one hidden layer of the ANN model by
investigating a database consisting of 25 test data. The chosen input parameters included
the SPT-N values and geometrical properties. The ANN model efficiently predicted the
pile-bearing capacity compared to traditional methods [25]. Furthermore, Mahnesh has
predicted the pile-bearing capacity by using Support Vector Machines and Generalized
Regression Neural Network with an input layer containing dynamic stress-wave data [26].
He concluded that the Generalized Regression Neural Network was the best model with a
high correlation coefficient (0.977). In addition, Milad et al. have developed an effective
model based on Artificial Neural Network, genetic programming, and linear regression
methods to predict the bearing capacity of piles by learning from 100 samples. They
utilized the Flap number, basic properties of the surrounding soil, pile geometry, and
pile-soil friction angle as an input layer. The suggested ANN model has better stability
compared to the other methods [27]. Jahed et al. used hybrid PSO–ANN to predict the
bearing capacity of rock-socketed piles, by taking into consideration soil length to socket
length ratio, total length to diameter ratio, uniaxial compressive strength, and standard
penetration test. The proposed PSO–ANN model has demonstrated its efficiency since it
produced a high correlation coefficient (R = 0.9685) [1]. Moayedi et al. have used ANFIS, GP,
and SA–GP for modeling a database consisting of 50 tests. The chosen input parameters
included the pile length, pile cross-sectional area, hammer weight, pile set, and drop
height. The SA–GP model efficiently predicted the pile-bearing capacity compared to other
methods [28]. Shaik et al. have predicted the pile-bearing capacity by using ANFIS and
ANFIS–GMDH–PSO with an input layer containing CPT and pile loading test results [29].
They have proven that the metaheuristic hybrid ANFIS–GMDH–PSO model is the best
one, with a high correlation coefficient (0.998) [29]. Harandizadeh et al. have used hybrid
MLP–GWO and ANFIS–GWO to predict the bearing capacity of piles from the input layer,
including pile area, pile length, flap number, average cohesion, and friction angle, average
soil-specific weight, and average pile-soil friction angle. The proposed MLP–GWO model
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has demonstrated that its efficiency yielded a high correlation coefficient (R = 0.991) [30].
Table 1 summarizes more than ten studies that have used machine-learning models to
predict the pile-bearing capacity.

Table 1. Proposed machine-learning models in the literature to estimate the pile-bearing capacity.

Authors Inputs Methods Database References

Nawari et al. (1999) SPT-N values and geometrical
properties Neural Network 25 [25]

Mahnesh (2011) Dynamic stress-wave data
Support Vector Machines and
Generalized Regression Neural
Network

105 [26]

Milad et al. (2015)

Flap number, basic properties of
the surrounding soil, pile
geometry, and pile-soil friction
angle

Artificial Neural Network, Genetic
Programming and Linear
Regression

100 [27]

Jahed et al. (2017)

Soil length to socket length ratio,
total length to diameter ratio,
uniaxial compressive strength, and
standard penetration test

hybrid PSO–ANN 132 [1]

Moayedi and Jahed (2018)

Internal friction angle of soil
located in shaft and tip, pile length,
effective vertical stress at pile toe
and pile area

ICA-ANN 59 [31]

Yong et al. (2021)
Pile length, pile cross-sectional
area, hammer weight, pile set, and
drop height

ANFIS, GP, and SA–GP 50 [2]

Shaik et al. (2019)

Internal friction angle of soil
located in shaft and tip, effective
vertical stress at pile toe, pile area,
and pile length

ICA-ANN and ANFIS 59 [29]

Kardani et al. (2020)

Shear resistance angle at the shaft
of the pile, soil shear resistance
angle at the tip of the pile, length
of pile, cross-sectional area of the
pile, and effective stress at the tip
of the pile

Decision tree, k-nearest neighbor,
Multilayer Perceptron Artificial
Neural Network, Random Forest,
Support Vector Regressor, and
Extreme Gradient Boosting

59 [32]

Harandizadeh et al. (2021) CPT and pile loading test results ANFIS and ANFIS–GMDH–PSO 72 [30]

Moayedi et al. (2020)

Pile diameter, pile length, relative
density, embedment ratio, and
both the pile end resistance and
base resistance

GA-ANFIS and PSO-ANFIS 20 [28]

Liu et al. (2020) Laboratory and in situ testing
results ANFIS, ANN, and GA-ANN 43 [33]

Dehghanbanadaki et al.
(2021)

Pile area, pile length, flap number,
average cohesion and friction
angle, average soil-specific weight,
and average pile-soil friction angle

MLP–GWO and ANFIS–GWO 100 [34]

According to the authors’ knowledge, previous studies have been limited mostly to the
use of ANN, ANFIS, and SVM methods for predicting the pile-bearing capacity, although
recent studies have shown that other techniques could have yielded more effective and
accurate results [35–37]. Furthermore, they assessed the predictive capability of suggested
models depending on only one split to check the data learning validity. Consequently, the
ability of their proposed model to overcome over-fitting and under-fitting problems cannot
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be assured. Moreover, the majority of published papers have proposed machine-learning
models in the form of mathematical equations, which are hard to duplicate in future studies.
Admittedly, this practice has very little value for other researchers and civil engineers in
the field. Conveniently, to overcome these limitations, investigators have presented their
optimal models in the form of a programmed interface or a simple script by a well-known
programming language such as Python or Matlab for generating the proposed model. This
will make it available to anyone interested in the problem of modeling regardless of their
proficiency level.

