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Abstract: With the complexity of the task requirement, multiple operating conditions have gradually
become the common scenario for equipment. However, the degradation trend of monitoring data
cannot be accurately extracted in life prediction under multiple operating conditions, which is
because some monitoring data is affected by the operating conditions. Aiming at this problem, this
paper proposes an improved similarity trajectory method that can directly use the monitoring data
under multiple operating conditions for life prediction. The morphological pattern and symbolic
aggregate approximation-based similarity measurement method (MP-SAX) is first used to measure
the similarity between the monitoring data under multiple operating conditions. Then, the similar
life candidate set, and corresponding weight are obtained according to the MP-SAX. Finally, the life
prediction results of equipment under multiple operating conditions can be calculated by aggregating
the similar life candidate set. The proposed method is validated by the public datasets from NASA
Ames Prognostics Data Repository. The results show that the proposed method can directly and
effectively use the original monitoring data for life prediction without extracting the degradation
trend of the monitoring data.

Keywords: similarity trajectory; multiple operating conditions; life prediction; monitoring data;
morphological pattern; symbolic aggregate approximation

1. Introduction

As an important task of condition-based maintenance (CBM), health prognostics has
become more and more popular which can predict the remaining useful life (RUL) of
equipment according to historical data or observed degradation trend, which can make
effective maintenance plan for equipment to improve the reliability of equipment and
reduce the loss and safety problems caused by equipment failure [1,2].

With the rapid development of machine learning and deep learning technology, ar-
tificial intelligence (AI) based on machine learning and deep learning were gradually
applied to fault diagnosis and life prediction [3–8]. Such as She et al. [9] proposed a
bidirectional gated recurrent unit prediction method based on bootstrap to solve the prob-
lem that the uncertainty of the prediction. Wang et al. [10] proposed a new framework
named recurrent convolutional neural network to address the limitations of the convolu-
tional neural network, which different degradation states did not consider the temporal
dependencies and the prediction results were uncertain. A novel neural network called
quantum recurrent encoder-decoder neural network was proposed by Chen et al. [11] to
improve the prediction accuracy in the degradation trend prediction of rotating machinery.
Figueroa et al. [12] proposed a framework for feature selection embedded in deep neural
networks (DNN) for PHM to addresses the accuracy interpretability tradeoff. For turbofan
engines, Muneer et al. [13] proposed four data-driven prognostic models based on deep
neural networks, and analyzed the influence of its network structure on generalization abil-
ities. Furthermore, Muneer et al. [14] proposed a new attention-based deep convolutional
neural network incorporating the time window to predict the RUL of turbofan engines.

Appl. Sci. 2021, 11, 10968. https://doi.org/10.3390/app112210968 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0844-4418
https://doi.org/10.3390/app112210968
https://doi.org/10.3390/app112210968
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210968
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210968?type=check_update&version=2


Appl. Sci. 2021, 11, 10968 2 of 16

However, although the excellent prediction results of equipment can be obtained by
the life prediction method based on machine learning and deep learning, the accuracy of
prediction results mostly depends on the design of network structure and the selection
of parameters. At this time, the similarity trajectory method (STM) based on the case-
based reasoning (CBR) which can be regarded as a form of intradomain analogy, and
a branch of machine learning shown obvious advantages. CBR can solve the problem
of a new instance only by measuring the similarity between a new instance and the
historical instance and reusing the information and knowledge of the historical instance [15].
Therefore, STM can realize life prediction without constructing a specific prediction model
and selecting parameters, which can reduce the influence of network structure design
and parameter selection on the accuracy of prediction results. Therefore, STM has been
widely discussed and applied to life prediction since it was proposed by Wang et al. [16].
For example, You et al. [17] pointed out that the traditional Euclidean distance cannot
highlight the importance of the recent samples, and on the basis of the Euclidean distance,
the decay coefficient was introduced to make the recent degradation samples have a
larger weight. Liang et al. [18,19] improved the prediction accuracy of STM by improving
the deficiency of degradation indicators construction. Cannarile et al. [20] proposed
evidential similarity-based regression for life prediction and related uncertainty based
on both complete and incomplete degradation trajectories. Yang et al. [21] proposed an
integrated prediction model based on the similarity trajectory method and the differential
evolution support vector regression for predicting the tool wear and life. A general data-
driven based similarity-based approach was proposed by Li et al. [22] to predict the RUL
of the electromagnetic relay. In addition, the similarity-based approach which was based
on the framework of CBR was used for the fight trajectory prediction [23], pan-Arctic and
regional sea ice area and volume anomalies prediction [24], and so on.

Although STM can effectively use the trajectory of historical data to predict the life of
the equipment, the original monitoring data were usually smoothed to reduce the impact of
random fluctuations on the similarity measurement [25]. However, for multiple operating
conditions, the monitoring data cannot be smoothed effectively to extract the degradation
trend due to the influence of operating conditions (the detailed description was employed
in Section 4.3).

