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Abstract: Unprecedented breakthroughs in the development of graphical processing systems have
led to great potential for deep learning (DL) algorithms in analyzing visual anatomy from high-
resolution medical images. Recently, in digital pathology, the use of DL technologies has drawn a
substantial amount of attention for use in the effective diagnosis of various cancer types, especially
colorectal cancer (CRC), which is regarded as one of the dominant causes of cancer-related deaths
worldwide. This review provides an in-depth perspective on recently published research articles
on DL-based CRC diagnosis and prognosis. Overall, we provide a retrospective synopsis of simple
image-processing-based and machine learning (ML)-based computer-aided diagnosis (CAD) systems,
followed by a comprehensive appraisal of use cases with different types of state-of-the-art DL
algorithms for detecting malignancies. We first list multiple standardized and publicly available
CRC datasets from two imaging types: colonoscopy and histopathology. Secondly, we categorize
the studies based on the different types of CRC detected (tumor tissue, microsatellite instability,
and polyps), and we assess the data preprocessing steps and the adopted DL architectures before
presenting the optimum diagnostic results. CRC diagnosis with DL algorithms is still in the preclinical
phase, and therefore, we point out some open issues and provide some insights into the practicability
and development of robust diagnostic systems in future health care and oncology.
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1. Introduction

Global cancer statistics from 2018 show that the incidence of colorectal cancer (CRC)
ranks highest after lung cancer and breast cancer, and worldwide, it accounts for approxi-
mately 10% of the total annual cancer patients among both men and women [1]. Although
people aged 65 years and above are the most prevalent victims of this disease, the risk in
younger patients is also significant, with the highest risk due to heredity (35%) followed
by other factors such as obesity, bad nutritional habits, and smoking [2]. These rates show
no trend toward decline, but rather are expected to increase by more than 60% in the next
decade, with more than two million new diagnoses and over a million deaths by the next
decade [3]. In this regard, there is a need to develop an optimal diagnosis strategy for the
early and precise detection of CRC patients.

With routine screening being an important step for the reduction in mortality rates of
this disease, colonoscopy (an endoscopic method) is considered a primary and straightfor-
ward clinical diagnosis method of choice for CRC [4]. Aside from this method, medical
imaging techniques such as CT colonography, a complementary imaging method for polyp
detection in CRC, and the histological evaluation of hematoxylin and eosin (H&E) slides
remain indispensable approaches to subtle inspections for CRC. While manual observations
of these imaging modalities by individual pathologists have been pursued relentlessly,
recently, they have been modeled as traditional and unsophisticated approaches that are
highly labor-intensive and time-consuming. Besides, inter-observer variation can be signif-
icant during pathological diagnosis, resulting in the biased analysis of typing and grading
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of cancer tumors [5]. Therefore, a more standardized and automated technique based on
computer-aided diagnosis (CAD) has gained a lot of interest and demand lately.

Many CAD systems have been utilized in mainstream radiology to assist physicians,
from improved chest X-rays and mammography applications in the 1960s to enabling the
early diagnosis of cancers in the 2000s. Considering the medical and economic burdens
caused by the prognosis and treatment of CRC-related diseases, researchers have been
focusing on developing CAD systems for use in the early and effective diagnosis of CRC.
The development of CAD systems for CRC can be dated from the conventional models that
require complex a priori knowledge of mathematics [6–8] to advanced machine learning
(ML)-based systems [9–12] that can perform beyond human levels of accuracy.

Although cancer diagnosis with deep learning (DL) has been a very popular subject
of interest in the medical imaging domain, comprehensive literature reviews covering
various aspects of CRC diagnosis and prognosis using state-of-the art DL schemes are still
limited. The existing studies lack surveys based on various types of available standard
CRC imaging datasets. In addition, in a short period of time, there has been adequate
novel research and findings from DL-based CRC diagnoses. A proper review of these
state-of-the-art findings in terms of adapted data preprocessing strategies is required, and
a methodology needs to be developed to facilitate upcoming researchers and scholars
in this field. Therefore, this review paper intends to fill this gap in four ways. First, it
provides a brief retrospective overview of conventional CAD systems based on simple
image processing and ML-based approaches to CRC diagnosis. Secondly, we identify and
list some of the publicly available imaging datasets collected and archived from various
independent sources, which are standardized for DL-based CRC diagnosis. Thirdly, we
systematically categorize and highlight the latest studies on DL-based detection, diagnosis,
and prognosis regarding different types of CRC, including tumors, microsatellite instability
(MSI), and polyps. Lastly, we outline some open issues observed in this area of research
and speculate on future studies regarding the optimization of diagnosis accuracy, such that
it is practical and suitable for use in the clinical domain.

To sum up the organization of this paper, the next section provides a brief understand-
ing of the CAD approaches based on simple image processing techniques and ML-based
techniques. Section III presents a detailed discussion of recently published research into
CRC diagnosis by organizing it into different categories, each highlighting a key contribu-
tion to data preprocessing, model architectures, and the optimal results obtained. Finally, a
discussion and conclusion are presented in Sections 4 and 5, respectively.

2. Simple Image-Processing-Based and Machine-Learning-Based CAD Approaches

Owing to synthetic approaches based on image processing techniques, conventional
CAD systems have been used in diagnosing CRC for a few decades. Table 1 lists a brief
overview of the conventional studies regarding simple image processing techniques and
ML-based CAD systems that have been researched for use in diagnosing CRC. CAD
systems based on simple image processing methods rely on mathematical models explicitly
defined by human rules for processing images from one modality to another, and they
require the case-by-case tuning of model parameters for optimal performance. Specifically,
diagnoses are mainly based on feature engineering methods where feature extraction is
carried out either from vessel structural or textural analysis of the image patches using
a local binary pattern (LBP) [13]. Solely relying on simple image processing algorithms,
these CAD systems [6–8] can classify tumor regions or identify various traits of malignant
tissues in CRC. Although these systems have been a part of digital pathology for the clinical
diagnosis of CRC, they are application-specific and are considered heuristic approaches
that require strong domain expertise, which depend upon the unique characteristics of the
imaging type involved.
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Table 1. Overview of CAD systems based on simple image processing techniques and ML-based techniques.

