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Abstract: Clothing image classification is more and more important in the development of online
clothing shopping. The clothing category marking, clothing commodity retrieval, and similar clothing
recommendations are the popular applications in current clothing shopping, which are based on the
technology of accurate clothing image classification. Wide varieties and various styles of clothing
lead to great difficulty for the accurate clothing image classification. The traditional neural network
can not obtain the spatial structure information of clothing images, which leads to poor classification
accuracy. In order to reach the high accuracy, the enhanced capsule (EnCaps) network is proposed
with the image feature and spatial structure feature. First, the spatial structure extraction model
is proposed to obtain the clothing structure feature based on the EnCaps network. Second, the
enhanced feature extraction model is proposed to extract more robust clothing features based on
deeper network structure and attention mechanism. Third, parameter optimization is used to reduce
the computation in the proposed network based on inception mechanism. Experimental results
indicate that the proposed EnCaps network achieves high performance in terms of classification
accuracy and computational efficiency.

Keywords: clothing image classification; enhanced capsule network; spatial structure feature; atten-
tion mechanism; inception mechanism

1. Introduction

With the development of electronic commerce, internet shopping for clothing has
become a common lifestyle [1–4]. Before the clothing information is uploaded to the
online shopping mall, the category, texture, style, fabric, and shape of clothing should be
labeled. The purchaser searches for suitable clothing by keyword retrieval. The manual
label method may be very costly on a human level, and the correct labeling of clothing
is based on personal judgment. The mistake of personal judgment is inevitable in the
thousands of clothing updates. Furthermore, it is difficult to distinguish the fine-grained
classification of clothing by personal judgment. Thus, the high-efficiency method of the
clothing classification [5,6] is urgent in the rapid development of clothing shopping.

Clothing classification attracts a lot of attention in academic circles. The classification
methods for clothing are usually divided into two categories. First, the traditional feature
extraction methods for clothing classification can be also divided into two types, one is
based on global shape features and global texture features [7], such as Fourier descrip-
tors, geometric invariant distance, local binary patterns (LBP), etc., and another one is
based on local feature methods that include scale-invariant feature transformation (SIFT),
sped up robust features (SURF), histogram of oriented gradient (HOG), etc. [8–11]. The
classification accuracy of traditional methods rely on the selective feature severely. In
specific cases, the methods may achieve high-level accuracy with stable and conspicuous
features. Generally, the clothing image is various, similar, and complex. The traditional
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methods can not extract robust features for classification. Second, with the technological
development of convolutional neural network (CNN), CNN is widely used in clothing
classification [12–14]. The method achieves better performance than the traditional meth-
ods. It extracts clothing features based on the deep network without manual setting, which
can obtain robust clothing features [15,16]. The convolution network and polling oper-
ations are used to extract the clothing feature, and deeper networks may achieve better
performance in general. However, the CNN only extracts the image features without a
spatial relationship between different local features [17–20]. The traditional CNN can not
breakthrough the bottleneck of classification accuracy.

Capsule network [21–24] is a novel CNN which is proposed to obtain the spatial
relationship of different features, which extract the spatial relationship by the dynamic
routing algorithm. The fundamental feature unit is expressed by the capsule, which is
a vector. However, the traditional capsule network [21] is usually used in the MNIST
database for handwritten digits recognition, and the size of input is defined as 28 × 28.
With the advantage of the capsule network in spatial features, Ref. [25] proposes a novel
multi-scale capsule network to extract the multi-scale feature. Ref. [26] proposes a subspace
capsule network to exploit the idea of capsule networks to model possible variations in
the appearance or implicitly-defined properties of an entity through a group of capsule
subspaces instead of simply grouping neurons to create capsules. Ref. [27] proposes a multi-
lane capsule networks that is a separable and resource efficient organization of capsule
networks that allows parallel processing while achieving high accuracy at reduced cost. In
a word, the traditional capsule network and improved capsule networks can not efficiently
extract robust clothing feature, which are not suitable for the accurate classification of
clothing images.