Aiming at the abovementioned problem that the degradation trend cannot be extracted
effectively under multiple operating conditions, this paper proposes a novel prediction
scheme for the life prediction of equipment under multiple operating conditions based
on morphological pattern and symbolic aggregate approximation-based similarity mea-
surement method (MP-SAX) and STM. According to the characteristics that the equipment
performance degradation is reflected in the trend change of monitoring data, while the
changes of operating conditions and environment are reflected in the detailed change of
monitoring data, the MP-SAX is first used to measure the similarity between the moni-
toring data under multiple operating conditions. Then, the similar life candidate set, and
corresponding weight are obtained according to the MP-SAX. Finally, the life prediction
results of equipment under multiple operating conditions can be calculated by aggregating
the similar life candidate set.

The rest of this paper is organized as follows. The background knowledge of the
similarity measurement method based on morphological pattern and symbolic aggregate
approximation (MP-SAX) is described in Section 2. In Section 3, the proposed method is
described in detail. The dataset and problem in life prediction under multiple operating
conditions are illustrated in Section 4. In Section 5, the results and discussion of the
proposed method are explained to verify the effectiveness of the proposed method. Finally,
the conclusion of this paper is drawn in Section 6. The meaning of all acronyms are listed
in Table A1 in Appendix A.
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2. Background of MP-SAX

For the whole life cycle of equipment, the performance degradation of equipment
often leads to the change of trend component of monitoring signal, while the change
of operating condition or environment often causes the change of detail component of
monitoring signal. The similarity measurement method based on the morphological pattern
and symbolic aggregate approximation (MP-SAX), which measured the similarity of time
series by measuring the similarity of trend component and detail component respectively,
can effectively measure the similarity of the time series with the changes both in trend and
detail [26]. Therefore, the MP-SAX can be used to measure the similarity of monitoring
signal during equipment degradation under multiple operating conditions. For two time
series X = (x1, x2, · · · , xn) and Y = (y1, y2, · · · , ym), the MP-SAX of the two-time series
can be obtained as follows:

Step 1: According to empirical mode decomposition (EMD) [27,28], the time series
X = (x1, x2, · · · , xn) and Y = (y1, y2, · · · , ym) are decomposed to IMFs

{
IMFX

i
}N1

i=1 and{
IMFY

j

}N2

j=1
.

Step 2: According to multi-scale permutation entropy (MPE) [29], the MPEs
{

MPEX
i
}N1

i=1

and
{

MPEY
j

}N2

j=1
of each IMFs can be calculated. Then, the IMFs

{
IMFX

i
}N1

i=1 and
{

IMFY
j

}N2

j=1

are reconstructed into trend component (TRX and TRY) and detail component (DEX and
DEY) according to the MPEs as follows:

TRX = ∑
i∈{i|MPEX

i <0.4}
IMFX

i (1)

TRY = ∑
j∈{j|MPEY

j <0.4}
IMFY

j (2)

DEX = ∑
i∈{i|MPEX

i ≥0.4}
IMFX

i (3)

DEY = ∑
j∈{j|MPEY

j ≥0.4}
IMFY

j (4)

where TRX = (tx1, tx2, · · · , txn), TRY = (ty1, ty2, · · · , tym), DEX = (dx1, dx2, · · · , dxn),
DEY = (dy1, dy2, · · · , dym).

Step 3: The trend component (TRX and TRY) are converted into morphological pattern
(MP) symbol sequences MCX and MCY as follows (take MCX as an example):

MCX
i =



3, (txi − txi−1)/t > 1
2, (txi − txi−1)/t = 1
1, (txi − txi−1)/t < 1

0, txi = txi−1
−1, (txi − txi−1)/t > −1
−2, (txi − txi−1)/t = −1
−3, (txi − txi−1)/t < −1

(5)

where t is the time interval between two consecutive sample points.
Step 4: The detail component (DEX and DEY) are converted into symbolic aggregate

approximation (SAX) symbol sequences SCX and SCY as follows (take SCX as an example):
Step 4.1: The detail component DEX = (dx1, dx2, · · · , dxn) is first normalized

as follows:

NDEX =
DEX − µ

σ
(6)
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where NDEX is the normalized series of DEX, µ is the mean value of DEX, and σ is its
standard deviation.

