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Abstract: The early detection and grade diagnosis of diabetic retinopathy (DR) are very important
for the avoidance of blindness, and using deep learning methods to automatically diagnose DR
has attracted great attention. However, the small amount of DR data limits its application. To
automatically learn the disease’s features and detect DR more accurately, we constructed a DR
grade diagnostic model. To realize the model, the authors performed the following steps: firstly,
we preprocess the DR images to solve the existing problems in an APTOS 2019 dataset, such as size
difference, information redundancy and the data imbalance. Secondly, to extract more valid image
features, a new network named RA-EfficientNet is proposed, in which a residual attention (RA)
block is added to EfficientNet to extract more features and to solve the problem of small differences
between lesions. EfficientNet has been previously trained on the ImageNet dataset, based on transfer
learning technology, to overcome the small sample size problem of DR. Lastly, based on the extracted
features, two classifiers are designed, one is a 2-grade classifier and the other a 5-grade classifier.
The 2-grade classifier can diagnose DR, and the 5-grade classifier provides 5 grades of diagnosis
for DR, as follows: 0 for No DR, 1 for mild DR, 2 for moderate, 3 for severe and 4 for proliferative
DR. Experiments show that our proposed RA-EfficientNet can achieve better performance, with an
accuracy value of 98.36% and a kappa score of 96.72% in a 2-grade classification and an accuracy
value of 93.55% and a kappa score of 91.93% in a 5-grade classification. The results indicate that the
proposed model effectively improves DR detection efficiency and resolves the existing limitation of
manual feature extraction.
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1. Introduction

According to WHO statistics, the number of adults with diabetes in the world reached
463 million in 2019. This number is expected to increase significantly in the future, reaching
700 million by 2045. Diabetic retinopathy (DR) presents one of the most serious complica-
tions of diabetes. Visual impairment is irreversible in diabetic retinopathy, and presents
different pathological features at different stages, eventually causing eye damage and
leading to blindness. Therefore, the early screening and diagnosis of DR are conducive to
timely and effective treatment of diabetic patients.

Diabetic retinopathy is the most evident symptom of diabetes, which is characterized
by microaneurysms, exudates, new blood vessel formation, hemorrhage, etc. Generally, DR
can be divided into two stages, non-proliferative and proliferative retinopathy. The non-
proliferative stage can be further classified as mild, moderate or severe. The mild stage is the
early stage with small bleeding spots or small microhemangiomas. The moderate stage is
subsequent to the mild stage, during which some yellowish-white punctate hard exudates
may be examined. The severe stage is the last stage of non-proliferative retinopathy,
accompanied by white, cotton-like, soft exudate. During the second DR stage, proliferative
retinopathy, retinal damage will stimulate new blood vessel proliferation, which will
further cause massive bleeding in the retina and vitreous body, leading to severe loss of
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vision or even complete blindness. Since the characteristics of diabetic retinopathy are
complex and diverse, finding the corresponding features of the disease is a challenge.

At present, in clinical practice, doctors diagnose DR using fundus photograph, which
is still a time-consuming artificial method. However, the increasing number of DR patients
and the scarcity of high-level ophthalmology experts will likely result in a missed diagnosis,
misdiagnosis alongside other problems. Computer aided diagnosis (CAD) does not present
the problem of manual diagnosis, which greatly reduces the workload and the time spent
by doctors in diagnosing diseases, and provides high accuracy. Recently, deep learning has
led to great progress and made valuable research and application contributions in the field
of CAD analysis. A Convolution Neural Network (CNN) is most effective in the field of
computer vision for its excellent performance in image classification tasks. In recent years,
scholars have proposed multiple CNN algorithms, such as VGGNet [1], GoogLeNet [2]
and ResNet [3], however, as a routine operation in these works, they usually only scale one
of the three dimensions-depth, width and resolution, which often leads to poor accuracy
and efficiency. EfficientNet [4] demonstrates better performance by uniformly scaling
depth, width and resolution, and this algorithm provides a new research direction for the
subsequent development of CNN. The development of CNN has achieved revolutionized
progress in medical areas, such as retinal vascular segmentation [5], glaucoma screening [6],
cancer subtype classification [7] and so on. The application of these CNN architectures is
well suited for medical classification tasks, nevertheless, the problem of insufficient medical
data has emerged, which makes the model’s training challenging. Transfer learning [8] is
a technique which, to ensure that the network is well trained, transfers information from
the pre-trained dataset, which includes a huge number of images, to a new dataset. It is
an excellent tool for the task of making the network more efficient and stable based on
insufficient data.