Technology Publication (Year) Objective Methods Used Image Types Maximum Results

Based on image
processing
techniques

[6] (2011)
To develop a CAD system

for the classification of
colorectal polyps.

ROI selection, blood vessel
segmentation, and feature

extraction and
classification.

Endoscopic
images

Sensitivity = 95.0%
Accuracy = 86.8%
Specificity = 87.8%

[7] (2015)

To provide the fully
automated and instant

classification of colorectal
polyps for routine

colonoscopy.

Image acquisition, adaptive
thresholding, nucleus-like
spot labeling, removal of

artifacts, and feature
extraction.

Endoscopic
images

Sensitivity = 92.0%
Accuracy = 89.2%
Specificity = 79.5%

[8] (2017)

To evaluate the
effectiveness of software

developed for endoscopic
diagnosis of colorectal

lesions using magnifying
narrow band imaging

(M-NBI)

ROI extraction, grayscale
conversion, binarization
using moving average

methods, morphological
operations, and feature

extraction.

Endoscopic
images

Sensitivity = 83.9%
Accuracy = 82.8%
Specificity = 82.6%

Based on machine
learning techniques

[9] (2013)

To classify NBI images of
colorectal tumors into three
types (A, B, and C3) based

on NBI magnification
findings.

Feature extraction using
bag of visual words, and

classification with support
vector machine (SVM)

classifiers.

Colonoscopy,
NBI samples

Recognition
rate = 95.44%

[10] (2016)

To predict histological
diagnoses of colorectal

lesions depicted on narrow
band imaging samples.

Feature extraction using
densely sampled

scale-invariant feature
transform (SIFT) in a

bag-of-features framework;
classification with SVM.

Endoscopic
images

Sensitivity = 93.0%
Specificity = 93.3%
Positive prediction

value (PPV) = 93.0%
Negative prediction
value (NPV) = 93.3%

[11] (2017)

To investigate the feasibility
of computer algorithms to

identify early Barrett’s
esophagus (BE) neoplasia

on ex vivo volumetric laser
endomicroscopy (VLE)

images.

Preprocessing of input
images, feature extraction

with gray-level
co-occurrence matrices,

local binary patterns,
wavelet transforms, and

histogram of oriented
gradients; classification

with SVM, decision trees,
k-nearest neighbors, linear

regression, and logistic
regression.

Volumetric
laser endomi-

croscopy
images

Sensitivity = 90%
Specificity = 93%

AUC = 0.95

[12] (2019)

To develop a CAD system
based on linked color

imaging (LCI) to predict the
histological results of

polyps by analyzing colors
of the lesions.

Preprocessing of input
images, converting images

from RGB space to HLS
space and concatenating

both images to obtain a 6-D
vector for each pixel;
classification using a

Gaussian mixture model
(GMM).

Linked color
imaging
samples

Sensitivity = 83.3%
Accuracy = 78.4%
Specificity = 70.1%

PPV = 82.6%
NPV = 71.2%

With the technological advancements in the field of artificial intelligence (AI), a
computer can mimic cognitive functions to solve real-world problems by learning all by
itself. Within AI, an ML technique that allows computers to learn from real-world data
without being explicitly programmed has been extensively applied to the medical imaging
domain. Particularly for the clinical diagnosis of CRC patients, several research works
based on ML approaches [9–12] have been conducted. The ML-based techniques utilize
the handcrafted feature extraction of predefined morphological features that rely on the
shape, color, and textural information of the image data. These types of features are usually
extracted using different types of procedures, such as LBP, wavelet transform, gray-level
co-occurrence matrices, scale invariant feature transform (SIFT), histogram of oriented
gradients (HoG), etc. The extracted features are then subjected to ML-based classification
algorithms that include, but are not limited to, the support vector machine, k-nearest
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neighbors, logistic regression, decision trees, m-Gaussian mixture models, etc. Although
these techniques have been introduced as part of the medical diagnoses of CRC patients,
they have certain limitations due to their infirm feature extraction procedures. Moreover,
ML algorithms cannot produce unbiased representations for the large amounts of data,
which makes them highly susceptible to overfitting and errors.

3. Deep Learning-Based Studies for CRC Diagnosis

Deep learning [14] is the branch of ML in the AI paradigm that identifies trends and
patterns in the data without the need for human intervention or any feature engineering
methods. The DL method makes use of multiple hidden layers to extract an abstract
representation of the input at each layer that is appropriate to perform a specific task.
DL models have been regarded as superior to ML-based techniques in the presence of
large amounts of data and have been popular in multiple disciplines [15,16], including the
diagnosis and prognosis of cancer in digital pathology. In Figure 1, a procedural diagram
demonstrating the working mechanisms of ML and DL-based CAD systems screening
for CRC patients is displayed. ML relies on handcrafted feature extraction before passing
features for classification, whereas DL concurrently extracts and classifies features through
multiple hidden layers and activation functions. This makes the DL technique suitable
for learning more task-specific representations of large-scale image datasets; thus, they
are frequently preferred over ML in solving medical imaging classification or in tumor
detection problems.
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Figure 1. Block diagram showing the fundamental difference between working mechanisms of ML
and DL algorithms for classifying images as cancer or non-cancer subtypes.

