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Abstract: Recent advances in deep learning have shown many successful stories in smart healthcare
applications with data-driven insight into improving clinical institutions’ quality of care. Excellent
deep learning models are heavily data-driven. The more data trained, the more robust and more
generalizable the performance of the deep learning model. However, pooling the medical data
into centralized storage to train a robust deep learning model faces privacy, ownership, and strict
regulation challenges. Federated learning resolves the previous challenges with a shared global
deep learning model using a central aggregator server. At the same time, patient data remain with
the local party, maintaining data anonymity and security. In this study, first, we provide a com-
prehensive, up-to-date review of research employing federated learning in healthcare applications.
Second, we evaluate a set of recent challenges from a data-centric perspective in federated learning,
such as data partitioning characteristics, data distributions, data protection mechanisms, and bench-
mark datasets. Finally, we point out several potential challenges and future research directions in
healthcare applications.

Keywords: federated learning; deep learning; artificial intelligence; healthcare; data privacy-preserving

1. Introduction

Deep learning technology has shown promising results in smart healthcare applications
to assist medical diagnosis and treatment based on clinical data. For instance, deep learning
assists cancer diagnosis and prediction [1–3], brain tumor segmentation and classification from
magnetic resonance image (MRI) [4–6], and text detection of medical laboratory reports [7,8].
Good performance of the deep learning model on smart healthcare applications highly
depends on a diverse and vast amount of training data [9]. These training data were obtained
from various clinical observations such as biomedical sensors, individual patients, clinical
institutions, hospitals, pharmaceutical industries, and health insurance companies. However,
acquiring the healthcare data required to develop a deep learning model may be challenging
due to fewer patients and pathologies with a low incidence rate available in a single healthcare
institution. Furthermore, Zech et al. [10] showed that deep learning models trained with
single institutional data are vulnerable to institutional data bias, as shown in Figure 1a. This
institutional data bias has been shown to have high accuracy when evaluated on the same
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clinical institution’s data. However, it does not work well when applied to data from a
different institution or even across departments within the same institution. Simultaneously,
training deep learning models in a centralized data lake [11], as depicted in Figure 1b, is
infeasible because of patient privacy and government regulations related to clinical data. Thus,
to increase both the diversity and quantity of training data is through the collaboration of
several healthcare institution to create a single deep learning model while maintaining patient
privacy and confidentially.

Figure 1. Single-institution and collaborative learning: (a) single-institution learning: machine learning model trained and
validated with single institution dataset; (b) collaborative learning: machine learning model trained and validated with
medical data collected from external institutions pooled in a central data lake.

Medical data are usually fragmented due to the complex nature of the medical system
and processes. For instance, each medical institution may be able to access the medical data
of their patients only. As protected health information (PHI), these medical data are only
disclosed strictly regulated by law to third parties. The process of accessing and analyzing
medical data is strictly regulated by laws and regulations, such as the Health Insurance
Portability and Accountability Act (HIPAA) [12]. In addition, with an increasing number
of data breaches at healthcare organizations, the prominence of data security and privacy
protection has become a global consensus. For instance, in the American Medical Collection
Agency (AMCA) recent healthcare data breach, the perpetrators have access to medical
data, financial information, and payment details, affecting 11.9 million patients [13]. As a
result, many countries around the globe are enacting stricter legislations to protect data
security. For example, the General Data Protection Regulation (GDPR) went into effect in
2018 by the European Union to ensure users’ privacy while protecting their data [14]. Under
this GDPR, business entities must clearly explain why they need user data access and offer
them the right to withdraw or delete their data. Business entities violating the regulation
would face severe penalties. Many similar actions have taken place in the United States
and Taiwan to protect individuals’ privacy and security. For instance, Taiwan’s Personal
Data Protection Act (PDPA) and Cyber Security Management Act, enacted in 2018, prohibit
online business entities from leaking or tampering with personal data details that they
obtain [15]. This regulation enforces the business activities following the obligations of
legal data protection. On the one hand, establishing these regulations will contribute to a
more civil society’s growth. On the other hand, these regulations introduce new challenges
to data transaction and collaboration procedures for multi-institutional collaboration to
train a deep learning model.