Step 4.2: The normalized series NDEX is divided into w equal-sized segments, then
the normalized series can be represented by the average of each segment as follows:

Ndxk =
w
n

n
w k

∑
i= n

w (k−1)+1
Ndxi (7)

where Ndxk is the average of the kth segment of normalized series NDEX .
Step 4.3: The distribution space of Ndxk on the amplitude is divided into α equiproba-

ble regions, the breakpoints β refers to the lookup table in [30,31].
Step 4.4: The SAX symbol sequences SCX can be obtained by assigning symbols to

each region which is determined by breakpoints.
Step 5: The symbol sequences similarity of trend component STR and detail compo-

nent SDE are measured by the longest common subsequence (LCS) [32] respectively.
Step 6: The similarity SimMP−SAX

tol between the two-time series X and Y can be ob-
tained as follows:

SimMP−SAX
tol = WTR · STR + WDE · SDE (8)

where WTR and WDE are the weight of trend component and detail component of time
series respectively, the determination of weight refers to [26].

3. The Background and Proposed Method
3.1. The Description of Background

The similarity trajectory method (STM), as a life prediction method without fitting
historical curves or constructing a specific prediction model, was widely used in the
life prediction of equipment [16,20,21,25]. However, the traditional STM usually used
Euclidean distance to measure the similarity between the test sample and historical samples.
Although Euclidean distance was the simplest similarity measurement method, there are
many limitations in the measurement process [33]. In addition, taking a set of turbofan
engine simulation data from NASA Ames Prognostics Data Repository (Details of the
simulation data are described in Section 4) as an example, the influence of operating
conditions or equipment operating environment on monitoring data is illustrated as shown
in Figure 1.

Figure 1. The influence of multiple operating conditions on the detail component of monitoring data.
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According to Section 2, the detail component of monitoring data of Sensor Channel 3 is
extracted as shown in Figure 1. As shown in Figure 1, the detail component of monitoring
data is basically consistent with the original monitoring data. Besides, although there are
some differences in the shape between the original monitoring data and the operating
condition, the change points of the operating condition are basically the turning points of
the original monitoring data amplitude. Thus, it can be seen that the change of operating
conditions will affect the shape of the detail components of monitoring data under multiple
operating conditions.

3.2. The Proposed Method

Therefore, in order to solve the life prediction problem of equipment under multiple
operating conditions, this paper proposes a novel similarity trajectory method based on
morphological pattern and symbolic aggregate approximation (MP-SAX-STM) by using
morphological pattern and symbolic aggregate approximation similarity measurement
method. The diagrammatic sketch of the proposed method is shown in Figure 2. For the
test sample Xo, historical samples Xr, where the ith historical sample is Xri and the number
of historical samples is N, the process of the proposed method can be described as follows:

Figure 2. The diagrammatic sketch of the proposed method.

Step 1: According to Step 1 and Step 2 in Section 2, the test sample Xo and historical
sample Xri are divided into trend component (TRo and TRri) and detail component (DEo

and DEri).
Step 2: According to Step 3 to Step 5 in Section 2, the similarity of the trend component

STR and the detail component SDE can be obtained, then the similarity SMP−SAX
o→ri between

Xo and Xri can be calculated by Equation (8).
Step 3: Determine the similar life candidate set and corresponding weight. The life of

the historical sample is regarded as a similar life candidate set as follows:

SLri = tEi (9)

where tEi is the time corresponding to the last set of data of the ith historical sample. And
the weight corresponding to the candidate set is as follows:

Wi = ei

/
N

∑
i=1

ei (10)

where

ei =

(
N

∑
i=1

SMP−SAX
o→ri

)
/SMP−SAX

o→ri (11)

and
N
∑

i=1
Wi = 1. Therefore, the RUL of the test sample can be obtained as follows:
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Step 4: Aggregate life to obtain predicted life. According to the similar life candi-
date set and corresponding weight, the predicted life of test sample PLo can be obtained
as follows:

PLo =
N

∑
i=1

Wi · SLri (12)

4. The Description of Dataset and Problem in Life Prediction under Multiple
Operating Conditions
4.1. The Description and Analysis of the Dataset

The dataset used in this part to verify the effectiveness of the proposed method was the
simulation data of turbofan engine from NASA Ames Prognostics Data Repository which
was built by Saxena et al. based on the Commercial Modular Aero-Propulsion System
Simulation (CMAPSS) [34]. As the simulation model accurately reflected the degradation
law of the turbofan engine, the simulation data can effectively reflect the degradation of
the turbofan engine under different failure modes. There were four sets of life cycle data in
the simulation data, the information of operating condition and failure mode simulated by
each set of data were shown in Table 1. Further, each set of data contained two subsets,
namely the train set, and test set, the train set contained the complete life cycle of turbofan
engines. In this part, only the train set of Set #2 and #4 was used to verify the proposed
method. According to [25], the meaning of each column of data of each life cycle data in Set
#2 and #4 was shown in Table 2. In addition, only the monitoring data of Sensor Channels
2, 3, 4, 7, 11, 12, 15, 20, and 21 were sensitive to the fault of the turbofan engine and had an
obvious degradation trend [16,25]. However, there may be information redundancy among
the monitoring data of each sensor channel. Therefore, cross calculate the correlation
between the monitoring data of Sensor Channels 2, 3, 4, 7, 11, 12, 15, 20, and 21, and the
results were shown in Figure 3.