3.1. Datasets

Data constitute an inevitable part of a DL algorithm, from which the model can learn
concealed information or underlying statistics available within them. Data can be in any
form such as numbers, audio, images, and videos. Dataset preparation is a long process
that includes collection, analysis and treatment, exploration, training, and testing. The
data from which the model is trained must be relevant to the specific problem and must
resemble real-world data as much as possible. To train a DL model, a large amount of data
with significant standard deviation is required. With more data, better accuracy from a
DL algorithm can be acquired as the model learns an abundant number of variations and
recognizes invariant features and discrete instances of the input samples.

In medical imaging, data are acquired for several purposes, including but not lim-
ited to disease diagnosis, therapy planning, intraoperative navigation, and biomedical
research [17]. Unlike normal imaging modalities, medical image data are hard to acquire
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due to privacy and confidentiality considerations. Besides that, requirements for accurate
imaging, specific contrast, minimal artifacts, and a sufficient signal-to-noise ratio make it
hard to obtain the optimum image quality required for clinical practice. In cancer diagnosis,
particularly in the CRC domain, the analysis of endoscopy/colonoscopy image samples, as
shown in Figure 2 (top row), has been popular in the past. Capturing colonoscopy images
is considered an invasive procedure where a tiny tube is inserted along the entire length
of the colon to provide an interior view of cross-sectional areas. Histopathology imaging,
as shown in Figure 2 (bottom row), on the other hand, is a less invasive procedure that
provides a more comprehensive view of the disease, and it preserves the underlying tissue
architecture. Due to a lack of computational resources and the high cost of digital imaging
equipment, this image modality has been overlooked in the past. However, thanks to the
high-end computational resources recently developed, spatial analysis of histopathology
imagery has been considered the backbone of most automated image analysis techniques
and remains the undisputed best way to diagnose vast numbers of diseases, including all
cancer types [18]. In digital pathology, histological images are stained with H&E to view
cellular and tissue structural details. These H&E-stained slides are utilized to confirm the
presence or absence of disease, for disease grading, and for measuring disease progression
in CRC.
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Figure 2. Sample images from a CRC dataset: (top row), endoscopy images, and (bottom row),
histological whole slide images (WSI).

To this end, different types of CRC datasets belonging to either colonoscopy or histo-
logical imaging have been introduced. These images are preprocessed by applying several
techniques before passing them to DL algorithms for specific tasks, such as detection,
segmentation, and classification. Table 2 lists some of the popular datasets used in multiple
studies based on developing DL-based CAD systems. These datasets provide comprehen-
sive imagery of CRC tissue and tumors and entail disease-specific characteristics that are
annotated by experienced pathologists.
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Table 2. Some of the publicly available CRC imaging datasets.

Type Name Release Date Total Number of Image
Samples

Average Dimensions
(in Pixels)

Endoscopy
images

The KVASIR dataset [19] 2017 1000 720 × 576 to 1920 × 1072

The Nerthus dataset [20] 2017 5525 750 × 576

The Hyper-Kvasir dataset [21] 2019 110,079 224 × 224

CVC-Colon DB [22] 2017 356 500 × 574 to 1080 × 1920

CVC-Clinic DB [23] 2012 612 images 384 × 288

Endoscopy disease detection
(EDD) and segmentation [24] 2020 386 images 400 × 400

Histology
images

Kather texture dataset [25] 2016 5000 patches 150 × 150

Colorectal adenocarcinoma gland
(CRAG) [26] 2019 38 WSI 1512 × 1516

Colorectal nuclear segmentation
and phenotypes (CoNSeP) [27] 2018 41 WSI 1000 × 1000

CRC-TIA [28] 2017 139 WSI 1792 × 1792

Histological images for tumor
detection in gastrointestinal

cancer [28]
2019 11,977 patches 512 × 512

Pathology AI platform (PAIP) [29] 2019 118 WSI 29,879 × 23,066

Warwick-QU dataset [30] 2016 166 images 775 × 522

UniToPatho [31] 2021 9536 patches 224 × 224

3.2. Tumor Tissue Detection and Classification

Tumors are complex structures in a human organ that comprise multiple and distinct
types of tissue. They can be interpreted as abnormal tissue composed of multiple types
of cells or a matrix of cells. In CRC, the architecture of a tumor is varied, along with its
development, and is the major factor in patient prognosis [25]. Therefore, an automated
and highly quantitative analysis of tumor tissue is indispensable for the clinical diagnosis
of CRC. Automatic analysis of these tissue regions can be helpful in quantifying their
extent, in the grading of tumors, and to investigate a biological hypothesis based on tissue
morphology.