The current study contributes to providing a new alternative model for predicting the
pile-bearing capacity based on 12 advanced machine-learning methods, which are applied
for the first time for this aim. Furthermore, a high-performance method to estimate the
generalization capability of the learning model, and to check the validity of the model for
other cases, has been used, namely “K-fold cross-validation analysis”. Finally, in order to
treat the hard usage problem of machine-learning models in future studies, the proposed
optimal model was used afterwards to develop a GUI public interface. Consequently,
the suggested “BeaCa2021” interface is very handy and easy-to-use by civil engineers
and researchers, by offering plenty of benefits such as reliability, easiness, and lowering
the budget used to predict the pile-bearing capacity from relevant and easily obtained
parameters without the need to operate expensive in situ tests.

2. Materials and Methods
2.1. Overview of the Methodology

Several advanced machine learning methods, such as Extreme Deep Neural Network
(DNN), Extreme Learning Machine (ELM), Support Vector Regression (SVR), LASSO re-
gression (LASSO), Random Forest (RF), Ridge Regression (Ridge), Partial Least Square
Regression (PLSR), Stepwise Regression (Stepwise), Kernel Ridge (KRidge), Genetic Program-
ming (GP), and Least Square Regression (LSR), have been used to learn from 100 samples
collected from previous studies [27]. Multiple input parameters, including the pile material,
average cohesion (kN/m2), average friction angle (◦), average soil-specific weight (kN/m3),
average pile-soil friction angle (◦), flap number, pile area (m2), and pile length (m), have
been used. Firstly, the aforementioned advanced machine-learning methods have been
utilized for modeling the input parameters, and their effectiveness was assessed through
various statistical indicators. To evaluate the predictive ability of the optimal model, the
k-fold cross-validation approach, which is based on five splits, has been employed. After-
ward, in order to know which input variables have the biggest effect on the pile-bearing
capacity through the proposed model, a sensitivity analysis has been performed via the
step-by-step method. Finally, a reliable, easy-to-use, and the graphical interface was de-
signed based on our optimal model in order to help civil engineers and researchers to easily
predict the pile-bearing capacity in future studies.

2.2. Database

Choosing the Neural Network inputs is deemed to be the most significant phase for
achieving accurate predictions. The selected relevant inputs should cover various aspects
of the understudied problem. Besides, several factors have been selected, such as soil
characteristics, pile-soil contact characteristics, and geometry and pile characteristics, which
can affect the pile-bearing capacity. This study used data from 100 static load-bearing tests
on the ultimate bearing capacity (UBC) of both the steel- and the concrete-driven piles from
various countries, such as Iran, Mexico, and India [38–42]. The input parameters, including
pile material, average cohesion (kN/m2), average friction angle (◦), average soil unit weight
(kN/m3), average pile-soil friction angle (◦), flap number, pile area (m2), and pile length
(m), were selected as optimal input parameters. We have supposed that the cohesion, angle
of shearing resistance, and soil unit weight were the parameters characterizing the soil
condition, whereas the pile area and pile length are the parameters characterizing the pile
geometric size. In addition, the pile-soil friction angle is the parameter describing the pile



Appl. Sci. 2021, 11, 10908 5 of 22

material. Finally, the flap number was assumed to symbolize all other hidden effective
factors in measuring the pile-bearing capacity [27]. The considered output was obtained
from the static bearing capacity, which used static testing in the fully drained condition
(long term). Two types of materials (concrete and steel piles, see Table S1) were used in this
study. The data samples in both the training and validation phase have been randomly
selected and completely detached. Table 2 shows the input and output parameters used in
our study.

Table 2. Input and output parameters of the proposed model.

Code Parameter Type Type of
Variable Subdivision Variable

X1 Input Qualitative
X1 = 1 (Steel)

Pile materialX1 = 2
(Concrete)

X2 Input Quantitative Average cohesion
(kN/m2)

X3 Input Quantitative Average friction angle (◦)

X4 Input Quantitative Average soil-specific
weight (kN/m3)

X5 Input Quantitative Average pile-soil friction
angle (◦)

X6 Input Quantitative Flap number

X7 Input Quantitative Pile area (m2)

X8 Input Quantitative Pile length (m)

Y Output Quantitative Pile capacity (kN)