In order to further improve the accuracy of clothing image classification, we propose an
enhanced feature capsule (EnCaps) network. The traditional convolutional neural network
can not obtain the spatial location relationship. The capsule network is used to extract the
spatial location relationship of different types of clothing. The original capsule network
only has two convolution layers to extract the image feature. To extract the robust feature of
clothing, we improve the original network and adopt the attention mechanism and deeper
network in the proposed EnCaps network. Moreover, the inception mechanism is also
fused in the EnCaps network to reduce the computation. The experimental results indicate
that the proposed EnCaps network can achieve more accuracy and less computation.

The remainder of this paper is organized as follows: Section 2 introduces the methods
and methodology of the proposed EnCaps network. Section 3 gives the experiments and
results to indicate the validity of the proposed algorithm. The importance of proposed
algorithm and future direction are discussed in Section 4. The conclusions are given in
Section 5.

2. Materials and Methods

There are three key issues should be considered in the EnCaps network. First, the
input image size of the traditional capsule network [21] is only 28 × 28, and we should
increase the input size by improving the network structure to process more high-quality
images—second, how to extract robust feature with efficient network structure; and, third,
the vector indicates the capsule unit, but the processing unit of traditional CNN is pixels,
which results in a more complex calculated amount. The parameter optimization strategy
should be used in the proposed network. In order to solve the above issues, the EnCaps
network is proposed with three novel strategies, and the method architecture is shown
in Figure 1.
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Figure 1. Overview of the proposed EnCaps. The network architecture consists of three main parts: (1) Parameter
Optimization; (2) spatial structure Extraction; and (3) spatial structure Extraction.

2.1. Spatial Structure Extraction

Convolution is locally connected and parameter sharing, and as the layers of a con-
volutional network deepen, the network can learn more global contextual information
and then use this information to make predictions. However, there is no available spatial
information in the extracted features, which is one of the reasons for the prediction failure.
First, the shape information of the extracted feature is important for object identification.
The different types of clothing image have obvious structural features that can be used
to classify. There are about seven common types of clothing profiles, such as ‘A’, ‘H’, ‘X’,
‘T’, ‘Y’, ‘O’, and ‘V’. The feature of the clothing profile should enhance the classification
accuracy. Thus, the spatial shape information is important for clothing classification. How-
ever, it is not enough to have profile information. The traditional convolutional neural
network does not have the ability to analyze spatial information, which makes it difficult
to distinguish between the two types of clothing with only slight differences. For example,
skirt and dress, which are also in the shape of ’A’, are extremely easy to be confused by the
network due to no spatial information (localized spatial alignment information for clothing
and body) being identified.

To complement the capability of spatial feature extraction, the capsule network [21]
is introduced to process the features further. The capsule network extracts the structural
features of objectives based on the capsule unit. The traditional capsule network is shown
in Figure 2. The fundamental structure of the capsule network includes convolution layer,
initial capsule layer, convolution capsule layer, and fully connected layer. Different from
the traditional CNN, the feature vector vi of objective replaces the scalar feature. The
“prediction vectors” ûj|i from the capsules is obtained by Equation (1):

ûj|i = Wijui (1)

where Wij is the weight matrix of a certain capsule layer. i denotes the vector index of input
capsules layer, and j|i denotes the capsules index of PrimaryCapsules j corresponding to
vector i.
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Figure 2. Overview of the traditional capsule network, where Ft−1 is input feature, and Ft is output
vector. It is used for spatial structure extraction.

Then, the high level feature ûj|i is processed by Equation (2) to realize the dynamic
routing of features:

sj = ∑
i

cijûj|i (2)

where the parameter cij indicates the routing probability from capsule i of L layer to capsule
j of L + 1. The computational formula of routing probability is represented by Equation (3):

cij =
exp(bij)

∑j exp(bij)
(3)

where bij is the prior probability from capsule i to capsule j, which is iteratively updated in
the model training, and the initial value is 0.