Deep learning has become a research hotspot in the medical field, and its development
has effectively promoted the progress of DR research. Gargeya et al. [9] used ResNet and a
decision tree classifier to distinguish between sick and healthy images, and the AUC for
the Messidor dataset is up to 0.94. Chetoui et al. [10] used EfficientNet combined with
transfer learning to detect referable diabetic retinopathy (RDR) and vision-threatening DR
(VTDR), which obtained satisfying results of up to 0.98 AUC both for the APTOS 2019
dataset and EyePACS dataset. Rao et al. [11] employed pre-trained ResNet50 to achieve
96.59% accuracy for an APTOS 2019 dataset for the binary classification task, that is to
detect No-DR or DR. The above classification models performed well, however they are of
binary classification, meaning that it is unable to make an in-depth classification of specific
diseases. Therefore, it is necessary to further study the grade classification of DR. Shanthi
et al. [12], based on the Messidor dataset, designed a neural network to automatically
classify normal images, for stage 1, stage 2, and stage 3 of DR, with an accuracy up to 96%
for each grade. This algorithm realizes four classifications of DR, that can better reflect the
severity of DR than the use of two classifications. In recent years, the five classifications
of DR have attracted greater attention because they are able to better reflect the DR and
its severity levels. Dondeti et al. [13], based on the APTOS 2019 dataset, combined the
pre-training model NASNET with the T-SNE space to extract deep features, achieving an
accuracy rate of 77.90%. Bodapati et al. [14] proposed a composite deep neural network
of Xception and VGG16 with gated attention mechanism to automatically diagnose DR.
The accuracy of this model on the APTOS 2019 dataset was 82.54%. Majumder et al. [15]
combined the Xception model with a regression model to classify the five stages of DR,
achieving an accuracy of 82%, 86% for the EyePACS and APTOS 2019 datasets respectively.
Patel et al. [16] used the pre-trained MobileNetV2 to classify the DR of the APTOS 2019
dataset, and obtained an accuracy of 91%. With the development of deep learning, the
ability of a network to extract DR features has been enhanced, and the accuracy has been
improved to some extent. However, for clinical diagnosis, the accuracy of a DR severity
classification still deserves further improvement.
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From the above statements, we can see that, firstly, in the diagnosis of DR, deep
learning methods have received more attention for their improved performance; secondly,
the grade classification for different severity levels of DR is easier for doctors to interpret;
thirdly, the deep learning networks combined with transfer learning technology can provide
more accurate results, especially with regard to the latest algorithms. Therefore, a simple
and efficient network is required for a more accurate and effective diagnosis of DR of
different severities.

Based on the above analysis, we constructed a DR grade diagnostic model in this
paper. The steps performed for the construction of this model are summarized as follows:
firstly, to reduce the inclusion of redundant information and to make the APTOS 2019
dataset more suitable for the diagnosis model, pre-processing steps are adopted. Secondly,
to extract the features of DR images more accurately and efficiently, we propose the creation
of a new network named RA-EfficientNet for the feature extractor of the model, based on
the combination of EfficientNet and the residual attention block i.e., RA block. Finally,
according to classification tasks, we designed two classifiers, one of which is a 2-grade
classifier used for the identification of DR, and the other is a 5-grade classifier for the
diagnosis of DR with respect to severity levels.

The rest of the paper is organized as follows: Section 2 introduces the workflow of
our proposed DR diagnostic model, including data pre-processing, the structure of RA-
EfficientNet and the classifiers for two classification tasks. In Section 3, the experimental
process and the evaluation of the performance of different networks are illustrated. Finally,
the work of the paper is summarized in Section 4.

2. Methodology

The DR diagnostic model of this work is mainly constructed using the following three
steps: the pre-processing of input data, the network of feature extraction and classifiers.
The pipeline of the DR diagnostic model is shown in Figure 1.
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Figure 1. The pipeline of the DR diagnostic model.