2.3. Machine-Learning Methods

In the present paper, numerous machine-learning approaches have been utilized in
order to perform a consistent study and to suggest an effective model. Many studies have
revealed the effectiveness of the machine-learning methods, which have shown impres-
sive results in the abroad fields. Hence, only the utilized methods are mentioned below,
followed by some relevant references, which could be observed by the concerned readers
to perfectly understand each method. The methods used were Deep Neural Network
(DNN) [43,44], Extreme Learning Machine (ELM) [45], Random Forest (RF) [46], Support
Vector Regression (SVR) [47], Partial Least Square Regression (PLSR) [48], LASSO regres-
sion (LASSO) [49], Kernel Ridge Regression (KRidge) [50], Ridge Regression (Ridge) [51],
Genetic Programming (GP) [43], and Stepwise Regression (Stepwise) [52]. Matlab has been
applied for modeling the algorithms corresponding to each method, except for GP, where
the HeuristicLab Interface has been utilized [53]. The controlling parameters of the ELM,
DNN, SVR, RF, LASSO, PLS, Ridge, KRidge, Stepwise, and GP algorithms used in this study
are listed in Table 3. It is worth mentioning that the trial-and-error method has been applied
in most ML approaches used in our study. This method is based on changing the controlling
parameters of each technique and computing the mean square error in order to find the
best parameters. Nevertheless, the controlling parameters of other methods, such as ELM,
PLS, Ridge, and KRidge, are based on the aforementioned literature recommendations.
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Table 3. Initial parameter settings for the algorithms.

Algorithms Algorithm Parameters Value

ELM

Hidden layers H = 1
Hidden neurons N = 12

Activation function ‘linear’
Regulation parameter C = 0.02

DNN

Hidden layers H = 2
Hidden neurons in the first layer N1 = [1–20]

Hidden neurons in the second layer N2 = [1–20]
Activation function in the first layer ‘Tansig’

Activation function in the second layer ‘Tansig’

SVR
Regulation parameter C Series of C

Regulation parameter lambda Series of lambda
Kernel function ‘rbf’

RF
nTrees nTrees = 100
mTrees mTrees = 26

LASSO Lambda series of lambda

PLS PLS components NumComp = 3 for PSO
NumComp = 4 for GT and FS

Ridge Regularization parameter lambda lambda = 1

KRidge
Regularization parameter lambda lambda = 1

Kernel function ‘linear’
Parameter for kernel sigma = 2 × 10−7

GP

Function set +, −, ×, ÷, power, ln, sqrt, sin, cos, tan
Population size 100 up to 500

Number of generations 1000
Genetic operators Reproduction, crossover, mutation

2.4. Statistical Performance Indicators

The estimation precision of the suggested models was assessed through several sta-
tistical performance indicators and by utilizing graphical presentation. The statistical
performance indicators are mean absolute error (MAE), root mean square error (RMSE),
index of scattering (IOS), coefficient of determination (R2), Pearson correlation coefficient
(R), and index of agreement (IOA). They are expressed as follows [54,55]:

1. Mean absolute error (MAE):

MEA =
1
N

N

∑
i=1
|Ytar,i −Yout,i| (0 < MAE < ∞) (1)

2. Root mean square error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(Ytar,i −Yout,i)
2 (0 < RMSE < ∞) (2)

3. Index of scattering (IOS):

IOS =

√
1
N ∑N

i=1(Ytar,i −Yout,i)
2

Ytar
(0 < RMSE < ∞) (3)

4. Coefficient of determination (R2):
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R2 = 1− ∑N
i=1(Ytar,i −Yout,i)

2

∑N
i=1
(
Ytar,i −Ytar

)2 (−∞ < NSE < 1) (4)

5. Pearson correlation coefficient (R):

R =
∑N

i=1(
(
Ytar,i −Ytar

)(
Yout,i −Yout

)
)√

∑N
i=1(

(
Ytar,i −Ytar

)2(Yout,i −Yout
)2
)

(−1 < R < 1) (5)

6. Index of agreement (IOA):

IOA = 1− ∑N
i=1(Ytar,i −Yout,i)

2

∑N
i=1

(
∑N

i=1
∣∣Yout,i −Ytar

∣∣+ ∑N
i=1
∣∣Ytar,i −Ytar

∣∣)2 (0 < IOA < 1) (6)

where Ytar,i, Yout,i, Ytar, and Yout characterize the target, output, mean of the target, and
mean of output pile-bearing capacity values for N data samples, respectively. Moreover,
the suggested machine-learning model possessed the minimum value of RMSE, IOS, and
MAE, and the peak value of IOA, R2, and R presents the optimal one and the closest to the
experimental values.

Therefore, after choosing the optimal model based on statistical performance indi-
cators, its predictive capability was evaluated by utilizing the K-fold cross-validation ap-
proach. The latter is an advanced approach, which revealed more accuracy and robustness
when assessing the ability of the optimal model to overcome over-fitting and under-fitting
problems in data learning [56,57]. The approach relies on dividing the database into k equal
splits. Hence, for each split, K−1-folds are utilized for the training phase and the last one
for validation. This procedure is reiterated successively until the use of all splits for the
validation step [58,59]. The key benefit of this approach is that all the data are modeled
in both the training and the validation steps [57]. Breiman and Spector have confirmed
that K = 10- or K = 5-fold cross-validation is the best choice for assessing the model [56]. In
our study, we selected K-fold cross-validation with K = 5 for assessing the predictive ability
of the best model.