One recent approach to solving the problem of training a robust deep learning
model from federated medical data while preserving patient privacy is federated learning
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(FL) [16,17]. This method provides decentralized machine learning model training with-
out transmitting medical data through a coordinated central aggregate server. Medical
institutions, working as client nodes, train their deep learning models locally and then
periodically forward them to the aggregate server. The central server coordinates and
aggregates the local models from each node to create a global model, then distributes
the global model to all the other nodes. It is worth noting that the training data are kept
private to each node and never transmitted during the training process. Only the model’s
weight and parameters are transmitted, ensuring that medical data remain confidential. For
these reasons, FL mitigates many security concerns because it retains sensitive and private
data while enabling multiple medical institutions to work together. FL holds an excellent
promise in healthcare applications to improve medical services for both institutions and
patients—for instance, predict autism spectrum disorder [18], mortality and intensive care
unit (ICU) stay-time prediction [19], wearable healthcare devices [20,21], and brain tumor
segmentation [22]. However, FL algorithms face several challenges, mainly due to the
properties of medical data, such as:

• Data partitions: FL technique aims to solve the limited sample size problem for
training a secure collaborative machine learning model by aggregating a group of
clients’ data. However, choosing a data partition (horizontal or vertical) for FL is
essential to solve the limited sample size, limited sample features, or both.

• Data distribution (statistical challenge): In developing a machine learning model
in a centralized manner, the training data are centrally stored and balanced during
training. However, with federated learning, each client generated the training data
locally, remained decentralized, and cannot access the other clients’ data. Thus, data
distribution at one client can differ significantly from others, i.e., nonindependent and
identically distributed (non-IID), impacting the performance of the federated learning
model [23,24].

• Privacy and security: Data privacy and security are critical issues in medical appli-
cations. It is impossible to assume all of the clients in FL are reliable because the
number of clients expected to participate is potentially thousands or millions. Thus,
privacy-preserving mechanisms are needed to protect medical data from untrusted
clients or third-party attackers.

• Benchmark medical dataset: Medical dataset quantity and quality have often limited
the development of a robust solution to the FL algorithm. For various research
purposes, the dataset used in FL experiments could vary significantly. For instance,
some datasets focus on medical image classification and segmentation performance
while others focus on network communication performance. However, the benchmark
datasets have not already been compiled, specifically for medical datasets. Thus,
a trusted benchmark is necessary to evaluate the performance of the FL that uses
multiple medical data sources. Finally, we provide a comprehensive list of relevant
medical datasets for future research on this topic.

Due to the ever-changing development in FL, several valuable studies on FL have
been published in reputable publications from 2018 to 2021. Therefore, this paper aims
to provide a recent review of federated learning in the medical domain. Specifically, this
study describes the existing FL techniques related to solving the challenges inherent in
medical data together with future research direction on FL for healthcare applications.

This study differs from existing reviews. General descriptions of FL are given in [16,17],
while detailed discussions of recent challenges are presented in [25,26], security analy-
sis [27], and personalization techniques [28]. Resumes of FL applications in edge comput-
ing [29], wireless networks [30], and healthcare [31,32] also have been published. However,
none of the existing studies have explored the impact of medical data properties on the
performance of FL in great detail. Moreover, it is necessary to provide a comprehensive
overview related to benchmarking the FL in medical data. To fill the gap, this review
presents a survey of FL from the perspective of data properties including data partitions,
data distribution, data privacy, benchmarking, and its promising applications.
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After a brief introduction of FL in this study, the rest of this paper is structured as
follows. Section 2 describes the research method to conduct this study. Furthermore, in
Section 3, we provide the search results from existing publications. Section 4 discusses our
findings in data partition, data distribution properties, data privacy threats and protections,
benchmark medical dataset, and open challenges applied in federated learning for medical
applications. Finally, we have our paper’s conclusion in Section 5.

2. Research Method

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement [33] was the research method to guide this study. PRISMA technique is a widely
accepted standard for reporting evidence in systematic reviews that health-related organi-
zations and journals have adopted [34]. PRISMA approaches provide several advantages,
such as showcasing the review’s quality, allowing readers to assess the review’s strengths
and flaws, replicating review processes, and structuring and formatting the review using
PRISMA headings [33]. However, doing a systematic review and thoroughly publishing
it may take time. Additionally, it can soon become out of date, thus it must be updated
regularly to incorporate all newly published primary material since the project began.