Table 1. The information of operating condition and failure mode simulated by each set of data.

Set Operating Condition Failure Mode

#1 1 1
#2 6 1
#3 1 2
#4 6 2

Table 2. Brief description of one life cycle data of simulation data.

Cycle OP 1 OP 2 OP 3 S 1 S 2 . . . S 21

1 42.0049 0.8400 100 445.00 549.68 . . . 6.3670
2 20.0020 0.7002 100 491.19 606.07 . . . 14.6550
...

...
...

...
...

...
...

5 25.0063 0.6207 60 462.54 536.10 . . . 8.6754
6 34.9996 0.8400 100 449.44 554.77 . . . 8.9057
7 0.0019 10−4 100 518.67 641.83 . . . 23.4578
...

...
...

...
...

...
...

17 9.9989 0.2506 100 489.05 603.80 . . . 17.1975
...

...
...

...
...

...
...

321 42.0058 0.8400 100 445.00 549.71 . . . 6.4590
OP—operating parameters; S—sensor.
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Figure 3. Correlation coefficient between the monitoring data of each sensor.

As shown in Figure 3, there was a high correlation between the monitoring data of each
sensor channel. And the correlation between the monitoring data of Sensor Channels 3, 4,
and other sensor channel was the highest. Therefore, only the monitoring data of Sensor
Channel 3 in Set #2 and #4 was taken as an example to verify the effectiveness of the
proposed method.

4.2. Evaluation Indicators of Prediction Results

In order to more intuitively evaluate the performance of the proposed method from
the quantitative perspective, we used mean absolute error (MAE), root mean square error
(RMSE), mean absolute percentage error (MAPE), and mean absolute scaled error (MASE)
to evaluate the prediction accuracy under each prediction experiment. MAE, RMSE, MAPE,
and MASE have been proved to still have good performance in measuring prediction
accuracy in some scenarios [35]. The MAE, RMSE, MAPE, and MASE can be obtained as
following [35]:

MAE =
1
l

l

∑
i=1
|si − yci| (13)

RMSE =

√√√√1
l

l

∑
i=1

(si − yci)
2 (14)

MAPE =
1
l

l

∑
i=1

∣∣∣∣ si − yci
si

∣∣∣∣× 100 (15)

MASE =
l − 1

l

l
∑

i=1
|si − yci|

l
∑

j=2

∣∣sj − sj−1
∣∣ (16)

where l is the number of sample points, si is the actual life, yci is the predicted life.

4.3. The Description of Problems in Life Prediction under Multiple Operating Conditions

The traditional STM usually extracted the degradation model (degradation trend) of
the monitoring signal to eliminate the influence of noise and other random fluctuations on
the overall degradation trend of equipment. However, as shown in Figure 4a, for some
monitoring signals, when the equipment was operating under multiple operating condi-
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tions, the monitoring signals were affected by different operating conditions. Further, the
obvious degradation trend cannot be seen from the monitoring signal. Therefore, according
to [25], the influence of operating conditions on the degradation trend of monitoring signal
was eliminated by normalization of operating conditions as follows:

Figure 4. The simulation data of turbofan engine. (a) Monitoring data of Sensor Channel 3. (b) Data
after normalization of operating conditions.

It was assumed that each life cycle point x can be divided into one of the P operating
regions OP, that was {x}(P) = {xi|ui ∈ OP }, where ui was the operating condition corre-
sponding to each point xi. After dividing the operating conditions, the mean and variance
of each operating condition were as follows:

x̃(P) = Mean
(
{x}(P)

)
(17)

s(P) = Std
(
{x}(P)

)
(18)

Then the normalization of operating conditions {y}(P) can be obtained as follows:

{y}(P) =
{x}(P) − x̃(P)

s(P)
(19)

Finally, according to the time position of each point in the original life cycle, the
normalized monitoring signal of the operating condition can be obtained, as shown in
Figure 4b.

Through the operating condition normalization, although the normalized monitoring
signal of the operating condition can show an obvious degradation trend, the mean and
variance of each operating condition needed to be known in the process of operating
condition normalization. Therefore, this brought a problem, for the equipment in service,
how to determine the mean and variance of each operating condition. Generally, there
were two solutions: (1) the mean and variance were from each operating condition of
service equipment in-service stage; (2) the mean and variance were from each operating
condition of historical life cycle data. However, the mean and variance obtained by the two
solutions were different from those of each operating condition after the complete failure
of service equipment. As shown in Figure 5, the degradation model of the first half of Life
Cycle 1 was obtained by the mean and variance obtained from the abovementioned two
solutions respectively. As shown in Figure 5b,c, the degradation model of the first half of
Life Cycle 1 obtained by the mean and variance which came from the abovementioned
two solutions was obviously different from that of Life Cycle 1 obtained by the mean and
variance of each operating condition of the whole life. This difference existed not only in
shape but also in amplitude. Therefore, for the service equipment, the degradation model
of monitoring data in-service stage cannot be accurately obtained under multiple operating
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conditions, which was an important problem encountered in using STM for life prediction
under multiple operating conditions.