2.5. Methodology

In order to select the optimal model to predict the pile-bearing capacity using the
aforementioned parameters as an input, the methodology followed the following phases:

1. Creating a geotechnical database, collected from different countries such as Iran,
Mexico, and India. In this step, 100 static load-bearing tests on the UBC of steel- and
concrete-driven piles were collected as datasets.

2. Modeling the chosen inputs by means of numerous machine-learning methods. The
ELM, DNN, SVR, RF, LASSO, PLS, Ridge, K Ridge, Stepwise, and GP methods have
been employed in this step for suggesting 11 models.

3. Defining the optimal model for estimating the pile-bearing capacity value using
important statistical performance indicators such as MAE, RMSE, IOS, R2, R, and IOA.

4. Evaluating the predictive capability of the optimal model to overcome under-fitting
and over-fitting problems by utilizing the K-fold cross-validation approach with K = 5.

5. Performing a sensitivity analysis by using the step-by-step method to define the most
or least influential input on the bearing capacity via the proposed model.

6. Designing a reliable, easy-to-use, and graphical interface based on our optimal model.

The research methodology for defining the optimal model to predict the pile-bearing
capacity is systematically illustrated in Figure 1.
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3. Results
3.1. Database Compilation

In the present paper, a database of 100 samples has been collected from previous
studies, resulting in a dataset containing diverse data, considered as satisfactory for an
efficient study. For the purpose of a precise modeling step, we have tried to make the
dataset balanced for both concrete and steel material samples in both the training and
validation phase. Furthermore, the data samples in both phases have been randomly
chosen and completely detached. Table 4 shows the descriptive statistics of the user
database, computed by using SPSS, including the range, minimum, maximum, mean,
standard deviation (SD), variance, skewness, and kurtosis. The skewness values prove
that all the parameters were equally distributed. Furthermore, the findings indicated that
the dataset comprises a wide range of data. Consequently, the gathered database could be
very handy when seeking to develop new empirical equations and models, as well as in
evaluating the predictive capability of published formulae.

3.2. Correlation between Bearing Capacity and Input Parameters

To statistically estimate the relationship between the pile-bearing capacity and input
parameters, SPSS software has been utilized. The correlation matrix between them is
displayed in Figure 2, which shows a descriptive summary of the data distribution. The
findings show a positive correlation between the pile-bearing capacity and other inputs,
except for X2, X4, and X5, which appear to have a negative correlation (see Figure 2). This
highlights that the decrease in these parameters tends to proportionally decrease the pile-
bearing capacity. Moreover, Pearson correlation coefficient (R) and its significance between
the pile-bearing capacity and other inputs is presented in Table 5. The findings prove that
the significance is less than 0.05, except for X3, X4, and X5, showing that most correlations
are statistically significant. Hence, according to Smith’s classification (1986) [43], the pile-
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bearing capacity is significantly correlated with the input parameters, excluding X3, X4,
and X5, which are poorly correlated. The results point out that these factors can have a
complex nonlinear relationship with the pile-bearing capacity. Besides, in order to precisely
model this complex phenomenon, new sophisticated machine-learning approaches should
be developed.

Table 4. Descriptive statistics of the collected samples (Std. Error = standard error, SD = standard deviation).

Range Minimum Maximum Mean SD Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Std.
Error Statistic Statistic Statistic Std.

Error Statistic Std.
Error

X2 148.00 0.00 148.00 32.3741 3.28447 32.84 1078.77 2.011 0.241 4.570 0.478

X3 36.62 0.00 36.62 25.5803 0.96535 9.653 93.191 −1.310 0.241 0.855 0.478

X4 8.11 5.38 13.49 10.2029 0.18409 1.840 3.389 −0.406 0.241 0.262 0.478

X5 6.86 10.14 17.00 13.6823 0.16987 1.698 2.885 0.073 0.241 −0.076 0.478

X6 2277.00 14.00 2291.00 494.99 60.23 602.32 362,794.16 1.502 0.241 1.286 0.478

X7 1.52 0.07 1.59 0.4327 0.04656 0.46562 0.217 1.128 0.241 −0.233 0.478

X8 83.80 14.20 98.00 27.1120 1.86024 18.60 346.048 2.761 0.241 6.962 0.478

Y 51,560.00 540.00 52,100.00 5133.12 929.01 9290.14 86,306,843.19 4.043 0.241 16.258 0.478
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Table 5. Matrix of the correlation between the geotechnical parameters (**: Correlation is significant at the 0.01 level; *: Correlation is significant at the 0.05 level).