Then, the parameter sj is processed by the squashing function (Equation (4)) to obtain
the L + 1 layer capsule:

vj =
||sj||2

1 + ||sj||2
sj

||sj||
(4)

Since capsule network allows multiple classifications to co-exist, the traditional cross-
entropy loss can not be used directly; an alternative is the margin loss commonly used in
SVM. The capsule mechanism is used at the end of EnCaps, and the use of margin loss is
also a way to maintain the performance of the model. It can be expressed as Equation (5):

Lc = Tcmax
(
0, m+ − ||vc||

)2
+ λ(1− Tc)max

(
0, ||vc|| −m−

)2 (5)

where c is a certain classification, Tc is the indicator for the classification (‘1’ indicates the
presence of class c, ‘0’ indicates the absence of class c), and m+ is the upper bound that is
predicting the existence of class c but not its true existence. m− is the lower bound that
is predicting that class c does not exist but does exist, and λ is the scale factor. If class c
is existing, ||vc|| will not be less than 0.9, if class c does not exist, ||vc|| will not be greater
than 0.1.

The input limitation of traditional capsule network is hardly used in clothing classifi-
cation because the size of input image is only 28× 28, and the input limitation of image
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size restrains the wide application of the capsule network. Thus, the image size of input
network is improved in the EnCaps network for larger image size. The larger image is
beneficial to obtain more feature information, which is useful for more accurate classifica-
tion. In our proposed network, the size of 224× 224 image is used, and the input size has
increased by 64 times.

2.2. Enhanced Feature Extraction

The original capsule network only has two convolution layers, which can not extract
the robust feature of objectives. In order to extract a more robust image feature, the
enhanced feature extraction model is proposed with a deeper convolution network as
shown in Figure 3.
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Figure 3. Overview of the enhanced feature extraction model, where Ft−1 is the input feature, Ft is
the middle feature, and Ft+1 is the output feature of the enhanced feature extraction model.

In the proposed model, the deeper network structure and attention mechanism are
used to extract robust features. The extracted 25× 25× 384 dimensional high-level feature
map is extracted with a channel attention mechanism which ignores the irrelevant infor-
mation and focuses on the key information in the image. The enhanced operation can be
defined as:

Ft = Ft−1 · σ
(

W2δ
(

W1
( 1

H ×W

H

∑
i=1

W

∑
j=1

Ft−1(i, j)
)))

(6)

Ft+1 = W1×3
3

(
W3×1

3
(

M2(Ft)
))

(7)

where H denotes the height of the feature map, W denotes the width of the feature map,
W. is the convolution operation, σ and δ are different activation functions, and M. is the
max-pooling operation.

After a series of attentional enhancement operations, we reduce the size of the feature
map from 25 × 25 × 384 to a one-dimensional vector of 1 × 1 × 256, and the detailed
structure of stem module is shown in Table 1.

2.3. Parameter Optimization

In the early stage of feature extraction, the model is asked to use a more lightweight
decoding network to extract more advanced features. In order to extract robust features
with low computational cost, we use 1× 3 and 3× 1 convolution kernels to replace the
3× 3 convolution kernel. It allows for a significant reduction in the size of the model
without losing any information.

We refer to the stem module in the Inception network and improve it with three
objectives: (1) to down-sample the images massively in the stem phase to reduce the
aspect ratio, (2) to reduce the number of parameters in the feature map to make them more
semantically informative, and (3) to reduce the size of the overall framework of stem to
make the model more lightweight.
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Table 1. The network structure of enhanced feature extraction model. ‘k’ represents ‘kernel’, ‘s’
represents ‘stride’, and ‘p’ represents ‘padding’.