2.1. Formulate Research Questions

We divide the research question into the following research questions.

- RQ1: What are the state-of-the-art FL methods in the healthcare area?
- RQ2: What are the FL methods proposed by scholars to solve challenging medical

applications from a data properties perspective?
- RQ3: What are the research gaps and potential future research directions of FL related

to medical applications?

The first research question (RQ1) aims to provide a comprehensive and systematic
overview of all articles related to FL. Furthermore, RQ1 aims to provide evidence that
the healthcare area can benefit by incorporating FL. Additionally, the second research
question’s (RQ2) motivation is to answer FL medical data settings challenges in FL such
as data partition, statistic heterogeneity, and security. Finally, the third research question
(RQ3) provides future directions for a researcher in the FL field primarily related to medical
data challenges.

2.2. Data Eligibility and Analysis of the Literature

The article selection procedure uses the PRISMA flow diagram [33], as shown in
Figure 2, which outlines papers’ search, inclusion, and exclusion. There are three steps
in the PRISMA flow diagram: identification, screening, and included. Firstly, in the
identification step, we performed a comprehensive literature review between 1 January
2018 and 31 June 2021, using PubMed, Web of Science (WoS), Association of Computing
Machinery Digital Library (ACM DL), Science Direct, and IEEEXplore digital libraries. We
start from 2018 because we are interested in further implementation in the medical area one
year after federated learning was proposed in 2017 [16]. The following search phrases were
used in general are “Federate learning,” and “Healthcare,” and “data privacy protection.”
Because each publication database has its own set of filters for search queries, the specific
query terms are specified in Appendix A Table A1. The initial result from digital libraries
showed 197 articles satisfying the search criteria. Then, 28 articles were removed due to
duplications, ending with 169 articles in the identification step.
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Figure 2. Study selection using PRISMA flow diagram method consisting of identification step,
screening step, and included step.

While systematic reviews offer various advantages, they are prone to biases that
obscure the study’s objective results and should be evaluated cautiously [35]. Several ap-
proaches were used to eliminate bias and ambiguity in the research selection process, such
as (i) conducting a dual review, (ii) defining clear and transparent inclusion and exclusion
criteria, and (iii) tracing the resulting flow diagram using the PRISMA flow diagram. Firstly,
two researchers independently analyzed the data and resolved inconsistencies through
group discussion (P. and K.T.P). Then, the abstracts and complete texts of all relevant
articles were carefully studied, and only those that fit the inclusion and exclusion criteria
were chosen. Researchers then confirmed the selected papers and resolved any conflicts; if
any disagreements persisted, third researchers were invited to discuss the matter, and the
findings were appraised (Z.-Y.S., C.-R.S., and W.J.). There was no dispute over the papers
included in this review.

This study should propose a good overview of FL for the healthcare sector and more
in-depth about establishing FL’s secure medical data mechanism. Thus, in the screening
step, we define the inclusion and exclusion criteria. We included publications that (i) use
FL to develop a model on a medical dataset, (ii) are published in well-known journals, and
(iii) are published in English. Exclusion criteria were used to exclude the published studies
that were not related, based on the following criteria: (i) articles that are not related to
FL, (ii) FL for nonmedical application or not using medical dataset in the experiment, (iii)
non-English language, (iv) review article, (v) proceeding or conference papers, (vi) arXiv
preprints, and (vii) book, book chapter, book section.

Numerous considerations exist against the inclusion of conference papers in this
study [36]. Firstly, conference proceedings usually contain various topics and much larger
set of publications such that identifying suitable conferences, accessing their abstracts, and
sifting through the frequent thousands of abstracts can be time-consuming and resource-
consuming. Secondly, conference proceedings may lack sufficient information for system-
atic reviewers to evaluate the methods, risk of bias, and outcomes of the studies submitted
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at the conference due to their brevity. Finally, the reliability of the results is also in question
especially in the healthcare area, partly because they are frequently preliminary or based
on limited investigations undertaken in a position to meet conference deadlines. Thus, we
do not include the conference papers in the inclusion criteria.