Figure 3 shows the different types of tumor tissues obtained from H&E-stained histo-
logical slides that are relevant to CRC. These tissue types, when evaluated by pathologists,
are visually classified into one of eight different categories (tumor, stroma, complex, lym-
pho, debris, mucosa, adipose, and empty). A DL-based CAD system can automatically
classify these tumor regions if provided with adequate amounts of data and if trained with
optimal network hyper-parameters.
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Multiple studies based on DL have been conducted to this end in order to accu-
rately classify CRC tumor regions. Ponzio et al. [32] proposed a CNN framework to
distinctly classify adenocarcinomas (a type of tumor) from healthy tissues and benign
lesions. As a preprocessing step, they created a total of 13,500 image patches with dimen-
sions of 1089 × 1096 at 40× magnification of the original whole slide images (WSIs) from
H&E-stained images. Subsequently, to compensate for the color inconsistencies, sets of
whole image patches were normalized based on mean and standard deviation. These
preprocessed datasets were fed into a CNN model with thirteen convolutional layers, five
max pooling layers, and three fully connected layers (FCLs) to univocally classify them
into one of three tissue subtypes, namely adenocarcinoma, tubulovillous adenoma, and
healthy tissue. An initial classification accuracy of around 90% was obtained, which was
optimized to 96% by using a transfer learning strategy. Another study [33] developed
DL-based automated analysis of CRC image samples with the objective of improving the
prognostic stratification of patients. In this study, the original H&E-stained WSIs were
split into uniform-dimension tiles of 224 × 224 pixels, after which, VGG16 [34] (a pop-
ular pretrained CNN model) was used to extract intermediate features from the image
patches. The extracted 4096 bin feature vector was classified into several tumor types by
using a combination of long short-term memory (LSTM) [35] with one of three classifiers:
a support vector machine (SVM), logistic regression, or naïve Bayes. LSTM is a type of
recurrent neural network (RNN) that is well suited for classifying, processing, and making
predictions on the time series data and is famous for its capability of learning the long-term
temporal dependencies of input data. The model’s performance was assessed with differ-
ent accuracy metrics, where an area under the curve (AUC) value of 0.69, a hazard ratio
of 2.3, and a 95% confidence interval (CI) were achieved. Similar to the previous study,
Yue et al. [36] also used a well-known VGG16 framework with some notable changes to
its architecture, where classification was carried out with a voting classifier and an SVM
classifier. In this study, data preprocessing was applied to the H&E slides before passing
them on for feature extraction. The steps included chromatic normalization of the image
patches at 224 × 224 pixels and data augmentation to increase the number of samples for
better generalization of the network. The patch level accuracy and F1-score were found to
be 70% and 0.67, respectively, while a cluster level experiment significantly outperformed
the former with a staggering accuracy of 100% and a unit F1-score.

In DL, the accuracy of a model is significantly dependent upon the type of feature
extractor and the classification procedures [37]. Therefore, multiple studies considered
using a variety of popular CNN models or designed a model from scratch with the optimal
tuning of hyper-parameters. To make use of multiple pretrained models and to evaluate
their performance, Kather et al. [38] investigated whether the existing pretrained CNN
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models could extract the prognosticators directly from H&E-stained tissue slides. Human
cancer tissue slides from multiple patient cohorts (NCT biobank at http://dx.doi.org/10
.5281/zenodo.1214456 (accessed on 18 July 2021), a DACHS study at http://dx.doi.org/
10.5281/zenodo.1214456 (accessed on 18 July 2021), and a TCGA cohort at http://cancer.
digitalslidearchive.net (accessed on 18 July 2021) (NCT: National Center for Tumor Diseases,
DACHS: Darmkrebs Chancen der Verhütung durch Screening, and TCGA: The Cancer
Genome Atlas) were used as training and testing datasets. For data preprocessing, they
created several non-overlapping image patches, each at 224 × 224 pixels, and normalized
them with the Macenko method [39]. Five pretrained models (VGG19 [34], AlexNet [40],
SqueezeNet v1.1 [41], GoogLeNet [42], and ResNet-50 [43]) were used for feature extraction,
while classification was carried out by replacing the classification head with a new fully
connected layer. Among them, the best classification accuracy was achieved by VGG19,
which was trained on a full set of 100,000 images and tested with an external test set of more
than 7000 images, while the least accurate model was SqueezeNet, with a classification
accuracy of less than 50%.

A study in [44] segmented and filtered the background area of tumors by using Otsu’s
thresholding [45] and labeled the tumor area with a self-developed annotation tool before
passing it to the CNN model for feature extraction and classification. They built a new
model with the combination of DeepLab v2 [46], and ResNet-34 [43] and compared the
model’s performance with analyses of experienced pathologists. They found that their
DL model for the diagnosis of adenoma in CRC was quite similar to the results from the
pathologists, where a slide-level accuracy of over 90% and an AUC of 0.92 were obtained.
Choi et al. [47] used an approach similar to the one in [44], where data preprocessing was
carried out by discarding the unnecessary black regions in the endoscopic image samples
via filtering. A transfer learning approach was used where the pretrained weights of
various DL models, such as Inception-v3 [48], ResNet-50 [43], and DenseNet-161 [49], were
used with 10-fold cross-validation. They evaluated their performance in terms of accuracy,
recall, and precision, where they obtained respective values of 92.48%, 99.7%, and 99.2%.
Similar studies [50–52] based on the tumor tissue detection type are listed in Table 3.

Table 3. Recently published articles on CRC tumor tissue detection and classification using DL techniques.

Publication (Year) Objective Method Used Image Types Optimum Results

[50] (2020)

To develop a biomarker
of the patient outcome

by analyzing the
scanned H&E-stained
slides with DL models

Data preprocessing: Multiple
non-overlapping image tiles were

selected with 10 × and
40 × magnification of WSI images.

Model: Feature extraction and
classification used a DoMore v1

network comprising a
MobileNetV2 [53] representation
network, a noisy-AND pooling

function, and an FCL.

Hematoxylin and
eosin-stained

slides

Hazard ratio = 3.04
Sensitivity = 52%
Accuracy = 76%
Specificity = 78%

PPV = 19%
NPV = 94%

[52] (2021)

To develop a DL
system for predicting

disease-specific
survival for stage II and

III CRC patients

Data preprocessing: Constructing
a tumor probability heat maps

with 20 × magnification of
original slides, they generated

binary ROI masks for each tumor
probability output, applying
denoising and dilation with a

circular filter.
Model: A CNN with depth-wise

separable convolution layers such
as MobileNet [54], plus

hyperparameter tuning via
random grid search.