Figure 5. Degradation model comparison based on different mean and variance. (a) Life cycle monitoring Data 1 of Sensor
Channel 3. (b) The first half monitoring Data 1 of Sensor Channel 3. (c) Life cycle monitoring Data 2 of Sensor Channel 3.
(d) Degradation model based on the mean and variance of life cycle monitoring data. (e) Degradation model comparison
based on the mean and variance of the first half of monitoring Data 1. (f) degradation model comparison based on the mean
and variance of life cycle monitoring data 2.

5. Results and Discussions

In order to further explain the influence of the degradation model which cannot be
accurately obtained in-service stage on the prediction results, we randomly selected 30 sets
of life cycle data from Set #2 and Set #4 respectively, then the first 1/2, 2/3, 3/4, and 4/5 of
the selected life cycle data were used as the test samples. Since there was not one similar
life candidate set selected in the process of life prediction by STM, the degradation model
was calculated only according to the mean and variance which were from each operating
condition of service equipment in-service stage. Finally, STM was used to predict the life
based on the degradation model and original monitoring data respectively, and the MAE,
RMSE, MAPE, and MASE were calculated as shown in Figures 6 and 7.

As shown in Figures 6 and 7, in the same scenario that the life was predicted by
STM, the evaluation indicators of prediction results based on the degradation model were
significantly larger than those based on original monitoring data. Moreover, the evaluation
indicators of prediction results based on the degradation model were not regular under
the different lengths of test samples, while those based on original monitoring data shown
a downward trend with the increase of test sample length. Therefore, in the scenario of
multiple operating conditions, the degradation model obtained only based on part of the
monitoring data of the service equipment cannot be completely equivalent to that obtained
by whole life, and the accurate life prediction results cannot be obtained in the process of
life prediction.



Appl. Sci. 2021, 11, 10968 10 of 16

Figure 6. MAE, RMSE, MAPE, and MASE results of Set #2 based on the different test dataset.
(a) MAE. (b) RMSE. (c) MAPE. (d) MASE.

Figure 7. MAE, RMSE, MAPE, and MASE results of Set #4 based on the different test dataset.
(a) MAE. (b) RMSE. (c) MAPE. (d) MASE.
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Consequently, the proposed method improved the life prediction results under multi-
ple operating conditions by improving the accuracy of direct measurement of monitoring
data similarity. Likewise, 30 sets of life cycle data from Set #2 and Set #4 were selected
randomly respectively, then the first 1/2, 2/3, 3/4, and 4/5 of the selected life cycle data
were used as the test samples. Finally, MP-SAX-STM was used for life prediction and
compared with the prediction results of STM which was based on original monitoring
data, and the MAE, RMSE, MAPE, and MASE were calculated as shown in Figures 8 and 9.
Where the subjective weight determination method was selected when calculating the
similarity by MP-SAX, in which the weight of trend component is 0.75 and the weight of
detail component is 0.25.

As shown in Figures 8 and 9, when only monitoring data were used for life prediction
under multiple operating conditions, the evaluation indicators of MP-SAX-STM were lower
than those of STM. Furthermore, with the increase of the length of the test sample, the
evaluation indicators of MP-SAX-STM and STM showed a downward trend. Furthermore,
for Set #2 and Set #4, the relative reduction of each indicator of MP-SAX-STM compared
with STM was shown in Tables 3 and 4, respectively.

Table 3. Relative reduction of each indicator of MP-SAX-STM compared with STM of Set #2.

Indicators 1/2 2/3 3/4 4/5

MAE 23.71% 24.48% 22.28% 21.74%
RMSE 22.35% 22.32% 23.20% 21.78%
MAPE 25.21% 25.13% 22.50% 22.63%
MASE 23.71% 24.48% 22.28% 21.74%

Table 4. Relative reduction of each indicator of MP-SAX-STM compared with STM of Set #4.