X2 X3 X4 X5 X6 X7 X8 Y

X2

Pearson
Correlation 1 −0.370 ** −0.234 * −0.221 * 0.086 0.038 −0.229 * −0.229 *

Significance 0.000 0.019 0.027 0.396 0.707 0.022 0.022
N 100 100 100 100 100 100 100 100

X3

Pearson
Correlation −0.370 ** 1 0.463 ** 0.011 0.206 * 0.259 ** −0.063 0.099

Significance 0.000 0.000 0.916 0.040 0.009 0.531 0.326
N 100 100 100 100 100 100 100 100

X4

Pearson
Correlation −0.234 * 0.463 ** 1 0.270 ** 0.124 0.051 −0.433 ** −0.138

Significance 0.019 0.000 0.007 0.218 0.612 0.000 0.172
N 100 100 100 100 100 100 100 100

X5

Pearson
Correlation −0.221 * 0.011 0.270 ** 1 −0.489 ** −0.555 ** −0.189 −0.142

Significance 0.027 0.916 0.007 0.000 0.000 0.059 0.159
N 100 100 100 100 100 100 100 100

X6

Pearson
Correlation 0.086 0.206 * 0.124 −0.489 ** 1 0.876 ** 0.335 ** 0.449 **

Significance 0.396 0.040 0.218 0.000 0.000 0.001 0.000
N 100 100 100 100 100 100 100 100

X7

Pearson
Correlation 0.038 0.259 ** 0.051 −0.555 ** 0.876 ** 1 0.446 ** 0.563 **

Significance 0.707 0.009 0.612 0.000 0.000 0.000 0.000
N 100 100 100 100 100 100 100 100

X8

Pearson
Correlation −0.229 * −0.063 −0.433 ** −0.189 0.335 ** 0.446 ** 1 0.866 **

Significance 0.022 0.531 0.000 0.059 0.001 0.000 0.000
N 100 100 100 100 100 100 100 100

Y

Pearson
Correlation −0.229 * 0.099 −0.138 −0.142 0.449 ** 0.563 ** 0.866 ** 1

Significance 0.022 0.326 0.172 0.159 0.000 0.000 0.000
N 100 100 100 100 100 100 100 100
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On the other hand, we were generally interested in the correlation between inputs if
the multicollinearity phenomenon existed. This could appear between certain independent
variables with a high R, causing problems when fitting the model and interpreting the
results, and reducing the statistical power of the regression model. However, the correla-
tion coefficient presented in Table 5 indicates a moderate R between inputs, indicating a
moderate multicollinearity, but it is not severe enough to require corrective measures. For
this reason, there was no interest in the correlation coefficient between input variables.

3.3. Bearing Capacity Prediction through AI Models

To define the optimal machine-learning model, the first step consists of selecting
the optimal input parameters that have a high influence on the target value, and the
second step is to determine the best machine-learning methods. To begin with, in order to
define the suitable input parameters, eight factors have been used following the literature
recommendations. Afterward, we attempted to determine the optimal ANN model for
predicting the pile-bearing capacity depending on six statistical measures. The performance
of each model for the selected optimal input in both concrete and steel piles is presented
in Table 6. Six performance measures have been used to compare the proposed models
in order to select the best one, in terms of the mean absolute error (MAE), root mean
square error (RMSE), index of scattering (IOS), coefficient of determination (R2), Pearson
correlation coefficient (R), and index of agreement (IOA). The data were divided into two
parts, i.e., 80% for the training and 20% for the validation. As Table 6 demonstrates, the
target values were modeled via the machine-learning methods, where the parameters
of the methods have been fixed (as presented in Table 4) and compared using the six
performance measures in order to find the best model. The different models produced
the values: MAE (0.1650 × 103 to 3.0424 × 103), RMSE (0.2140 × 103 to 4.2390 × 103), IOS
(0.0755 to 0.7737), R (0.9315 to 0.9977), R2 (0.8676 to 0.9954), and IOA (0.9360 to 0.9988) in
concrete piles. Similarly, in the steel piles, we obtained MAE (0.1870 × 103 to 3.1064 × 103),
RMSE (0.3100 × 103 to 4.3966 × 103), IOS (0.0448 to 0.9081), R (0.8478 to 0.9997), R2 (0.7187
to 0.9994), and IOA (0.9118 to 0.9998). The results indicate that the best performance
was obtained from the DNN model trained by the Tan-Sigmoid function. This model is
said to be the most appropriate one because it displays the highest accuracy in terms of
MAE (0.1650 × 103/0.1870 × 103), RMSE (0.214 × 103/0.31 × 103), IOS (0.0755/0.0448), R
(0.9977/0.9997), R2 (0.9954/0.9994), and IOA (0.9988/0.9998) in both concrete/steel piles.
Finally, the most appropriate DNN model displayed the higher values of performance
measures criteria in both the training and validation phase. Furthermore, this model is
closely followed by the GP model, which shows an acceptable accuracy as it ranked second.
Moreover, the results showed the poor performance of the ELM model in predicting the
pile-bearing capacity. With respect to the performance of machine-learning models during
the training phase, the performance hierarchy follows the following order: DNN, GP, RF,
Kridge, SVR, LS, Ridge, Step, PLS, Lasso, and ELM. Finally, the scatter plots between the
target and the output bearing capacity value of each model are presented in Appendix A
(Figures A1–A11).