Hematoxylin and
eosin-stained

slides
AUC = 0.70

http://dx.doi.org/10.5281/zenodo.1214456
http://dx.doi.org/10.5281/zenodo.1214456
http://dx.doi.org/10.5281/zenodo.1214456
http://dx.doi.org/10.5281/zenodo.1214456
http://cancer.digitalslidearchive.net
http://cancer.digitalslidearchive.net
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Table 3. Cont.

Publication (Year) Objective Method Used Image Types Optimum Results

[54] (2021)

To develop a
CNN-based CAD

system for predicting
the pathological

histology of colorectal
adenomas

Data preprocessing: Standardized
input images excluded

unnecessary black areas by
cropping them to 480 × 480 pixels.

Model: Multiple CNN models
(ResNet-50 [43], Inception-v3 [48],

and DenseNet-161 [49]) with a
new classification head consisting

of a single FCL.

Endoscopic
images

Sensitivity = 77.25%
Specificity = 92.42%

PPV = 77.16%
NPV = 92.58%

3.3. MSI Detection

Microsatellites, which are also known as short tandem repeats (STRs), are tiny repeat-
ing stretches of DNA that are scattered across the entire genome region, accounting for
approximately 3% of the whole region [55]. The MSI phenotype is one of the molecular
changes that occurs in CRC, and it is also observed in different types of cancer, such as
adrenocortical, rectal, colon, stomach, and endometrial tumors, and breast and prostate
cancer [56]. MSI can also be referred to as a hyper-mutable phenotype that is an outcome of
deficient mismatch repair (dMMR). In Figure 4, we can see MSI patches, indicated by yel-
low arrows, that show activations around the potential patterns of infiltrating immune cells.
The identification of MSI status in CRC patients is crucial, because it helps to determine the
presence of related diseases such as lynch syndrome, a highly penetrant hereditary cancer
syndrome accounting for one-third of patients with MSI. Therefore, a less labor-intensive
and broadly accessible MSI testing tool based on DL approaches has been studied lately.
These CAD systems contribute an automated screening tool to triage patients when making
clinical decisions, so as to identify differential treatment responses.
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Figure 4. MSI cells in H&E-stained image patches (indicated by yellow arrows).

The authors in [57] introduced adversarial MSI-based assessment (AMIBA), a modality
to diagnose microsatellite instability directly from histopathological images. Histological
image data with a clinically determined MSI status (MSI-H, MSI-L, and MSS) were ob-
tained from TCGA available at https://portal.gdc.cancer.gov/ (accessed on 21 July 2021),
where high (H), low (L), and microsatellite stable (MSS) each represents highest, low-
est, and no presence of microsatellites. For data preprocessing, the image slides were
clipped into non-overlapping image patches of 1000 × 1000 pixels, which were obtained at
20 × magnification from the original slide. Furthermore, patches with more than half of
the area empty were not included in the process, which generated a total of 620,833 patches
to train the specific DL architecture. Multiple state-of-the-art DL architectures were used,

https://portal.gdc.cancer.gov/
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including ResNet-18 [43], AlexNet [40], and VGG-19 [34], where weights were initialized
with parameters pretrained on an ImageNet dataset [58]. By using the Adam optimization
algorithm with a learning rate of 0.0001, the authors obtained patch-level and slide-level
accuracies of 91.7% and 98.3%, respectively.

Considering ways to facilitate universal MSI screening, the research in [59] studied
how deep residual learning can predict the MSI status directly from H&E-stained histologi-
cal slides. Multiple datasets regarding MSI status were collected from large patient cohorts
in TCGA, which were manually annotated and classified to represent one tumor tissue and
two non-tumor tissues (dense and loose tissue). The image slides were preprocessed to
create 11,977 unique image tiles, each with a 256 µm edge length. Furthermore, to convert
all the images into a reference color, a color normalization technique based on the Macenko
method was used. The authors conducted initial experiments with multiple convolutional
layers, from which ResNet-18 was selected as the optimum model due to its noteworthy
advantages, such as a short training time, better classification performance, less risk of
overfitting, and comparatively fewer training parameters. All models were trained on an
ImageNet dataset, and only the weights of the last 10 layers were fine-tuned, while the
rest of them were frozen. By using the Adam optimizer [60] and L2 regularization with
multiple learning rates {10−5, 10−6}, they obtained an area under the curve (AUC) of 0.99.
The CI for both true MSI and MSS tiles was found to be 95%.

Another study conducted in 2020 by Lee et al. [61] developed a two-stage DL-based
classification pipeline for predicting MSI status in CRC patients. In the two-stage process,
the first stage was responsible for segmenting the tumor area into two types of tissue (MSI-
H and MSI-L). The latter stage then classified the tissue types into their corresponding class.
H&E-stained histological WSIs annotated by professional pathologists were obtained from
a pathology AI platform (PAIP) at http://wisepaip.org/paip (accessed on 21 July 2021) and
were preprocessed before being used as input to the DL architecture. During preprocessing,
the WSIs were cropped to magnifications of 20 × and 10 × to obtain image patches of
224 × 224 pixels before converting the RGB images to the CIE L × a × b color space. Other
preprocessing methods, such as foreground mask extraction with Otsu’s thresholding,
were used to segment individual patches. Two DL models were adapted in this research:
the feature pyramid network (FPN) [62] and inception ResNet-V2 [43], one for each stage
in the classification pipeline. Multiple optimization algorithms such as Adam and RMS
prop were used, with each being trained on one of two learning rate schedulers (step decay
and cosine annealing) with a learning rate of 10-4. The optimum precision, recall, and
F1-score were found to be 0.93, 0.93, and 0.94, respectively.