Layer EnCaps-Reduce Shape

Input / N×384×25×25
SE_layer N×384×25×25

Conv_5+ReLU+BN Conv-384(k:1,3;s:1,1;p:0,0) N×384×25×25
Conv-384(k:3,1;s:1,1;p:0,0) N×384×25×25

Max(k:2,2;s:2,2;p:1,1) N×384×12×12
SE_layer N×384×12×12

Conv_6+ReLU+BN Conv-512(k:1,3;s:1,1;p:1,1) N×512×12×12
Conv-512(k:3,1;s:1,1;p:1,1) N×512×12×12

Max(k:2,2;s:2,2;p:1,1) N×512×6×6
SE_layer N×512×6×6

Conv_7+ReLU+BN Conv-512(k:1,3;s:1,1;p:1,1) N×512×4×4
Conv-512(k:3,1;s:1,1;p:1,1) N×512×4×4

Max(k:2,2;s:2,2;p:1,1) N×512×2×2
SE_layer N×512×2×2

Conv_8+ReLU+BN Conv-256(k:1,2;s:1,1;p:1,1) N×256×1×1
Conv-256(k:2,1;s:1,1;p:1,1) N×256×1×1

output N×256

We use an asymmetric convolutional approach to optimize our network, which de-
composes the 3× 3 convolutional kernel into 3× 1 and 1× 3, and it allows the number of
parameters to drop by 33% relatively while maintaining the same accuracy rate, as shown
in Figure 4 in detail.

ReLU

ReLU

3×3

3×3

1×3

1×3

3
×

1

3
×

1

Figure 4. The details of asymmetric structural convolution operations.

As shown in Figure 5, we set up three consecutive 3× 3 down-sampling layers and one
fused down-sampling layer to convolve the image size from 224× 224× 3 to 53× 53× 160.
The extracted features are further fused by three sets of asymmetric convolutional parallel
structures to deepen the channel length to 51× 51× 352, and finally the dimensionality
of feature map is increased to 25× 25× 384 via a continuous down-sampling layer and
one fused down-sampling layer, and the detailed structure of the stem module is shown
in Table 2.
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Figure 5. Overview of the Inception mechanism, which belongs to the parameter optimization. C denotes 2D convolution,
MP denotes Maxpool, BN denotes batch normalization, and LK ReLU denotes Leaky ReLU.

Table 2. The network structure of enhanced feature extraction model. ‘k’ represents ‘kernel’, ‘s’ represents ‘stride’, and ‘p’
represents ‘padding’.

Layer EnCaps-Stem Shape

Input / N×3×224×224
Conv_1+ReLU+BN Conv-32(k:3,3;s:2,2;p:1,1) N×32×111×111
Conv_2+ReLU+BN Conv-32(k:3,3;s:1,1;p:1,1) N×32×109×109
Conv_3+ReLU+BN Conv-64(k:3,3;s:1,1;p:1,1) N×64×107×107

Conv-96(k:3,3;s:2,2;p:1,1) Max(k:3,3;s:2,2;p:1,1) \
Concatenate N×160×53×53

Conv-64(k:1,3;s:1,1;p:0,0) \Conv-64(k:3,1;s:1,1;p:0,0)
Conv-64(k:1,3;s:1,1;p:0,0)
Conv-64(k:3,1;s:1,1;p:0,0) Conv-64(k:1,1;s:1,1;p:0,0)
Conv-64(k:1,3;s:1,1;p:0,0) Conv-96(k:3,1;s:1,1;p:1,1) Max(k:3,3;s:1,1;p:1,1)
Conv-64(k:3,1;s:1,1;p:0,0) Conv-96(k:1,3;s:1,1;p:1,1)
Conv-96(k:1,3;s:1,1;p:1,1)
Conv-96(k:3,1;s:1,1;p:1,1)

Concatenate N×352×51×51
Conv_4+ReLU+BN Conv-192(k:1,1;s:1,1;p:1,1) N×352×51×51

Conv-96(k:3,3;s:2,2;p:1,1) Max(k:3,3;s:2,2;p:1,1) \
output Concatenate N×384×25×25