3.4. Evaluating the Best Fitted Model Using the K-Fold Cross-Validation Approach

The 5-fold cross-validation approach was effectively utilized to evaluate the predictive
capability of the optimal model. It is worthy to note that the aforementioned studies
interested in predicting the pile-bearing capacity have assessed the predictive capability
of their optimal models based on one single split. Consequently, the ability of the models
to overcome the over-fitting and under-fitting problems could not be verified. Figure 3
displays the performance measures of the optimal DNN models utilizing 5-fold cross-
validation based on the validation data for each split. The results clearly indicate the
fulfillment of the DNN model. Additionally, the fact that the correlation coefficient ranged
between 0.9777 and 0.9998 for data validation in the 5 splits proved the predictive capability
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of the optimal DNN model to learn existing data, generate novel validation data, and
overcome over-fitting and under-fitting problems.

Table 6. Performance indicators values of the AI models for predicting the pile-bearing capacity in both concrete and steel
piles (bold: the optimal model).

MAE × 103 RMSE × 103 IOS R R2 IOA

Concrete piles

DNN 0.1650 0.2140 0.0755 0.9977 0.9954 0.9988

ELM 3.0424 4.2390 0.7737 0.9320 0.8686 0.9610

Lasso 2.4324 3.5390 0.6637 0.9620 0.9254 0.9700

PLS 2.5524 3.6390 0.6837 0.9688 0.9386 0.9700

RF 1.1024 2.1690 0.3837 0.9880 0.9761 0.9912

Kridge 2.2930 3.5917 0.6816 0.9433 0.8899 0.9641

Ridge 2.4268 3.6145 0.6876 0.9409 0.8853 0.9636

LS 2.3093 3.5867 0.6824 0.9414 0.8863 0.9656

Step 2.4738 3.6421 0.6970 0.9352 0.8746 0.9626

SVR 1.9787 4.0984 0.7734 0.9315 0.8676 0.9360

GP 0.5966 0.9612 0.1731 0.9975 0.9951 0.9961

Steel piles

DNN 0.1870 0.3100 0.0448 0.9997 0.9994 0.9998

ELM 3.1064 4.3966 0.9081 0.8478 0.7187 0.9118

Lasso 2.7149 3.6962 0.7527 0.8990 0.8082 0.9437

PLS 2.6329 3.6973 0.7763 0.8966 0.8038 0.9398

RF 1.1213 2.3475 0.4893 0.9875 0.9751 0.9712

Kridge 2.2482 3.6937 0.7342 0.8993 0.8088 0.9441

Ridge 2.3820 3.7165 0.7402 0.8969 0.8044 0.9436

LS 2.2646 3.6887 0.7350 0.8974 0.8054 0.9456

Step 2.4291 3.7441 0.7496 0.8912 0.7943 0.9426

SVR 1.9340 4.2004 0.8260 0.8875 0.7876 0.9160

GP 0.5518 1.0632 0.2257 0.9975 0.9951 0.9965

3.5. Comparison between the Proposed Models and Empirical Formulae

To test the effectiveness of the suggested DNN model, a comparative study was per-
formed using 12 empirical models proposed in the literature of predicting the bearing
capacity, as presented in Table 7. It should be noted that no author has shared the mathe-
matical equations of the proposed ML model to compare results with the same database.
Published research was limited in presenting modeling results. Therefore, we cannot
validate the proposed models using the current collected dataset. Consequently, the current
study was limited to compare the proposed models based on the correlation coefficient. It is
needless to say that the correlation coefficient is an important indicator when assessing the
prediction precision, as the best model is represented by a prediction value close to 1. The
results of the comparative study indicated that the proposed DNN model in our study is
the best-performing model, with maximum accuracy (0.9996 for all data). Furthermore, our
model is closely followed by the ANN model which was proposed by Milad et al. [27], and
it showed an acceptable accuracy as it ranked secondly. Moreover, the results revealed the
poor performance of the ANN model proposed by Nawari et al. [25] in the bearing capacity.
With respect to the performance of machine-learning models, the hierarchy follows the
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following order: Milad et al. [27], Liu et al. [32], Yong et al. [28], Moayedi et al. [34], De-
hghanbanadaki et al. [30], Mahnesh [26], Kardani et al. [2], Jahed et al. [1], Shaik et al. [33],
Moayedi and Jahed [31], Harandizadeh et al. [29], and Nawari et al. [25]. We believe that
the reasonable ground standing behind the high accuracy found in our suggested model is
due to deep learning (more than one hidden layer). The latter could offer the necessary
flexibility for modeling complex functions in many cases.
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Table 7. Comparison between the proposed DNN model and some of the empirical models found in the literature.