Similarly, to develop a DL system for detecting CRC tumor specimens with MSI,
Echle et al. [63] collected H&E-stained slides from 8836 CRC tumors from the MSI-DETECT
consortium (https://jnkather.github.io/msidetect/ (accessed on 22 July 2021)). All speci-
mens belonged to a large cohort of patients from Germany, the Netherlands, the United
Kingdom, and the United States, where each specimen with MSI was identified via genetic
analysis. These data were preprocessed by tessellating the slides into individual square
tiles of 256 µm edge lengths followed by color normalization with the Macenko method
before passing them to a ShuffleNet model [64] for classification. The whole model was
trained on Nvidia RTX6000 graphical processing unit (GPU) hardware with the Adam
optimizer, L2 regularization, and a learning rate of 5 × 10−5. The classification results
were evaluated based on several performance metrics, where the optimal values of area
under the receiver operating characteristics (AUROC), area under the precision recall curve
(AUPRC), sensitivity, and specificity were recorded as 0.96, 0.9, 99%, and 98%, respectively.

Recently, several other DL-based studies for MSI detection and/or classification were
conducted, which are listed in Table 4.

http://wisepaip.org/paip
https://jnkather.github.io/msidetect/
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Table 4. Some recently published articles on MSI detection in CRC by using DL techniques.

Publication (Year) Objective Method Used Image Types Optimum Results

[65] (2020)

To predict RNA-Seq
profiles from WSI

without expert
annotation and to
identify tumors
containing MSI

Data preprocessing: Divided WSI
into squares tiles of

(224 × 224 pixels); segmented
white background using Otsu’s

thresholding.
Model: Multi-layer perceptron
applied to every tile with 5-fold

cross-validation.

Histology images AUC-ROC = 0.83

[66] (2020)

To investigate the
potential of DL-based

CAD systems for
automated prediction

of MSI from
H&E-stained WSIs

Data preprocessing: Discarded
the non-tissue containing white

background by thresholding;
partitioned the WSI into
non-overlapping tiles at

256 × 256 pixels; color normalized
with Macenko method.

Model: Based on MobileNetV2
architecture (pretrained on an
ImageNet dataset) with two

sequential components: tissue
type classifier, and MSI classifier,

4-fold cross-validation.

Hematoxylin and
eosin-stained slides

Sensitivity = 43.1%
Specificity = 94.9%

NPV = 89.9%
AUROC = 0.964

CI = 95%

[67] (2020)

To develop an
ensemble

multiple-instance DL
model for predicting
MSI status based on

histopathology
images

Data preprocessing: WSI
subsequently tiled into patches of
512 × 512 pixels; ROI containing
carcinoma in the WSIs manually

annotated by experienced
pathologists; tumor cells

occupying less than 80% of ROI
discarded; interfering factors such
as creases, bleeding, necrosis, and
blurred areas excluded; applied
data augmentation and image

normalization.
Model: CNN model based on
ResNet-18 with binary cross

entropy loss function; traditional
ML-based classifiers such as

gradient boosting and naïve Bayes
used.

Hematoxylin and
eosin-stained slides

ROCAUC = 0.8848
CI = 95%

p-value < 0.001

3.4. Polyp Detection

The beginning phase of most CRCs is stimulated with a growth of tissues on the
inner lining of the colon. These abnormal growths of tissue from the mucous membrane,
developing over a period, are called polyps, and are often considered a precursor to CRC.
Figure 5a–c, respectively, show a polyp image from a DL-based CAD system extracted from
a CRC patient, the corresponding annotations, and the detected polyps. Colonic polyps,
especially with a large size and in large numbers, are more likely to be cancerous, and if
not treated early, they could develop into colon cancer. CRC polyps can be categorized as
neoplastic and non-neoplastic. The former is non-cancerous, while the latter can develop
into cancer and can be further sub-categorized into adenomas and serrated polyps. In
clinical practice, the detection of polyps is usually accomplished via colonoscopy, which is
an expensive, manual, and time-consuming procedure. Frequent reviews of colonoscopy
data are required, because 20% of polyps are likely to be missed during a single review. This
is extremely labor intensive, and the lack of a thorough inspection of the data might result
in the missed detection of polyps. Taking this into account, an automated and non-invasive
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procedure based on CAD has been reliable and is considered more robust for accurate
detection of polyps. Specifically, DL-based segmentation and classification algorithms
have been indispensably applied recently to enable the routine detection of polyps in CRC
diagnosis. In this regard, in [68], multiple studies related to colon cancer analysis were
collected under the field of colon cancer and deep learning; then, they were categorized
into five categories that are detection, classification, segmentation, survival prediction, and
inflammatory bowel diseases. In [69], the current systematic review on colorectal cancer
detection and localization, and difficulties of a fair comparison and the reproducibility of
those methods were addressed.
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A conference paper was published by Godkhindi et al. [70] in 2017 with the objec-
tive being the automatic detection of polyps via CT colonography using DL techniques.
To achieve this, a CT colonography image dataset was collected from the Cancer Imag-
ing Archive (TCIA), available at https://www.cancerimagingarchive.net/ (accessed on
23 July 2021), containing ground truth information for segmentation purposes. In the data
preprocessing steps, the authors discarded the air gap-filled regions in the colon images
by using thresholding and filtering techniques. Furthermore, to label each block in the
image, binary region of interest (ROI) segmentation was performed. A CNN model with
three convolutional layers, three max pooling layers, and a single FCL was designed and
trained using 10-fold cross-validation, which obtained classification accuracy, sensitivity,
and specificity levels of 88.56%, 88.77%, and 87.35%, respectively.