3. Experiments and Results
3.1. Dataset

The dataset used for experiments is one part of the DeepFashion dataset [28], and it
consists of 5000 images in 10 categories: blouse, cardigan, dress, hoodie, jeans, romper,
short, skirt, tank, and tee, and each category contains 500 images of the corresponding
clothing. The resolution of image in the dataset is 224× 224. 4500 images of the whole
dataset is used for training and another 500 images is used for testing. In addition, in
order to enhance the generalization ability and robustness of the model, data enhancement
operations including folding, random rotation, and random cropping are performed on the
training samples. Figure 6 shows operations corresponding to data augmentation, where
(b) represents flipping the original image from top to bottom or left to right, (c) represents
rotating the original image at arbitrary angles, the excess area is clipped, and the missing
area is filled with white pixels, and (d) represents cropping the original image randomly,
and the missing area is filled with white pixels.
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(a) Original Image (b) Folding (c) Random Rotation (d) Random Cropping

Figure 6. Data augmentation.

3.2. Evaluation Criterion

Accuracy, precision, recall, and F1 evaluate the performance of the classification model,
which can be expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 =
2 · TP

2 · TP + FP + FN
(11)

where TP, FN, FP, and TN denote true positive, false negative, false positive, and true
negative, respectively.

3.3. Experiment Platform Setting

The experiment is conducted on the Ubuntu 16.04 system with the Python language
and the tensorflow framework. The hardware environment is equipped with Intel Gold
5118 CPU with 128 GB RAM and 32 GB Nvidia Tesla V100 GPU. By default, the Adam
optimizer with β1 = 0.5 and β2 = 0.999 are used to train the model with 100 epochs, and
the initial learning rate is set to 0.0003. The learning rate is automatically decayed by a
factor of 0.1 when the validation loss is not significantly reduced.

3.4. The Comparison with Other Methods

The accuracy of convolutional neural network in image classification still depends on
the number of samples, the data augmentation strategy, and so on. The problem of how to
obtain the same performance with insufficient data annotation is also a concern. With less
reliance on supervised learning and priori human annotation information, it is our goal to
achieve better performance with smaller amounts of data. To demonstrate the superiority
of EnCaps for small sample detection, we verify the accuracy of the 10 networks as the
dataset is gradually incremented, as shown in Figure 7. The training set grows from 500 to
4500, the accuracy of EnCaps on the 500 validation set holds the leading value of 0.56 at
first, and, as the dataset is incremented, the accuracy on the validation set is consistently
higher than the rest of the networks, and maintains a very stable performance.
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Figure 7. With the decrease of the number of training sets, the accuracy of each network in the
verification set (500 pieces) is improved.

During the training, we use ablation experiments to verify the functions of attention
mechanism and advanced feature extraction mechanism, respectively. First, we perform a
validation of the validity of the channel attention module in the model. We examine the
validation set loss and the validation set accuracy of the model, respectively, during the
gradual increase of the attention module. As shown in Figure 8, as the attention module
increases from 0 to 4, the validation loss of the network decreases and reaches a minimum
that is 4. The validation accuracy increases and reaches a peak at the number of 4. As the
number increases from 4 to 9, the validation accuracy gets smaller first, some performance
is lost, and the validation loss bounces back, which in turn reduces the overall efficiency of
the model.
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Figure 8. The relationship between the number of attention modules and network performance.