Authors Sample Size Best Methods Correlation Coefficient References

Nawari et al. (1999) 25 ANN 0.91 [25]

Mahnesh (2011) 105 Generalized Regression
Neural Network 0.977 [26]

Milad et al. (2015) 100 Neural Network 0.9995 [27]

Jahed et al. (2017) 132 PSO–ANN 0.9685 [1]

Moayedi and Jahed (2018) 59 ICA-ANN 0.96369 [31]

Yong et al. (2021) 50 GP 0.997 [28]

Shaik et al. (2019) 59 ANFIS 0.967 [33]

Kardani et al. (2020) 59 Extreme Gradient
Boosting 0.975 [2]

Harandizadeh et al. (2021) 72 ANFIS–GMDH–PSO 0.94 [29]

Moayedi et al. (2020) 20 GA–ANFIS 0.9935 [34]

Liu et al. (2020) 43 GA-ANN 0.998 [32]

Dehghanbanadaki et al. (2021) 100 MLP–GWO 0.991 [30]

Our study 100 Deep Neural Network 0.9996
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3.6. Sensitivity Analysis

In order to know what input variables have a significant effect on the pile-bearing
capacity, with the assistance of the DNN model, a sensitivity analysis was performed by
utilizing the step-by-step technique [60]. In this method, each normalized input parameter
varies at a constant rate, one at a time, while the other variables are held constant. Diverse
constant rates (0.3, 0.6, and 0.9) were chosen in this study. For every input, the percentage
of variation in the output, as a result of the variation in the input, was computed. The
sensitivity of each input was computed based on Equation (7):

Sensitivity level of Xj(%) =
1
K

K

∑
i=1

(
% change in output
% change in input

)
i

(7)

where K refers to the number of the datasets used in the study (K = 100). The outcomes of
the sensitivity analysis of the proposed DNN model are illustrated in Figure 4. It can be
noticed that the pile-bearing capacity was significantly influenced by the pile area, and its
sensibility ratio ranged between 26.3% and 38.06%. This parameter is closely followed by
the pile length, which showed a moderate sensitivity level that ranged between 15% and
19%. In addition, the cohesion and friction angle had a moderate effect on the pile-bearing
capacity, with a sensibility ratio ranging between 9% and 15%. Finally, other parameters
had little effect on the target values.
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3.7. Graphical User Interface (GUI) Design “BeaCa2021”

It is a common practice in the majority of published papers using machine-learning
modeling to present models in the form of mathematical equations, which suffer from
their hard fitting in future studies. Seemingly, this practice has very little value for other
researchers and civil engineers in the field. In order to make it useful, the proposed machine-
learning architecture should be presented either in the form of a programmed interface
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such as Matlab or in a simple script employing a known programming language such as
Python for generating the proposed model [55]. In such a case, the machine-learning model
can be readily used and is thus available to anyone interested in the problem of modeling.
In this study, a reliable, graphical, and easy-to-use interface was designed based on our
optimal DNN model, as presented in Figure 5. The proposed optimal model was afterward
used to develop a GUI public interface. The designed interface, called “BeaCa2021”, was
programmed by Matlab software. The reason for choosing this name is due to “Bea” relative
to “Bearing”, “Ca” relative to Capacity, and 2021, the year this interface was designed. In
addition, BeaCa2021 includes the most relevant input parameters on the bearing capacity.
Initially, the user must define the pile material type (either steel or concrete). Secondly, the
user is required to introduce the other input parameters: average cohesion, average friction
angle, average soil-specific weight, average pile-soil friction angle, flap number, pile area,
and pile length. Finally, by clicking Run, the prediction result appears in the outputs. The
suggested BeaCa2021 interface will be very useful to civil engineers and researchers, by
helping them to predict the bearing capacity, which is deemed as one of the most complex
parameters to determine.
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4. Discussion

In the current study, a very important contribution in the geotechnical community has
been introduced for the sake of enhancing the performance of the pile-bearing capacity
model. It is worth mentioning here that the model quality is influenced by the method
utilized. Hence, other unused advanced machine-learning methods demonstrated efficient
results in other areas. Consequently, in the current study, we examined the usage of twelve
advanced machine-learning methods, such as Deep Neural Network (DNN), Extreme
Learning Machine (ELM), Support Vector Regression (SVR), LASSO regression (LASSO),
Random Forest (RF), Ridge Regression (Ridge), Partial Least Square Regression (PLS),
Stepwise Regression (Stepwise), Kernel Ridge (KRidge), Genetic Programming (GP), and
Least Square Regression (LSR), to predict the pile-bearing capacity. According to the
authors’ knowledge, the use of the aforementioned machine-learning methods in predicting
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the pile-bearing capacity is very rare. Therefore, this study began with collecting a wide
range of data consisting of 100 static load-bearing tests on the UBC of both steel- and
concrete-driven piles from different countries, such as Iran, Mexico, and India. Afterward,
we selected eight relevant factors based on the literature recommendations, such as average
cohesion (kN/m2), average friction angle (◦), average soil-specific weight (kN/m3), average
pile-soil friction angle (◦), flap number, pile area (m2), and pile length (m). Based on that,
eleven advanced machine-learning methods (DNN, ELM, SVR, LASSO, RF, Ridge, PLS,
Stepwise, KRidge, GP, and LS) were applied for modeling the selected optimal input set
for the first time. The findings clearly indicate that the Deep Neural Network (DNN)
presents the most appropriate model, which yielded the minimum values of error metrics
(MEA, RMSE, and IOS) and the higher values of R2, R, and IOA compared to other
models. Furthermore, the newly developed model was assessed by the K-fold cross-
validation method and compared to other proposed models from the literature based
on the correlation coefficient. The conclusion drawn is that the optimal DNN model
could produce new data without causing over-fitting or under-fitting, plus being much
more precise than the other proposed empirical models. Moreover, the last part in the
current study consisted of the sensitivity analysis, which provided an overview of the
most influential parameters on the pile-bearing capacity according to the proposed model.
The findings indicate that the pile area was the most influential factor on the pile-bearing
capacity. Pile length also had a considerable effect. In addition, the cohesion and friction
angle demonstrated a moderate effect on the pile-bearing capacity, with a sensibility ratio
ranging between 9% and 15%. Finally, the proposed optimal model was then used to
develop a GUI public interface in order to facilitate its usage in the future. A reliable,
easy-to-use, and graphical interface, named “BeaCa2021, presented in the current study,
was programmed via Matlab software. The essential advantage of “BeaCa2021” is to help
researchers and civil engineers interested in the problem of modeling regardless of their
proficiency, by offering them plenty of benefits, such as reliability, easiness, and lowering
the budget used for predicting the pile-bearing capacity from relevant and easily obtained
parameters without the need to operate expensive in situ tests.