After applying inclusion and exclusion criteria from each study’s title, abstract, and
keywords, 56 articles were identified in the screening step. Next, 32 articles were excluded
in the reports assessed for eligibility step due to exclusion criteria from full text in the
article, ending with 24 articles. Finally, in the included step, 24 articles using FL in the
healthcare application were selected for further analysis, and their results are discussed in
this study. All of the 24 selected FL studies in the healthcare domain are listed in Table A2.

To provide a numerical description of the literature review, we gathered information
from each article as follows: (i) paper information, such as author, title, year, and keywords;
(ii) proposed methods, such as FL training algorithms and deep learning/machine learning
models; (iii) data properties, such as medical datasets, data distribution techniques and
challenges, data partition techniques, privacy attacks, and privacy mechanisms; and (iv)
experiment results and discussion.

3. Results

We compiled the data properties in FL for healthcare applications from 24 published
articles, as shown in Figure 3. The data scheme settings consisted of four layers: (i) data
partitions such as horizontal federated learning (HFL), vertical federated learning (VFL),
and federated transfer learning (FTL) (as discussed in Section 4.2); (ii) data distribution
characteristics (non-IID) such as quantity skew, label distribution skew, feature distribution
skew, and concept shift skew (as discussed in Section 4.3); (iii) possible data privacy attacks
such as model inversion and membership inference attacks (as discussed in Section 4.4.1); (iv)
additional data privacy protections such as differential privacy and homomorphic encryption
(as discussed in Section 4.4.2). Above the medical data properties is the application task,
where the task can be a classification or segmentation (as discussed in Section 4.6).

Figure 3. Medical data properties in federated learning for medical applications, consisting of data partitions, data
distribution (i.e., non-IID) characteristics, possible data privacy attacks, and data privacy protections.

Numerical description. The following observations were made based on numerical
analysis of the 24 included studies between 2018 and June 2021. Firstly, Figure 4a depicts the
number of FL studies published in the medical application by year of publication. Since 2020,
the number of articles published on FL has been continuously increasing. The number of
papers published in 2021 should continue to increase linearly throughout the year. Secondly,
Figure 4b shows the number of studies with data partition characteristics employed in FL.
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According to the figure, most published FL studies use horizontal federated learning (HFL) as
a medical data partition. Thirdly, Figure 4c shows the number of studies with various defense
methods to protect from data privacy attacks. We can see that differential privacy is the most
often employed type of data privacy protection. All of the possible data privacy protection
methods will be discussed in Section 4.4. Based on Figure 4d, quantity skew is typical when
dealing with multi-institutional medical data from FL experiments.

Figure 4. Numerical description of published articles in federated learning for medical applications. (a) The number of FL
studies published in medical application included in the review, 2018–2021; (b) number of data partition characteristics
employed in FL; (c) various data privacy algorithms employed in federated learning for the healthcare area; (d) number
of non-IID characteristics discussed in FL studies published in the medical domain; (e) various machine learning models
employed in federated learning for the healthcare area; (f) number of FL studies published in medical application included
in the systematic review.
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Machine learning algorithms. Additionally, we want to outline the machine learning
models employed in the studies and evaluate their proposed FL algorithms. The outlined
result of the machine learning model is shown in Figure 4e, where multilayer perceptron
(MLP) is the most commonly used model when predicting with tabular medical datasets
such as mortality prediction. Meanwhile, convolutional neural network (CNN) is the
frequent model architecture used for medical image datasets. Other models include
support vector machine (SVM) and autoencoder (AE) models. Additionally, we compile
the machine learning task based on the 24 published articles, as shown in Figure 4f. There
were 21 studies on classification tasks and three studies on segmentation tasks. Finally,
we summarized in Table 1 the strengths and weaknesses of machine learning algorithms
performing on federated learning.

Table 1. Summary of machine learning algorithms performing on federated learning, along with strengths and weaknesses.

ML
Algorithms Strength Weakness FL Study

AE

AE is mainly designed for dimensional
feature reduction and denoising medical

datasets via an unsupervised learning
method. AE aims to recreate effective

compact and effective feature
representation.