To further investigate the role of each module, we examine the accuracy and loss
values on the validation set by removing the stem module, and the reduced module. There
are three cases in experiments: (1) removal of the stem module, (2) removal of the reduced
module, and (3) removal of the stem module and reduced module.
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As shown in Table 3, when we remove the stem module, the accuracy on the validation
set decreases from 0.842 to 0.682, and the validation loss value increases from 27.58 to 47.42.
It can be intuitively learned that the effect of the stem module on our network is not only
to reduce the amount of data, but also the contribution to the performance of the model by
extracting more advanced semantic features of the images. When we remove the reduced
module, the accuracy on the validation set drops from 0.842 to 0.778, and the validation loss
value increases from 27.58 to 43.10. It is clear that the reduced module plays a bridging role
in EnCaps, it performs further enhancement to the advanced feature of the stem module,
and it normalizes the enhanced feature so that it can be more logical to access the final
capsule module. The attention module in the reduced module succeeds in highlighting
the focus weights in the feature map, and it has a side reaction to the importance of the
stem module. When we remove both the stem and reduced modules, namely it indirectly
uses the capsule module, the accuracy on the validation set decreases from 0.842 to 0.628,
and the validation loss value increases from 27.58 to 52.76, and it demonstrates that the
importance of both modules in the overall module for classification performance. Without
these two modules, the number of network parameters and operations increases by a factor
of 0.3, and the efficiency is plummeted.

Table 3. Ablation experiments of EnCaps.

Validation Accuracy Validation Loss

w/o stem module 0.682 47.42
w/o reduced module 0.778 43.10
w/o stem & reduced module 0.628 52.76
EnCaps 0.842 27.58

Real 1 0

We compare our method with several stare-of-the-art methods including VGG [29],
GoogLeNet [30], ResNet [31], DenseNet [32], MobileNetV2 [33], and Capsule network [21].
The quantitative evaluation results are shown in Table 4. We use the validation set to
validate each network separately, the number of parameters, and the computational effort
of MobileNetV2 are minimal, but the corresponding accuracy is also reduced due to the
lack of computational effort. The accuracy of EnCaps, 0.842, is the highest of all the
networks. The accuracy of the second highest is ResNet, whose value is 0.820, but with
a higher number of parameters and operations than EnCaps. The accuracy of original
Capsule network is 0.628, which is much lower than all other networks, and the number of
parameters and operations is about 0.3 times higher than EnCaps network. In summary,
EnCaps is able to obtain very high detection results in the field of classification, especially
in clothing image classification, and maintains a lightweight model volume that remedies
the shortcomings of traditional capsule network in classification.

We use visualization to compare the computation, number of parameters, and valida-
tion accuracy among 10 types of model, as shown in Figure 9, where the horizontal axis
represents the MFLOPs (Million Floating-Point Operation Per Seconds) and the number of
trainable parameters respectively, and the vertical axis represents the validation accuracy.
By defining the graph, it can be seen that the graph is closer to the y-axis and further from
the x-axis, which indicates the higher performance of the model. It can be seen that the
EnCaps is at the highest point and relatively close to the y-axis, which means that our
model is at the best performance level with a lightweight module and high accuracy.
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Table 4. The comparison of calculation, parameter, and accuracy between different networks.

MFLOPs Trainable Params (M) Top-1 Acc.

VGG11 257.592715 491.36 0.792
VGG16 353.619785 674.52 0.75
VGG19 364.23662 694.78 0.762
GoogLeNet 11.953082 22.83 0.784
ResNet18 22.363325 42.65 0.82
ResNet50 47.057184 89.75 0.788
ResNet101 85.041593 162.2 0.782
DenseNet121 18.396804 26.57 0.796
MobileNetV2 4.468249 8.53 0.712
Capsule (28 × 28) 13.863176 26.11 0.628
EnCaps 10.019512 19.13 0.842

Real N/A N/A 1

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

����������
������������
������������
�����������	��	�
������

�
�
�
�
�
�
�
�

������

������
������
�����

���������
��������	
���������

(a)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

����������
������������
������������
�����������	��	�
������

�
�
�
�
�
�
�
�

���
���	����������

������
������
�����

���������
��������	
���������

(b)

Figure 9. The comparison of calculation, parameter, and accuracy between different networks. (a) the
comparison of MFLOPs; (b) the comparison of trainable parameters.