The results obtained in the current study also proved that the performance of the
pile-bearing capacity model was considerably enhanced by using new machine-learning
methods. The model prediction by the DNN was improved by 8.91% with the ANN
method proposed by Nawari et al. [25], 3.58% with the PSO–ANN method proposed by
Jahed et al. [1], and 0.86% with the MLP–GWO method proposed by Dehghanbanadaki
et al. [30]. The obtained results are logical because deep learning is generally employed
either in the prediction or in the problematic classification, which can reduce the bias
and variance plus avoiding over-fitting and under-fitting problems, as opposed to the
traditional ANN methods, to improve their predictive capability. According to these data,
we can infer that the DNN method, which was employed in this study for the first time for
the purpose of modeling the pile-bearing capacity, could yield more effective and accurate
results than the other machine-learning methods.

Despite the multiple extraordinary findings of this study, a number of important
limitations need to be addressed. The fundamental limitation would be the fact that the
sample size was relatively small, which may affect the precision of the pile-bearing capac-
ity. This may lead to the proposed model’s inability to generalize the new conditions or
circumstances that were not used in the training data stage. Besides, researchers generally
utilize large and diverse data collected by transferring knowledge between them. This is
an important issue to build on in future research, i.e., to rely on the data gathered from
multiple countries to enhance its learning and, therefore, produce a better model. Addi-
tionally, further studies using meta-heuristic algorithms for the prediction of pile-bearing
capacity are strongly recommended. We mention, for example, the Particle Swarm Opti-
mization (PSO) and Gravitational Search Algorithm (GSA), Bee Colony Algorithm (BCA),
Bio-geography-Based Optimization (BBO), Whale Optimization Algorithm (WOA), Ant
Colony Optimization (ACO), and Grey Wolf Optimizer (GWO). These algorithms have
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shown high-performance results when combined with machine-learning techniques, lead-
ing to improving their learning, and therefore rapidly converging to the best solution. The
application of these meta-heuristic algorithms combined with machine-learning methods
has shown impressive results in the abroad fields [55,61].

5. Conclusions

This study relied on a considerable number of steel- and concrete-driven pile data
collected from different countries, such as Iran, Mexico, and India. The comparison of the
results’ assessment between the different proposed models revealed the superiority of the
DNN model proposed in our study, which yielded the highest accuracy in terms of MAE,
RMSE, IOS, R, R2, and IOA in both the training/validation phases. The findings indicate
that this model has a high correlation coefficient, ranging between 0.9777 and 0.9998
for the validation data in the 5 splits of the k-fold cross-validation approach, meaning
that there was no over-fitting or under-fitting. Furthermore, the results indicated that
the aforementioned DNN model is more effective compared to other empirical models
proposed in the literature. The sensitivity analysis results proved that pile area had the
most significant effect on the prediction of the pile-bearing capacity. Pile lengths had a
moderate influence and were ranked second. In addition, cohesion and friction angle had
little effect on the pile-bearing capacity. Finally, the proposed optimal model was then
used to develop a GUI public interface with Matlab software, named “BeaCa2021”. The
fundamental benefit of “BeaCa2021” is to help researchers and practicing civil engineers,
regardless of their proficiency, interested in the problem of modeling, to estimate the
pile-bearing capacity with the benefits of gaining time and money.

This work has opened up several questions that need further investigations to over-
come certain limitations. Firstly, there is a need to use more data from other countries to
enhance the learning phase, which is needed to develop the BeaCa2021 in the future. Sec-
ondly, we propose the usage of meta-heuristic algorithms combined with machine-learning
methods for predicting the pile-bearing capacity in future studies. These algorithms have
demonstrated high-performance results when used with machine-learning techniques,
leading to improved learning.
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