Indicators 1/2 2/3 3/4 4/5

MAE 9.30% 13.69% 13.51% 16.70%
RMSE 8.65% 11.38% 11.49% 12.36%
MAPE 8.67% 13.45% 12.82% 13.30%
MASE 9.30% 13.69% 13.51% 16.70%

As shown in Tables 3 and 4, there was little difference among the relative change
of each indicator under the same length. For Set #2, there was little difference in the
change of the same indicator under different lengths, while, for Set #4, the variation under
same indicator and different lengths increased approximately with the increase of length.
Therefore, the prediction results of STM can be effectively improved by improving the
accuracy of the similarity measurement of traditional STM. Moreover, in the case of only
using monitoring data, MP-SAX-STM can also achieve life prediction, and the prediction
results were better than the traditional STM. Besides, for Set #4, the improvement effect of
MP-SAX-STM was also approximately enhanced with the increase of the know data length.
To further illustrate the life prediction results of the MP-SAX-STM and STM, one set was
randomly selected from the 30 sets of life cycle data from Set #2 and Set #4 to predict the
remaining useful life (RUL) under different lengths as shown in Figure 10 respectively.
And the RUL error was shown in Figure 11.

Compared with STM, as shown in Figure 10, both the MP-SAX-STM RUL prediction
results of Set #2 and Set #4 were closer to the actual RUL. Therefore, under multiple
operating conditions, the life prediction can be effectively realized by MP-SAX-STM even if
the degradation model was not extracted and only the monitoring data which was sensitive
to the operating condition was used. In addition, as shown in Figure 11, for Set #2, the
RUL error of MP-SAX-STM fluctuated around 0, while the error of STM was much less
than 0 and gradually approached 0. For Set #4, although the overall trend of the error of
MP-SAX-STM passed through 0, the error of STM was always greater than 0. Therefore,
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for the life prediction problem under multiple operating conditions, MP-SAX-STM can
improve the prediction accuracy compared with STM.

Figure 8. MAE, RMSE, MAPE, and MASE results of Set #2. (a) MAE. (b) RMSE. (c) MAPE. (d) MASE.

Figure 9. MAE, RMSE, MAPE, and MASE results of Set #4. (a) MAE. (b) RMSE. (c) MAPE. (d) MASE.
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Figure 10. RUL result of the single tested sample. (a) Set #2. (b) Set #4.

Figure 11. RUL error of the single tested sample. (a) Set #2. (b) Set #4.

Altogether, the prediction result of STM can be effectively improved by improving
the similarity measurement accuracy of STM. In addition, in the scenario of multiple
operating conditions, MP-SAX-STM can effectively solve the life prediction problem that
the degradation model of monitoring data cannot be accurately obtained, and effectively
realized the life prediction.

6. Conclusions

This paper proposes an improved STM based on the morphological pattern and sym-
bolic aggregate approximation-based similarity measurement method, which can directly
and effectively use the original monitoring data for life prediction without extracting the
degradation trend of the monitoring data. According to the characteristics that the equip-
ment performance degradation is reflected in the trend change of monitoring data, while
the changes of operating conditions and environment are reflected in the detail change
of monitoring data, the MP-SAX is first used to measure the similarity between the moni-
toring data under multiple operating conditions. Then, the similar life candidate set and
corresponding weight are obtained according to the MP-SAX. Finally, the life prediction
results of equipment under multiple operating conditions can be calculated by aggregating
the similar life candidate set. Through the analysis and verification of public datasets of the
turbofan engine from the NASA Ames Prognostics Data Repository, it is proved that the
proposed method can achieve life prediction only using original monitoring data without
extracting degradation trend of monitoring data. In addition, the prediction result of STM
can be effectively improved by improving the similarity measurement accuracy of STM.

Although some important techniques associated with the proposed method have been
investigated in this paper, the STM can only obtain the prediction point of life and do not
consider the uncertainty in the prediction.
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Appendix A

Table A1. Meaning of acronyms.

Acronyms Meaning Acronyms Meaning

AI Artificial intelligence MP-SAX

Morphological pattern and
symbolic aggregate

approximation-based
similarity measurement

method

CBM Condition based
maintenance MP-SAX-STM

Similarity trajectory method
based on morphological

pattern and symbolic
aggregate approximation

CBR Case-based reasoning OP Operating parameters

CMAPSS
Commercial modular

aero-propulsion system
simulation

RMSE Root mean square error

DE Detail component RUL Remaining useful life

EMD Empirical mode
decomposition S Sensor

IMF Intrinsic mode function SAX Symbolic aggregate
approximation

LCS Longest common
subsequence SC

Symbolic aggregate
approximation symbol

sequences
MAE Mean absolute error SDE Similarity of detail component

MAPE Mean absolute
percentage error STM Similarity trajectory method

MASE Mean absolute
scaled error STR Similarity of trend component

MC Morphological pattern
symbol sequences TR Trend component

MP Morphological pattern - -

References
1. Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL

prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [CrossRef]
2. Jardine, A.K.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based mainte-

nance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [CrossRef]
3. Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.S.-K.; Orchard, M.E.; Saif, M. Critical Wind Turbine Components Prognostics:

A Comprehensive Review. IEEE Trans. Instrum. Meas. 2020, 69, 9306–9328. [CrossRef]
4. Bhargava, C.; Sharma, P.K.; Senthilkumar, M.; Padmanaban, S.; Ramachandaramurthy, V.K.; Leonowicz, Z.; Blaabjerg, F.; Mitolo,