An autoencoder may exclude essential
information from a medical dataset’s

characteristics.
[19,21,37]

CNN
Performs well on medical image

classification tasks such as prediction of
COVID-19 using X-ray images

The training process of CNN that
contains multiple layers will be

time-consuming if the client in the FL
environment does not have powerful

computation resources.

[18,20,38–42]

GAN
Generate a synthetic sample of medical
data for limited quantity in experiments

datasets.

Training GAN is challenging due to the
unstable training process, no standard

metric evaluation, and numerous
trial-and-error experiments required for

effective outcomes.

[43,44]

LSTM
Performs well on time series or sequential
medical datasets, for instance, detection of

human activity recognition.

Due to the vanishing and exploding
gradient challenges, training LSTM is

difficult.
[45]

MLP
Good generalization performance on

tabular medical datasets such as mortality
prediction based on drug data

MLP is limited to learning elementary
problems. Additionally, it is

feature-scaling sensitive and involves
setting numerous hyperparameters such

as the number of hidden neurons and
layers.

[46–51]

SVM

SVM is capable of modeling nonlinear
decision boundaries and a variety of

kernels are available. Additionally, it is
highly resistant to overfitting, particularly

in high-dimensional space.

SVM is memory-consuming, more
difficult to modify because of critically

selecting the appropriate kernel, and does
not scale well to more extensive datasets.

[52]

U-Net

Achieve accurate results when performing
segmentation tasks on medical image

datasets, for example, when segmenting
brain tumors disease using brain magnetic

resonance medical images.

U-Net model development is
time-consuming because the network

must be operated independently for each
patch, and redundancy due to

overlapping patches. Additionally, a
tradeoff exists between the precision of

localization and the utilization of context.

[38,53]

AE: autoencoder; CNN: convolutional neural network; GA.: generative adversarial network; LSTM: long short-term memory; MLP:
multilayer perceptron; SVM: support vector machine.
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4. Discussion

RQ1: What are the state-of-the-art FL methods in the healthcare area?

4.1. Federated Learning Overview

FL is a technique to develop a robust quality shared global model with a central ag-
gregate server from isolated data among many different clients. In a healthcare application
scenario, assume there are K nodes where each node k holds its respective data Dk with nk
total number of samples. These nodes could be a healthcare wearable device, an internet
of health things (IoHT) sensor, or a medical institution data warehouse. The FL objective
is to minimize loss function given total data n = ∑K

k=1 nk and trainable machine learning
weight vectors with d parameters w ∈ Rd using Equation (1):

min
w∈Rd

F(w) =
K

∑
k=1

nk
n

Fk(w) where Fk(w) =
1
nk

∑
xi∈Dk

fi(w) (1)

where fi(w) = l(xi, yi; w) denotes the loss of the machine learning model made with parame-
ter w. For instance, Huang et al. [19] used the categorical cross-entropy loss function to update
the model parameters on the binary classification of patient mortality. In addition, Yang
et al. [53] used the soft dice loss function for the COVID-19 region segmentation application.

In 2016, the basic concept of data parallelism in FL namely federated averaging
(FedAvg) algorithm, was introduced by McMahan et al. [16]. As stated in the FedAvg
algorithm, every communication round t consists of four phases. Firstly, the aggregate
server initializes a global model with initial weights wg

t , then shared with a group of clients
St (medical nodes in our case), which was picked randomly with a fraction of C ∈ {0, 1}.
Secondly, each client k ∈ St, after received a global model wg

t from the server, the client
conducts local training steps with epoch E on minibatch b ∈ B of nk private data points.
The local model parameters are updated with local learning rate η and optimized by
minimizing loss function L(.). Thirdly, once client training is completed, the client k sends
back its local model wk

t+1 to the server. Finally, after receiving the local model wk
t+1 from

all selected groups of clients St, the aggregate server updates the global model wg
t+1 by

averaging of local model parameters using Equation (2):

wg
t+1 ←

K

∑
k=1

αk × wk
t+1 (2)

where αk is a weighting coefficient to indicate the relative influence of each node k on the
updating function in the global model, and K is the total nodes that participated in the
training process. Choosing the proper weighting coefficient αk in the averaging function
can help improve the global model’s performance (as discussed in Section 4.3.2 non-IID
mitigation methods). The entire FL procedure is described in Algorithm 1.
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Algorithm 1 FL with Federated Averaging (FedAvg) algorithm [16]