2.1. Dataset

In this study, the classification experiments are conducted based on the APTOS 2019
dataset, downloaded from the kaggle website [17]. The dataset is provided by Aravind Eye
Hospital in India, and includes 3662 images of a high resolution with each sample attached,
diagnosed by highly trained doctors. According to the diagnosis, these images have been
divided into 5 grades from 0 to 4 to present the severity level of diabetic retinopathy,
where grade 0 includes 1805 normal images, indicating no diabetic retinopathy; grade 1,
includes 370 images, indicating mild no-proliferative diabetic retinopathy; grade 2 includes
999 images, indicating moderate no-proliferative; grade 3, which includes 193 images,
showing severe no-proliferative diabetic retinopathy, and grade 4 with 295 images of
proliferative diabetic retinopathy.

It is evident that the distribution of the 5 grades is severely uneven, which will be
further discussed below. Furthermore, Figure 2 shows the retinal images with grades
ranging from 0 to 4.
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2.2. Data Pre-Processing

To reduce the network’s over-fitting and enhance its learning ability, the dataset is
pre-processed, which mainly includes four sections:

As is shown in Figure 2, the black border of the fundus images is large, containing
no information regarding the lesion area. To reduce useless information in the images, the
black border is cropped, and all the images are resized to 1024 × 1024.

As previously mentioned, the distribution of the dataset is severely uneven, which is
shown in Figure 3. To manage this problem, we use data amplification techniques such
as rotation, flip, brightness and contrast adjustment to form a data set with each grade
containing 2000 samples.
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In order to facilitate convergence during network training, the range of original images
is scaled between [0, 1].

The dataset is divided into training sets and testing sets according to the ratio of 8:2,
whereby 80% of the data is used for training and the remaining 20% for testing.

2.3. Feature Extraction Network

This section presents the structure of a feature extraction network. Firstly, the image
data is input to the EfficientNet, which is pre-trained on the dataset of ImageNet by using
transfer learning technology. Secondly, following the EfficientNet, a new function module
named RA block is added, forming RA-EfficientNet. Lastly, the output of RA-EfficientNet is
sent to the classifiers. The structure of the feature extraction network is shown in Figure 4.
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2.3.1. Transfer Learning

Given that sufficient public datasets for the diagnosis of DR do not exist, it is difficult
to obtain a satisfactory result based on deep learning technology. To solve this problem,
transfer learning technology is adopted in our model, and its steps of implementation are
as follows: (1) Pre-training the network. To obtain the pre-trained network, the EfficientNet
is pre-trained on ImageNet, which is currently the largest image recognition dataset in the
world, with 1.2 million images of 1000 categories. Then the diabetes data is loaded into the
pre-trained EfficientNet. (2) Fine-tuning. The final step of the feature extraction backbone
is a fine-tuning stage, at which we build a new fully connected layer and use Adam as
optimizer with 0.001 learning rate.

2.3.2. EfficientNet

EfficientNet, an efficient and robust network developed by scaling three parameters
i.e., depth, width, and resolution, has been adopted in the model. The network has different
versions, ranging from B0 to B7, and in this paper we choose EfficientNetB0 as the feature
extractor. In this network, the size of the input image is set as 224 × 224, and the key
building block of the network is mobile inverted bottleneck convolution, MBConv, which
is an addition of the squeeze-and-excitation network (SENet) [18] structured on the basis
of an inverted residual block, introduced in MobileNetV2 [19].

Figure 5 is the schematic representation of EfficientNetB0. The network has 16 MB-
Conv blocks with the kernel of each MBConv block set as 3 × 3 or 5 × 5. From the figure
we can see that the input data, i.e., the fundus image is first placed in the network and then
processed through a 3 × 3 Conv2D layer, 16 MBConv layers and a 1 × 1 Conv2D layer in
sequence, and finally, the output of the network is sent to the layers of the next operation,
which is the RA block.
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In EfficientNet, a new compound scaling method is proposed—using a compound
coefficient ∅ to uniformly scale the network width, depth, and resolution, so as to improve
the accuracy of the model when the model parameters and calculation amount are maxi-
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mized. The maximum accuracy of the model is denoted as, and the specific formula is as
Equation (1).