M. Review of Health Prognostics and Condition Monitoring of Electronic Components. IEEE Access 2020, 8, 75163–75183.
[CrossRef]

https://ti.arc.nasa.gov/m/project/prognostic-repository/CMAPSSData.zip
http://doi.org/10.1016/j.ymssp.2017.11.016
http://doi.org/10.1016/j.ymssp.2005.09.012
http://doi.org/10.1109/TIM.2020.3030165
http://doi.org/10.1109/ACCESS.2020.2989410


Appl. Sci. 2021, 11, 10968 15 of 16

5. Nath, A.G.; Udmale, S.S.; Singh, S.K. Role of artificial intelligence in rotor fault diagnosis: A comprehensive review. Artif. Intell.
Rev. 2020, 54, 2609–2668. [CrossRef]

6. Lin, S.-L. Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet. Sensors
2021, 21, 7467. [CrossRef]

7. Tsai, C.-M.; Wang, C.-S.; Chung, Y.-J.; Sun, Y.-D.; Perng, J.-W. Multi-Sensor Fault Diagnosis of Underwater Thruster Propeller
Based on Deep Learning. Sensors 2021, 21, 7187. [CrossRef]

8. Cui, L.; Tian, X.; Shi, X.; Wang, X.; Cui, Y. A Semi-Supervised Fault Diagnosis Method Based on Improved Bidirectional Generative
Adversarial Network. Appl. Sci. 2021, 11, 9401. [CrossRef]

9. She, D.; Jia, M. A BiGRU method for remaining useful life prediction of machinery. Measurement 2021, 167, 108277. [CrossRef]
10. Wang, B.; Lei, Y.; Yan, T.; Li, N.; Guo, L. Recurrent convolutional neural network: A new framework for remaining useful life

prediction of machinery. Neurocomputing 2020, 379, 117–129. [CrossRef]
11. Chen, Y.; Li, F.; Wang, J.; Tang, B.; Zhou, X. Quantum recurrent encoder–decoder neural network for performance trend prediction

of rotating machinery. Knowl. Based Syst. 2020, 197, 105863. [CrossRef]
12. Barraza, J.F.; Droguett, E.L.; Martins, M.R. Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics

and Health Management Using Deep Neural Networks. Sensors 2021, 21, 5888. [CrossRef] [PubMed]
13. Muneer, A.; Taib, S.M.; Naseer, S.; Ali, R.F.; Aziz, I.A. Data-Driven Deep Learning-Based Attention Mechanism for Remaining

Useful Life Prediction: Case Study Application to Turbofan Engine Analysis. Electronics 2021, 10, 2453. [CrossRef]
14. Muneer, A.; Taib, S.M.; Fati, S.M.; Alhussian, H. Deep-Learning Based Prognosis Approach for Remaining Useful Life Prediction

of Turbofan Engine. Symmetry 2021, 13, 1861. [CrossRef]
15. Aamodt, A.; Plaza, E. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI

Commun. 1994, 7, 39–59. [CrossRef]
16. Wang, T.; Yu, J.; Siegel, D.; Lee, J. A similarity-based prognostics approach for Remaining Useful Life estimation of engineered

systems. Proceedings of 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October
2008; pp. 1–6. [CrossRef]

17. You, M.-Y.; Meng, G. A generalized similarity measure for similarity-based residual life prediction. J. Process. Mech. Eng. 2011,
225, 151–160. [CrossRef]

18. Zeming, L.; Jianmin, G.; Hongquan, J.; Xu, G.; Zhiyong, G.; Rongxi, W. A similarity-based method for remaining useful life
prediction based on operational reliability. Appl. Intell. 2018, 48, 2983–2995. [CrossRef]

19. Liang, Z.; Gao, J.; Jiang, H.; Gao, X.; Gao, Z.; Wang, R. A Degradation Degree Considered Method for Remaining Useful Life
Prediction Based on Similarity. Comput. Sci. Eng. 2018, 21, 50–64. [CrossRef]

20. Cannarile, F.; Baraldi, P.; Zio, E. An evidential similarity-based regression method for the prediction of equipment remaining
useful life in presence of incomplete degradation trajectories. Fuzzy Sets Syst. 2019, 367, 36–50. [CrossRef]

21. Yang, Y.; Guo, Y.; Huang, Z.; Chen, N.; Li, L.; Jiang, Y.; He, N. Research on the milling tool wear and life prediction by establishing
an integrated predictive model. Measurement 2019, 145, 178–189. [CrossRef]

22. Li, L.L.; Ma, D.J.; Li, Z.G. Residual Useful Life Estimation by a Data-Driven Similarity-Based Approach. Qual. Reliab. Eng. Int.
2017, 33, 231–239. [CrossRef]