Input: T global round, C number of fractions for each training round, K number of clients, η

learning rate at a local client, E number of epochs at a local client, B local minibatch at a local client.
01: Initialize global model wg

t=0
02: for each round t = 1, 2, . . . , T do
03: m← max(C× K, 1)
04: St ← (m clients in a random order)
05: for each client k ∈ St do
06: wk

t+1 ← ClientUpdate
(

k, wg
t

)
07: wg

t+1 ← ∑K
k=1 αk × wk

t+1
08:

09: ClientUpdate
(

k, wg
t ) :

10: wk ← wg
t

11: for each local epoch e = 1, 2, . . . E do
12: for each local batch b ∈ B do
13: wk ← wk − η∇L(b; wk)
14: return local model wk

Output: wg
t+1 a global model at round t + 1

FL has differentiated from the standard collaborative learning in the following prop-
erties: (1) training is carried out across a vast number of many client nodes, and commu-
nication speed between the client nodes and the aggregate server is slow; (2) the central
aggregate server does not have a control to individual nodes or devices, and full partici-
pation of all nodes is unrealistic because there are inactivate devices that do not respond
to the server; (3) in real-world case scenario, data distribution is nonindependent and
identically distributed (non-IID). Non-IID data distribution means that each node has a
different distribution pattern from the other node. These properties are shown when the
first proposed of FL algorithm is applied for mobile keyboard prediction [16,17]. However,
these properties are different when FL is implemented in the healthcare area. First, the FL
training is carried out across a limited number of healthcare nodes from 2 to 100 as listed
in Table 2, and communication speed between healthcare participants and the aggregate
server is usually reliable. Second, the aggregate server coordinates the participant nodes in
the FL training scheme without exposing the participant’s local data to the network; thus,
data privacy and security can be guaranteed.

FL is divided into two categories based on the aggregation schema: (a) centralized
FL and (b) decentralized FL. As shown in Figure 5a, for centralized FL, the central server
selects a subset of nodes at the beginning of training and aggregates the model updates
received from client nodes. As nodes, the medical institutions periodically communicate
the local updates wk

t−1 with a central server to learn a global model wg
t . The central

server aggregates the updates and sends back the parameters of the updated global model.
However, if the centralized server fails, the whole FL environment will collapse. This
failure is one of the reasons that the decentralized FL was proposed. Specifically, all nodes
coordinate themselves and work together from node to node to develop a global model in
decentralized FL, as shown in Figure 5b.

RQ2: What are the FL methods proposed by scholars to solve challenging medical applica-
tions from a data properties perspective?

4.2. Data Partition Characteristics

This section discusses FL based on the healthcare data partition characteristics. Since
FL uses data kept in various medical institutions, it is frequently presented in a feature
matrix. Let matrix Dk denote medical data held by the medical institution k. Notably, a
row in the matrix represents a patient index denoted by I , a column represents a patient
features diagnosis denoted by X , and some data may contain a label data Y . The complete
training medical datasetDk in a medical institution k is denoted by (Ik, Xk, Yk). Thus, data
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partition in FL can be divided into horizontal federated learning (HFL), vertical federated
learning (VFL), and federated transfer learning (FTL) [26].

Figure 5. Federated learning framework for healthcare application based on aggregation schema. (a) Centralized FL:
the central server selects the nodes, aggregates the updates, and sends back the updated global model parameters;
(b) decentralized FL: to develop a global model, there is no central server to orchestrate all nodes.