N(d, w, r) =
⊙

F̂i
d× L̂i

(
X[r× Ĥi,r× Ŵi,w× Ĉi]

)
i = 1, 2, · · · , s

(1)

In Equation (1), N represents the classification network,
⊙

represents the convolu-
tion operation, i represents the number of convolutional layers, F̂j, L̂i, Ĥi, Ŵi, Ĉj are
predefined parameters in the baseline network. Meanwhile, w, d and r, are coefficients for
scaling the network width, depth and resolution, and their calculations are as follows:

depth: d = α∅ (2)

width: w = β∅ (3)

resolution: r = γ∅ (4)

α ≥ 1, β ≥ 1, γ ≥ 1

In order to obtain the three dimensional parameters that satisfy the Equation (1), the
composite parameter ∅ is used to optimize the depth, width and resolution of the network.
First, we fix ∅ = 1, and then the best values that satisfy the Equations (1)–(4) are found for α,
β, γ through a grid search. More specifically, we find that the best value for EfficientNetB0
is α = 1.2, β = 1.1, γ = 1.15, under a constraint of α·β2·γ2 ≈ 2. Then, we fix α, β, γ as
constants and scale up the baseline network with different ∅ using Equations (2)–(4), to
obtain EfficientNetB1 to B7.

2.3.3. RA Block

For the five classification tasks of DR, features of small differences such as the microa-
neurysms and exudation are critical for DR image classification. In the feature extraction,
the attention mechanism can be added to allow the network to independently select the
area that requires attention and can be learned, so the type of lesion can be assessed. In-
spired by ResNet [3] and GCNet [20], a new function module named RA block that can
further extract DR images’ features, with small differences, is designed, and is shown in
Figure 6.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 
Figure 6. The structure of the RA block. 

In Figure 6, the EfficientNet’s output 𝐹 ∈ 𝑅ு×ௐ× is the input of this block, which 
contains high-level semantic features of the fundus images, where H, W and C denote 
height, width and the number of channels of the feature maps respectively. Firstly, 𝐹 is 
placed into two different convolution operation paths, and two kinds of features are 
obtained, 𝐹௩ଵ ∈ 𝑅ு×ௐ×  and 𝐹௩ଶ ∈ 𝑅ு×ௐ× . 𝐹௩ଵ  is obtained by three 
convolution operations, which increase the cross-channel information interaction and 
reduces the necessary levels of computation. Then, it is output to the GC attention 
module. The GC attention module gains channel-wise attention feature maps 𝐹௧௧ ∈𝑅ு×ௐ×, which can be used to highlight the main lesion information and suppress less 
useful information. Finally, we add 𝐹௧௧ with 𝐹௩ଶ and obtain the output feature maps 𝐹௨௧ ∈ 𝑅ு×ௐ×. 

2.4. Classifiers 
There are two classifiers for our tasks, a 2-grade and a 5-grade classifier. The 2-grade 

classifier is used for DR identification tasks, and a 5-grade classifier is used for a severity 
level prediction of DR. The two classifiers are shown in Figure 7, and the detailed 
explanation is as below: 

The feature map of the fundus images is extracted by RA-EfficientNet, then the 
fine-tuning of the hyper-parameters is performed to build new fully connected layers, 
that are then matched with the new classifiers. The new and fully connected layers 
consist of a global average pooling (GAP) layer, BN layer and Softmax layer. The GAP 
layer reduces the spatial resolution to a single set of data and the nodes for the filters of 
the RA block is set as 128. The BN layer can enhance the network convergence and the 
last Softmax layer is used for different classification tasks of fundus images. 

Figure 6. The structure of the RA block.

In Figure 6, the EfficientNet’s output Fin ∈ RH×W×C is the input of this block, which
contains high-level semantic features of the fundus images, where H, W and C denote
height, width and the number of channels of the feature maps respectively. Firstly, Fin
is placed into two different convolution operation paths, and two kinds of features are
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obtained, Fconv1 ∈ RH×W×C and Fconv2 ∈ RH×W×C. Fconv1 is obtained by three convolution
operations, which increase the cross-channel information interaction and reduces the
necessary levels of computation. Then, it is output to the GC attention module. The GC
attention module gains channel-wise attention feature maps Fatt ∈ RH×W×C, which can be
used to highlight the main lesion information and suppress less useful information. Finally,
we add Fatt with Fconv2 and obtain the output feature maps Fout ∈ RH×W×C.

2.4. Classifiers

There are two classifiers for our tasks, a 2-grade and a 5-grade classifier. The 2-
grade classifier is used for DR identification tasks, and a 5-grade classifier is used for a
severity level prediction of DR. The two classifiers are shown in Figure 7, and the detailed
explanation is as below:
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The feature map of the fundus images is extracted by RA-EfficientNet, then the fine-
tuning of the hyper-parameters is performed to build new fully connected layers, that are
then matched with the new classifiers. The new and fully connected layers consist of a
global average pooling (GAP) layer, BN layer and Softmax layer. The GAP layer reduces
the spatial resolution to a single set of data and the nodes for the filters of the RA block is
set as 128. The BN layer can enhance the network convergence and the last Softmax layer
is used for different classification tasks of fundus images.