From the previous conclusions, it is clear that the performance of ResNet-18 is out-
standing among all 10 networks. Therefore, on the validation set, we examine the detection
results of 500 pieces of clothing images with EnCaps and ResNet-18, respectively, and draw
a confusion matrix that counts the number of detection results per image. As shown in
Figure 10, the x-coordinate represents the predicted label, the y-coordinate represents the
true label, and each square represents a count of the number of predicted results on the
true label. It can be seen that seven EnCaps tests have a number of correct detections above
40, with a relatively low false detection rate, while only five of the ResNet-18 tests have a
number of correct detections above 40, with a relatively high false detection rate. Some
clothing that has different local features of the clothing leads to different types of clothing,
and the ability of detected images at a fine granularity becomes a key basis for determining
whether the model has high performance. EnCaps has a high recognition accuracy rate for
the detection of different types of clothing, and it has a strong ability to screen fine-grained
information to realize the highly robust.
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Figure 10. Performance comparison between EnCaps and ResNet-18 on the validation set.

In order to further validate the ability of EnCaps network for classifying clothing, we
examine the accuracy, precision, recall, specificity, sensitivity, and F1 metrics of the model
on the validation set, as shown in Table 5, the metrics of EnCaps are at a relatively excellent
level, and it can be seen that our proposed EnCaps has a great advantage over other neural
networks both in terms of detection effectiveness and network volume.

Table 5. Performance of EnCaps in the accuracy, precision, recall, specificity, sensitivity, and F1 metrics.

Accuracy Precision Recall Specificity Sensitivity F1

Blouse 0.928 0.652 0.6 0.964 0.6 0.625
Jeans 0.991 0.925 0.98 0.991 0.98 0.951
Skirt 0.956 0.781 0.78 0.976 0.78 0.78

Cardigan 0.952 0.842 0.64 0.987 0.64 0.727
Dress 0.962 0.782 0.86 0.973 0.86 0.819
Short 0.978 0.882 0.9 0.987 0.9 0.891
Tee 0.962 0.816 0.8 0.98 0.8 0.808

Tank 0.968 0.815 0.88 0.978 0.88 0.846
Hoodie 0.948 0.731 0.76 0.969 0.76 0.745
Romper 0.984 0.904 0.94 0.989 0.94 0.922

According to the actual classification results of EnCaps, it demonstrates that EnCaps
has high performance in the experiments. We randomly build 10 different types of clothing,
test them individually, and obtain their classification results and the probability scores of
the first two classification results. As shown in Figure 11, for some clothing images with
only fine-grained distinctions, such as dress and romper, the EnCaps network extracts
spatial features of the distribution of pixels between them to make a clear comparison and
to be able to distinguish them. The proposed EnCaps network has the advanced feature
extraction capability of traditional convolutional neural networks and the spatial structure
perception capability of Capsule, so that our network is able to classify the indistinguishable
images well.
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BlousePredict Result:
Blouse(score=0.9987)

Cardigan(score=0.0008)

CardiganPredict Result:
Cardigan(score=0.9916)
Blouse(score=0.0053)

DressPredict Result:
Dress(score=0.9958)
Skirt(score=0.0035)

HoodiePredict Result:
Hoodie(score=0.9875)
Romper(score=0.0103)

JeansPredict Result:
Jeans(score=0.9841)
Short(score=0.0128)

RomperPredict Result:
Romper(score=0.9911)
Dress(score=0.0068)

ShortPredict Result:
Short(score=0.9895)
Jeans(score=0.0091)

SkirtPredict Result:
Skirt(score=0.9916)
Dress(score=0.0053)

TankPredict Result:
Tank(score=0.9976)

Blouse(score=0.0019)

TeePredict Result:
Tee(score=0.9968)

Tank(score=0.0030)

Figure 11. The effectiveness of the EnCaps network in detecting garment classification.