23. Lin, Y.; Yang, B.; Zhang, J.; Liu, H. Approach for 4-D Trajectory Management Based on HMM and Trajectory Similarity. J. Mar. Sci.
Technol. 2019, 27, 246–256. [CrossRef]

24. Comeau, D.; Giannakis, D.; Zhao, Z.; Majda, A.J. Predicting regional and pan-Arctic sea ice anomalies with kernel analog
forecasting. Clim. Dyn. 2019, 52, 5507–5525. [CrossRef]

25. Wang, T. Trajectory Similarity Based Prediction for Remaining Useful Life Estimation; ProQuest Dissertations Publishing: Cincinnati,
OH, USA, 2010; pp. 41–70.

26. Yin, J.; Wang, R.; Zheng, H.; Yang, Y.; Li, Y.; Xu, M. A New Time Series Similarity Measurement Method Based on the
Morphological Pattern and Symbolic Aggregate Approximation. IEEE Access 2019, 7, 109751–109762. [CrossRef]

27. Yu, D.; Cheng, J.; Yang, Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mech. Syst.
Signal Process. 2005, 19, 259–270. [CrossRef]

28. Li, Y.; Xu, M.; Wei, Y.; Huang, W. An improvement EMD method based on the optimized rational Hermite interpolation approach
and its application to gear fault diagnosis. Measurement 2015, 63, 330–345. [CrossRef]

29. Li, Y.; Xu, M.; Wei, Y.; Huang, W. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and
improved support vector machine based binary tree. Measurement 2016, 77, 80–94. [CrossRef]

30. He, X.; Shao, C.; Xiong, Y. A non-parametric symbolic approximate representation for long time series. Pattern Anal. Appl. 2016,
19, 111–127. [CrossRef]

31. Sun, Y.; Li, J.; Liu, J.; Sun, B.; Chow, C. An improvement of symbolic aggregate approximation distance measure for time series.
Neurocomputing 2014, 138, 189–198. [CrossRef]

32. Hsu, W.J.; Du, M.W. Computing a longest common subsequence for a set of strings. BIT Numer. Math. 1984, 24, 45–59. [CrossRef]
33. Batista, G.E.; Keogh, E.J.; Tataw, O.M.; De Souza, V.M. CID: An efficient complexity-invariant distance for time series. Data Min.

Knowl. Discov. 2014, 28, 634–669. [CrossRef]

http://doi.org/10.1007/s10462-020-09910-w
http://doi.org/10.3390/s21227467
http://doi.org/10.3390/s21217187
http://doi.org/10.3390/app11209401
http://doi.org/10.1016/j.measurement.2020.108277
http://doi.org/10.1016/j.neucom.2019.10.064
http://doi.org/10.1016/j.knosys.2020.105863
http://doi.org/10.3390/s21175888
http://www.ncbi.nlm.nih.gov/pubmed/34502778
http://doi.org/10.3390/electronics10202453
http://doi.org/10.3390/sym13101861
http://doi.org/10.3233/AIC-1994-7104
http://doi.org/10.1109/PHM.2008.4711421
http://doi.org/10.1177/0954408911399832
http://doi.org/10.1007/s10489-017-1128-4
http://doi.org/10.1109/MCSE.2018.110145829
http://doi.org/10.1016/j.fss.2018.10.008
http://doi.org/10.1016/j.measurement.2019.05.009
http://doi.org/10.1002/qre.2001
http://doi.org/10.6119/JMST.201906_27(3).0007
http://doi.org/10.1007/s00382-018-4459-x
http://doi.org/10.1109/ACCESS.2019.2934109
http://doi.org/10.1016/S0888-3270(03)00099-2
http://doi.org/10.1016/j.measurement.2014.12.021
http://doi.org/10.1016/j.measurement.2015.08.034
http://doi.org/10.1007/s10044-014-0395-5
http://doi.org/10.1016/j.neucom.2014.01.045
http://doi.org/10.1007/BF01934514
http://doi.org/10.1007/s10618-013-0312-3


Appl. Sci. 2021, 11, 10968 16 of 16

34. Saxena, A.; Kai, G.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In
Proceedings of the International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008;
pp. 1–9. [CrossRef]

35. Hyndman, R.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]

http://doi.org/10.1109/PHM.2008.4711414
http://doi.org/10.1016/j.ijforecast.2006.03.001

	Introduction 
	Background of MP-SAX 
	The Background and Proposed Method 
	The Description of Background 
	The Proposed Method 

	The Description of Dataset and Problem in Life Prediction under Multiple Operating Conditions 
	The Description and Analysis of the Dataset 
	Evaluation Indicators of Prediction Results 
	The Description of Problems in Life Prediction under Multiple Operating Conditions 

	Results and Discussions 
	Conclusions 
	
	References