3. Experiments

In this section, experiments are detailed to present the efficiency of RA-EfficientNet,
which is the feature extraction network of our model. The work conducted in the experi-
mental phase is based on the Tensorflow framework.

3.1. Evaluation Indicators

To prove the effectiveness of our DR diagnose model, we use different state-of-the-art
CNN networks, such as InceptionResNetV2 [21], MobileNetV2 [19] and Xception [22]
for comparison. All these networks are combined with transfer learning respectively.
Moreover, to prove the advancement of our model in a 5 classification task, the results of
our model are compared with those of the models proposed in Section 1.

In order to present the results of the above diagnostic models, the following evaluation
methods are applied: firstly, we adopt evaluation metrics such as accuracy, precision, and
an F1 and kappa score for comparison. Secondly, the normalized confusion matrix, a matrix
containing the proportion of samples of any class labelled as any of the possible outputs, is
provided. Thirdly, the receiver operating characteristic (ROC) curve, as well as the area
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under the ROC (AUC) are computed to present the performance of the model classifying
task. These metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FN
(6)

F1 = 2× Precision× Recall
Precision + Recall

(7)

Kappa =
ObservedAccuracy− ExpectedAccuracy

1− ExpectedAccuracy
(8)

3.2. Experimental Results and Discussion

The experiment has two different tasks: task 1 is a 2-grade classification i.e., the
identification of DR and task 2 is a 5-grade classification i.e., grading the severity levels of
DR. In order to train the network better, the super parameters of the experiment are set as
the loss function of sparse _categorical_crossentropy, for which the batch size is 32, and
the number of epochs is 60. The results of these tasks are presented, and an analysis of the
results is detailed below.

3.2.1. Task 1: 2-Grade Classification

The goal of task 1 is to identify whether an image presents DR or No-DR. This is a
binary classification task, requiring samples in a dataset with two types of data, DR images
and No-DR images. According to this requirement, the APTOS 2019 dataset is divided
into two classes, with 1857 DR images in one class and 1805 No-DR images in the other.
Setting the ratio of the training set to the testing set as 8:2, i.e., 2929 images are used for
training and 733 images for testing. Based on the above setup, our diagnostic model and
comparison models are used for this task, and the results are presented below.

EfficientNet is comprised of eight versions, from B0 to B7. Table 1 summarizes
the default image input size, the number of parameters and defines the accuracy for
EfficientNet models in a binary classification.

Table 1. Comparison of different EfficientNet models.

Model Input Size Parameter Accuracy (%)

EfficientNetB0 224 × 224 4,057,253 97.95
EfficientNetB1 240 × 240 6,582,914 97.54
EfficientNetB2 260 × 260 7,777,012 96.04
EfficientNetB3 300 × 300 10,792,746 95.90
EfficientNetB4 380 × 380 17,684,570 94.13
EfficientNetB5 456 × 456 28,525,810 95.22
EfficientNetB6 528 × 528 40,973,969 98.22
EfficientNetB7 600 × 600 64,113,049 98.36

Table 1 presents the performance levels for all eight of the EfficientNet models over
image input size, the number of parameters and the accuracy, we can see that EfficientNetB7
achieves the highest accuracy, of 98.36% for a 2-grade classification task, but the input
size is too large, and the parameter is the highest. EfficientNetB0 achieves an accuracy
of 97.95%, with a small input size and lower parameter. Given the problem of hardware
resources, we chose EfficientNetB0 as the feature extractor with a 224 × 224 input size.

Table 2 presents the comparison in the binary classification, displaying the evaluation
metrics belonging to different CNN networks. From the table, we can see that EfficientNet
performs better than other models with an accuracy, precision, F1, and a kappa score of
97.95%, 97.96%, 97.95%, and 95.90% respectively.
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Table 2. Comparison of different CNN networks for Task 1.

Model Accuracy (%) Precision (%) F1 (%) Kappa (%)

InceptionResNetV2 97.54 97.55 97.54 95.08
Xception 97.81 97.85 97.81 95.63

MobileNetV2 97.68 97.68 97.68 95.36
EfficientNet 97.95 97.96 97.95 95.90

A comparison of the different CNN networks with an RA block for the binary classi-
fication is listed in Table 3. We can see from Table 3 that, as RA block can strengthen the
attention of the lesion areas, the networks with an RA block perform better, presenting
higher values of the evaluation indicators than the evaluation indicators in Table 2. Our
network, i.e., RA-EfficientNet, also listed in the table, obtains the best results. Compared
with EfficientNet in Table 2, RA-EfficientNet helps us improve the binary classification
performance by nearly 4.1%.