Another similar study [71] applied state-of-the-art DL algorithms to each colonoscopy
frame of a gastrointestinal image analysis (GIANA) (dataset available at https://giana.
grand-challenge.org/ (accessed on 23 July 2021)) that consisted of 18 videos collected from
endoscopic results of multiple patients. For data preprocessing, the black edges of the
endoscopy image frames were removed, and the images were resized to model-specific
dimensions of 284 × 265 pixels before being passed for data augmentation with horizontal
and vertical flips and a blur filter. This approach used ResNet-50 as a fully convolutional
neural network (FCNN) to extract descriptive characteristics from the input image. The
extracted features were then subjected to a faster RCNN [72] model with two FCLs, each
operating as a regression and a classification layer. After extensive experiments and
evaluations, their model achieved a precision value of 80.31%, recall of 75.37%, accuracy of
71.99%, and specificity of 65.70%.

Different levels of diagnostic accuracy can be observed by adapting different strategies
for data preprocessing and by using DL algorithms. The optimal solution for medical
image diagnostics is, however, not obtained through minimal trials and testing, but is
considered via continuous and long-running research. In this context, several studies
tried to overcome the shortcomings in previous research or developed a completely novel
scheme for CRC diagnosis. Considering this, to enhance detection accuracy obtained by
reference studies, Lee et al. [73] developed and validated a robust DL algorithm for use
in the detection of colorectal polyps. In that study, the authors collected endoscopy data
samples from the Asan Medical Center, Korea, between May 2017 and February 2018. The
whole training dataset contained 8075 images from 185 colonoscopy videos of 103 patients.

https://www.cancerimagingarchive.net/
https://giana.grand-challenge.org/
https://giana.grand-challenge.org/
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For validation and testing, different sets of data samples were collected from the same place.
These datasets were preprocessed by storing them at a fixed resolution of 475 × 420 pixels
before labeling the location and dimension of each polyp in the image with bounding
boxes. This study used a one-shot classification model of every object present in the image
using YOLO v2 [74] without using an attention mechanism. The classification model was
a fine-tuned Darknet19 model provided at https://pjreddie.com/darknet/ (accessed on
26 July 2021), which was pretrained on an ImageNet dataset. By creating B bounding boxes
with a confidence score for the class probability of each box, the model was able to secure a
sensitivity level of 96.7% with a false positive rate (FPR) of 6.3%.

Similarly, in 2020, Poudel et al. [75] developed a classification model for use in the
identification of adenomas, Crohn’s disease, ulcerative colitis, and normal images by using
endoscopic image samples from CRC patients. They used two datasets: the first was
provided by Gill Hospital in Korea with a total of 3515 images, and the second was a
publicly available KVASIR dataset [19] with 4000 endoscopy samples. Each dataset was
normalized to model-specific inputs and was subjected to augmentation, which included
flipping, scaling, rotating, zoom, contrast normalization, and shearing. A transfer learning
approach was used with a ResNet-50 architecture as a baseline model, initialized with
pretrained weights from ImageNet. An efficient dilation technique [76] was adopted
to preserve the spatial information of the final layers in the network by using dilated
convolution layers in ascending and descending order. The original ResNet-50 model
was also modified by using DropBlock regularization [77] at deeper layers to make it
robust towards noise and artifacts. With extensive experiments using both datasets, the
optimal values for precision, recall, and F1-score were found to be 0.932, 0.928, and 0.93,
respectively.

Another study in [78] created an endoscopic dataset from different sources and an-
notated the ground truths by collaborating with experienced gastroenterologists. Due
to the severe differences in the existing datasets in terms of image resolution and color
temperature (possibly due to different imaging equipment setups), the authors built a
new dataset to serve as a benchmark to train and evaluate the DL models for polyp detec-
tion and classification. The new dataset included multiple publicly available endoscopic
datasets as well as some independently collected from the University of Kansas Medical
Center. Due to the extreme imbalance among the total number of image frames in each
dataset, an adaptive sampling rate was utilized to homogenize the representativeness of
each polyp by extracting important frames from the video. In total, 116 training, 17 valida-
tions, and 22 testing sets were generated, each comprising of 28,773, 4254, and 4872 frames,
respectively. By using these datasets, eight of the most popular state-of-the-art object detec-
tion models were evaluated. These included Faster RCNN [72], YOLOv3 [79], SSD [80],
RetinaNet [81], DetNet [82], RefineDet [83], YOLOv4 [84], and ATSS [85]. Using these
frameworks, three different types of experiments were conducted: first, frame-based one-
class polyps detection, second, two-class polyps detection, and the third, sequence-based
two class polyp detection. For the two frame-based detection experiments, the performance
was measured by regular object detection metrics, while for the sequence-based detection,
regular object detection was applied to each frame. Finally, the voting procedure was
applied to pick the mostly predicted polyps. For both the frame-based and sequence-based
detection methods, RefineDet performed very well with an F1 score of 88.6, and 86.3,
respectively. Other similar studies published recently on polyp detection using endoscopy
images samples are listed in Table 5.

https://pjreddie.com/darknet/
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Table 5. Some recently published articles on polyp detection in CRC by using DL techniques.

Publication (Year) Objective Method Used Image Types Optimum Results

[86] (2021)

To detect polyps in
real time through
localization and

segmentation
approaches

Data preprocessing: Normalized
images by subtracting mean of the

image by its standard deviation;
annotated with bounding boxes;
resized to fixed 512 × 512 pixels;

applied data augmentation such as
horizontal, vertical flipping, random
rotation, random scale, and random

cropping.
Model: Used multiple models: feature

extraction using EfficientDet [87]
(EfficientNet [88] as a backbone
architecture) with a bidirectional

feature pyramid network (FPN), and a
shared class/box prediction network;

Faster R-CNN as detector network
with region proposal network (RPN)

as the proposal network, YOLOv3 [79]
with multi-class logistic loss modeled
with regularizers such as objectness
prediction scores, and YOLOv4 [84]
with on-the-fly data augmentation

such as mosaic, and cut-mix.