4. Discussion and Future Directions

To realize the more accurate classification of clothing images, we propose the En-
Caps network, which uses spatial structure extraction, enhanced feature extraction, and
parameter optimization to obtain spatial structure information and robust image feature of
clothing images. The EnCaps network not only achieves high accuracy of classification, but
also low parameter computation. The experimental results demonstrate the superiority of
EnCaps network, which is attributed to the deeper network and optimal network structure.
The accuracy and computational complexity are the key metrics that we should consider in
the network design. The traditional classification network does not consider the spatial
structure feature, and the feature may improve the classification accuracy based on the
previous works. Thus, the concept of capsule network is fused into the designed network.
The original capsule network is not suitable for clothing classification, and the proposed
network is designed anew according to the demand of clothing classification. The input of
image size is enlarged by modifying the input network, and more robust feature extraction
is obtained by the deeper and more efficient Encaps network. Comparison with traditional
capsule network, the network structure is designed anew, and the classification accuracy
and efficiency are remarkably improved.

The classical deep learning network focuses on the image feature but spatial loca-
tion relationship. The improvement of network depth and structure is usually consid-
ered to extract robust objective features, such as LeNet [34], AlexNet [35], VGGNet [29],
GoogleNet [30], ResNet [31], DenseNet [32], MobileNet [33], YOLO [36–39], and so on. The
improvement may be valid for the classical objection classification, such as pedestrian,
vehicle, animal, and other objectives with obvious image features. Clothing classification
belongs to the fine-grained classification which has inconspicuous features, and the clas-
sification methods based on image feature without spatial location feature for difficulty
achieving impressive results. Maybe the EnCaps network and other similar networks,
which can extract spatial location relationships, are the best choice for the fine-grained
classification task.

From the experimental results in the clothing classification, two phenomena are
worth discussing. First, the EnCaps network achieves the best performance in terms
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of top-1 accuracy among VGGNet, GoogleNet, ResNet, DenseNet, MobileNet, and the
traditional Capsule network. Generally, the more complex and deeper network may
obtain better performance, but EnCaps, which has the lowest computational cost besides
MobileNet, which is a lightweight network for mobile devices, obtains the best accuracy.
The phenomenon may demonstrate that the spatial location information plays an important
part in the procedure of classification. Second, the EnCaps network obtains the best
accuracy among all compared methods with a gradually increasing training set from
beginning to end. The larger training set is used, and the more accurate performance
will be achieved in general. In our experiment, the recognition model is trained by 500,
1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and 5000 samples, respectively. The EnCaps
network obtains the best performance without exception, which may demonstrate that the
spatial location information can boost the efficiency of training models with a small set
of samples.

The development of artificial intelligent technology will change the nature of the
clothing industry. In the future, more and more intelligent applications will be used for
clothing. A system may identify your current clothing and recommend your favorite
clothing. Clothing image classification is the fundamental technology in more complex
applications, such as evaluation of clothing compatibility, clothing recommendation, and
fashion trend prediction. Clothing image classification will be widely applied in the future
clothing industry, and it may improve efficiency and convenience of clothing applica-
tions. The fine-grained classification method should be further studied for improving
the accuracy.

5. Conclusions

A novel EnCaps network is proposed for clothing image classification. The proposed
network adopts three strategies to obtain the spatial structure feature and robust image
feature: (1) the spatial structure extraction model is proposed to obtain the spatial structure
feature of clothing based on the improved capsule network, (2) enhanced feature extraction
model is designed to obtain the robust image feature based on the deeper network structure
and attention mechanism, and (3) the parameter optimization is used in the EnCaps
network based on the inception mechanism. Experimental results indicate that the EnCaps
network achieves the best comprehensive performance among classical deep learning
networks, such as VGGNet, GoogleNet, ResNet, DenseNet, MobileNet, and the original
capsule network. The accurate clothing classification network may be used in the clothing
category marking, clothing commodity retrieval, and similar clothing recommendations.
In the future work, the more efficient and robust network should be researched to obtain
more accurate clothing classification.
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