Table 3. Comparison of different CNN networks with RA block for Task 1.

Model Accuracy (%) Precision (%) F1 (%) Kappa (%)

InceptionResNetV2 + RA 97.95 97.95 97.95 95.90
Xception + RA 98.22 98.23 98.22 96.45

MobileNetV2 + RA 98.09 98.11 98.09 96.18
RA-EfficientNet 98.36 98.37 98.36 96.72

Table 4 presents the comparison of parameters of different networks for task 1. Com-
pared with other pre-trained networks, the parameter of EfficientNet is relatively small.
Although the parameter of MobileNetV2 is the smallest overall, it is not as accurate as
EfficientNet. Furthermore, RA-EfficientNet performs better than the rest, with its param-
eter only 5.2% higher than that of EfficientNet, which means the addition of computer
calculation is acceptable.

Table 4. Comparison of parameters for different CNN networks for Task 1.

Model Parameter

InceptionResNetV2 54,354,954
Xception 20,873,770

MobileNetV2 2,265,666
EfficientNet 4,057,253

RA-EfficientNet 4,272,070

The confusion matrix measures the classification accuracy of a classifier. Each column
is a predicted category, and each row is the true category of data. The diagonal line indicates
that its prediction is the same as the true value, and the more accurate the predictions
are, the darker the color. Figure 8 provides the confusion matrix of EfficientNet and RA-
EfficientNet for the 2-grade classification. Although there are 733 images available for
testing, we are able to observe that the total number predicted to be No-DR or DR is 716,
and the misclassification number is 17 in EfficientNet. When trained on RA-EfficientNet,
we observe that the total number of correctly predicted images is 722, demonstrating the
advantages of our diagnostic model.
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To better understand the representative of our RA-EfficientNet, we compare it with
existing methods in the literature [11,14]. In Table 5, we can see that the proposed method
achieves 98.36% accuracy, which performs significantly better than existing methods.

Table 5. Comparison with existing works for task 1 on APTOS 2019 dataset.

Method Accuracy (%) Precision (%) F1 (%)

Rao et al. [11] 96.59 97.00 96.59
Bodapati et al. [14] 97.82 98.00 98.00

RA-EfficientNet 98.36 98.37 98.36

3.2.2. Task 2: 5-Grade Classification

Task 2 is a series of experiments for a 5-grade classification, which can make doctors’
treatment more convenient and improve them by identifying the severity of DR. The
APTOS 2019 dataset already has five grades, which is required for the task. The proportion
in the training set and the testing set is the same as for task 1. Based on the 5-grades dataset,
our diagnostic model and comparison models are conducted, and the results are presented
below.

Table 6 lists the comparison of the same networks as task 1 on severity grades. The
results show that EfficientNet obtains the highest values compared with other networks in
accuracy, precision, F1 and kappa score, for which the value are 91.00%, 91.03%, 91.01%,
and 88.74%, respectively.

Table 6. Comparison of different CNN networks for Task 2.

Model Accuracy (%) Precision (%) F1 (%) Kappa (%)

InceptionResNetV2 85.55 85.65 85.56 81.93
Xception 90.80 90.73 90.75 88.49

MobileNetV2 90.55 90.70 90.57 88.18
EfficientNet 91.00 91.03 91.01 88.74
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Table 7 is the comparison of different CNN networks with RA block for task 2. From
this table, the same conclusion as in Table 3 can be drawn.

Table 7. Comparison of different CNN networks and RA block for Task 2.