Endoscopy
images

Average
precision = 0.8000
Mean intersection

over union
(IoU) = 0.8100

Detection speed = 180
frames per second

(fps), dice
coefficient = 0.8206,

segmentation average
speed = 182.36 fps.

[89] (2021)

To use a DL approach
to accomplish

multitasks, such as
colorectal image
classification and

polyp image
segmentation

Data preprocessing: Removed
unclean and unclear colorectal images
with data filtering; labeled images into

one of three classes: normal tissue,
polyp, and tumor; split the dataset

into train, validation, and testing set
with the ration of 2:1:2; applied data

augmentation; resized to 440 × 440 ×
3 to maintain dimensional uniformity.

Model: Used self-paced
regularization method to assign

different sample weights for differennt
training samples; VGG19 pretrained

on ImageNet dataset for feature
extraction; replaced FCL with GAP
layer for classification of colorectal

images; used U-Net-based [90]
automatic polyp-region segmentation.

Endoscopy
images Accuracy = 96.0%

4. Discussion

Multiple DL algorithms discussed in aforementioned sections have achieved highly
reliable results in accurately detecting different types of tumors, MSI cells, and colorectal
polyps. The evaluations of these models have been conducted through several validation
tests and are designed to perform domain specific tasks such as segmenting tumorous
from non-tumorous tissue or classifying cancerous cells from the healthy ones. For tumor
tissue classification tasks, the EfficientNet [88] model was shown to display superior
performance, while U-Net [90], and YOLO architectures [74,79,84] showed high precision
in solving polyp segmentation and detection tasks, respectively. Using DL methods, the
clinical inspection of CRC-related patients is quickly performed with high diagnostic
accuracy. With that being said, the accuracy of DL algorithms can vary significantly and
is dependent upon the amount of data with which the model is trained. Especially in the
medical imaging sector, the availability of a publicly usable, large-scale standard dataset for
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conducting experiments is considered rare, relative to other fields, for example, in natural
images (ImageNet). In most scenarios, to complement the scarcity of vast amounts of data,
techniques such as data augmentation are widely practiced. Ranging from traditional
augmentation techniques such as flipping, shifting, and rotation, novel techniques such as
generative adversarial networks (GANs) [91] and style transfer techniques [92] have also
been extensively used to create and add synthetic instances to increase the data samples,
guaranteeing higher efficiency in the DL models. In order to address the complications
created by limited data, other techniques, such as transfer learning, can mitigate the model’s
dependency on training data sample size by using pretrained weights of other large-scale
datasets to initialize the model hyperparameters. Because real-world medical imaging data
are hard to acquire, data augmentation and synthetic imaging techniques can be helpful
to enhance the accuracy of DL models in diagnosing CRC. Similarly, a clear difference in
the accuracy of the DL model can be perceived, depending upon the use of preprocessed
and non-preprocessed datasets to train any model. For a quantitative evaluation of the DL
model, data preprocessing such as ROI extraction, color normalization, thresholding, etc.,
must be incorporated. In addition, data cleaning/preprocessing eliminates a portion of
low-quality data or outliers, such as image pairs with suboptimal registration.

Apart from that, image annotation such as tumor tissue labeling in CRC is considered
a highly sophisticated and time-consuming task, and thus, there is a need for highly
skilled and experienced pathologists to prepare high-quality datasets for training and
testing. Not only limited to image annotations, the requirement for medical associates and
pathologists is also extremely important in order to consider the values and preferences of
the patients, the medical judgments, the interventional procedures, policy making, and
other tasks that cannot be accomplished by computer programs alone. Therefore, the need
for pathologists remains essential for medical practices diagnosing not only CRC but also
other cancer variants.

Current DL models exist in various forms and architectures, and frequent optimiza-
tions of those models are being released to ensure highly accurate results in CRC diagnosis.
However, only an abundant number of experiments and user-based experiences can guar-
antee the reliability of those models for clinical purposes. Therefore, it is necessary to apply
several DL algorithms to identify and detect each type of CRC malignancy and compare
them to find the optimal diagnosis procedure. Moreover, improving the existing theoretical
foundation of the DL on the basis of the type of experimental data must be taken into
consideration to quantify the performance of multiple DL-based CRC detection modalities.
Such improvements must address the data-specific assessment of any algorithm, its compu-
tational complexity, and the hyperparameter tuning strategies [93]. The fact that currently
incorporated models can be biased towards non-CRC datasets cannot be overlooked, and
thus, specific criteria should be validated for CRC-specific DL models in order to obtain
intuitive insights into their optimization characteristics and certainties. CRC diagnosis
and prognosis with DL technologies are almost ready to be commercialized for practical
use cases in clinical settings. By exploring several other opportunities regarding data
preparation and model architectures, there is still room for improvement in the accuracy of
those models that are still in the suboptimal phase.

5. Conclusions

DL has expanded rapidly over the past few years in the field of oncology, especially
for screening and the diagnosis of CRC-related diseases. Putting this into perspective,
in this paper, we reviewed the publicly available CRC imaging datasets and recently
published research works that focused on detecting different types of CRC, including
tumor detection, MSI detection, and polyp detection. Furthermore, we also outlined
some issues regarding the scarcity of data and preprocessing strategies and provided
insights into developing problem-specific DL architectures to diagnose CRC patients in real
time to enable their commercialization for clinical practice. Through extensive research,
and development of medical application-oriented DL models, and by collaborating with
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experienced pathologists in collecting high-quality annotated datasets, we believe that the
reliable and automated screening of one of the most fatal cancer subtypes will be possible
in the near future.
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