Model Accuracy (%) Precision (%) F1 (%) Kappa (%)

InceptionResNetV2 + RA 91.55 91.66 91.57 89.43
Xception + RA 93.00 93.06 93.02 91.24

MobileNetV2 + RA 92.60 92.75 92.65 90.74
RA-EfficientNet 93.55 93.62 93.57 91.93

Figure 9 is the confusion matrix of EfficientNet and RA-EfficientNet for task 2. From
Figure 9a, we can see that the total number classified as No-DR, mild, moderate, severe
and proliferative DR using EfficientNet, is 402, 350, 317, 395, and 356, respectively. For
the moderate class, the rate of correct classification is lower than that in other severity
levels, because the features of retinal images are difficult to identify at this severity level.
From Figure 9b, we can see that the addition of RA significantly improves the classification
results in the moderate level, and strengthens the accuracy for other levels.
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The ROC curve of our RA-EfficientNet model is shown in Figure 10. The ROC curve
and AUC value represent how close the prediction is to a perfect classification, which is
presented at the top left corner of the ROC coordinate. The AUC value shows the area
under the ROC curve. The closer the value is to 1, the better the model performs. The figure
shows the AUC value of 100%, 96.00%, 97.00% and 95.00%, representing No-DR, mild,
severe and proliferative DR classes, respectively. Since a morphological variation of the
fundus images, for the moderate grades, affects the recognition of pathological structures,
the AUC of moderate DR is lower than the others with 92.00%.

Table 8 presents the comparison between our 5-grade diagnostic model and the five
existing models proposed in Section 1, all of which are based on APTOS 2019 dataset.
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Table 8. Comparison with existing works for DR severity grades on APTOS 2019 dataset.

Method Accuracy (%) Precision (%) F1 (%)

Dondeti et al. [13] 77.90 76.00 75.00
Bodapati et al. [14] 82.54 82.00 82.00

Majumder et al. [15] 86.00 77.00 73.00
Patel et al. [16] 91.00 NA NA

RA-EfficientNet 93.55 93.62 93.57
NA: represents not applicable.
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From Table 8, we can see that the RA-EfficientNet, used in this paper, achieves the
highest performance accuracy for DR severity grades predictions. The model’s accuracy
improves by 2.55% as compared with the most advanced model recently proposed by
Patel et al. [16].

To further prove the robustness of our RA-EfficientNet, we train and test the pro-
posed RA-EfficientNet on the EyePACS dataset [23], from which we selected a total of
11,756 images. Table 9 shows a comparison of our RA-EfficientNet model, including three
recent studies by Harihanth et al. [24], Majumder et al. [15] and He et al. [25] based on the
EyePACS dataset. The results clearly illustrate that RA-EfficientNet performs better for the
classification of the five stages of DR.

Table 9. Comparison with existing works for DR severity grades on EyePACS dataset.

Method Accuracy (%) Precision (%) F1 (%)

Harihanth et al. [24] 81.85 70.00 56.00
Majumder et al. [15] 82.00 69.00 66.00

He et al. [25] 86.18 NA NA
RA-EfficientNet 89.29 89.92 89.29

NA: represents not applicable.

4. Conclusions

In this paper, we focus on 2-grade classification and 5-grade classification, which can
be used for doctors’ diagnosis of DR, of which a 5-grade classification provides more accu-
rate grading information. We conduct experimental studies on many current deep learning
networks using transfer learning technology, including InceptionResNetV2, MobileNetV2,
Xception, and EfficientNet, among which EfficientNet achieves the best results because
of the balance of the depth, width and resolution, with a 97.95% and 91.00% accuracy for
a 2-grade and 5-grade classification task, respectively. To achieve more efficient results,
we adopted an RA block modeled on pre-trained CNN networks, and all the models with
an RA block performed better than the original networks. After a small increase in the



Appl. Sci. 2021, 11, 11035 13 of 14

parameters, the evaluation index of the two tasks reached 98.36% and 93.55% accuracy,
respectively, using RA-EfficientNet, which shows that our RA block better distinguishes be-
tween the lesion features of DR images. The results demonstrate that our diagnostic model
provides the best performance and a better evaluation value for the APTOS 2019 dataset,
compared to existing DR classification methods. Meanwhile, we verify the robustness of
the proposed RA-Efficientnet algorithm by training and evaluating an EyePACS dataset of
fundus images, through which we achieved good performance.

The advantages of this paper are as follows: (1) Two types of classification are realized
in the model, proving its feasibility both for the diagnosis of DR and its severity levels;
(2) Designs provided for the classification of DR, and the new network RA-EfficientNet
performs better than other networks in comparison, with a higher accuracy and requires
less computer-based calculations; (3) Combined with transfer learning, which can overcome
the problem of a small sample size of DR, RA-EfficientNet has obtained satisfactory results.
In the near future, we will further optimize the method to improve the accuracy of DR
detection and try to develop a more powerful DR diagnosis model to assist doctors in
clinical examinations.
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