4.2.1. Horizontal Federated Learning (HFL)

The horizontal federated learning (HFL) data partition, shown in Figure 6, is rec-
ommended in the case of limited sample size variability when developing a model. In
this data partition setting, the nodes could be different health institutions or health data
application providers. The HFL aims to develop a global model by integrating patients’
sample data from different institutions without affecting patient privacy. Each node shares
different patients’ index I but has the same features X and labels Y information [26]. HFL
is denoted as:

Xj = Xk, Yj = Yk, Ij 6= Ik, ∀Dj, Dk, j 6= k (3)

where Di represents the dataset held by client i. For instance, two healthcare providers of
the same business located in different countries would like to develop an AI model. User
features of these two healthcare providers will mostly be the same because both operate
the same business. However, the patient samples held by the two healthcare providers
are different due to geographic locations. In this regard, we can use HFL to increase the
total training sample by aggregating both of the healthcare providers’ user samples in a
privacy-preserving manner to enhance the model’s performance. Therefore, the HFL data
partition resolves the lack of sample size in data training because it combines all healthcare
institutions’ sample data.
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Figure 6. The typical medical data partitions scenario for horizontal federated learning (HFL). Each node is a medical
institution data silo or wearable medical device. They share the same feature of medical diagnosis Xj = Xk but have
different patients index Ij 6= Ik.

HFL data partition is quite common in FL applied for medical applications. More than
half of FL studies on medical applications implemented horizontal medical data partition in
their experiment [18,19,21,37,39–49,51,52,54,55]. Unlike FL applied for nonmedical applica-
tions where training is carried out across many nodes, FL studies in medical applications only
handle limited nodes from 2 to 100, as listed in Table 2. For instance, Li et al. [18] experimented
with four medical institutions in different places for the autism spectrum disorder (ASD)
prediction scenario. Each medical party shares the same user features generated by medical
equipment and combines all patient samples from four medical nodes.

4.2.2. Vertical Federated Learning (VFL)

Data partition in vertical federated learning (VFL) is depicted in Figure 7. In this data
partition setting, two nodes shared the same users’ profile but different features information.
The nodes could be different health institutions or health data application providers. VFL
aims to develop a global model by integrating patient features from different institutions
without directly sharing patient data. Each node shares different patients’ features X and
labels Y information but has the same sample data I [26]. VFL can be denoted as:

Xj 6= Xk, Yj 6= Yk, Ij = Ik, ∀Dj, Dk, j 6= k (4)
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Figure 7. The typical medical data partitions scenario for vertical federated learning (VFL). Each node can be a different
medical institution and application. They share the same patients’ index Ij = Ik but have different features of medical
diagnosis Xj 6= Xk.

For example, two distinct healthcare organizations exist in the same region: one
hospital and one health insurance company. Users of these two healthcare organizations
may mostly be the same because they are the region’s residents. However, the user features
may not have anything in common because healthcare insurance records users’ income
and medical reimbursement, while hospitals keep users’ medical treatment histories. VFL
data partition securely combines different features sets to enhance the performance of the
model. Thus, the VFL data partition increases feature dimension in data training.

In contrast to HFL, there are a few published VFL-based studies applied in medical
applications. One such an example was proposed by Cha et al. [56]. The authors developed
an autoencoder federated learning model for the vertically partitioned medical data. An
autoencoder model is used for transforming user features in each client into a latent dimen-
sion. The proposed method does not share any raw medical data but latent dimensions as
secure perturbed data. After receiving the clients’ latent dimensions, the aggregate server
concatenates all latent dimensions for training the global model. However, this approach
is prone to reverse-engineering, which could discover the original medical data from the
latent dimensions. In addition, the proposed method needs all the clients to perform data
alignment, which means the user data has the same row indices in all data silos (first row
data on clients k must be the same as client j).

4.2.3. Federated Transfer Learning (FTL)

Unlike the data configurations in HFL and VFL, data partition in federated transfer
learning (FTL) considers the situation of multiple nodes shared neither the same users’
profile nor features information, as shown in Figure 8. The main issue in this data partition
configuration is that one node lacks labeled data. The nodes could be different health
institutions or health data application providers located in different regions. Furthermore,
each node shared different patients’ features X , labels Y , and sample data index I [26].
FTL can be denoted as:

Xj 6= Xk, Yj 6= Yk, Ij 6= Ik, ∀Dj, Dk, j 6= k (5)
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Figure 8. The typical medical data partitions scenario for federated transfer learning (FTL). One party is a medical institution,
while the other is a healthcare application located in a different region. They share neither the patients’ index Ij 6= Ik nor
features of medical diagnosis Xj 6= Xk.

For example, there are two distinct healthcare entities: one is a hospital in Taiwan,
while the other is in the United States. Due to the geographical limitations, the two
healthcare entities’ user groups have little overlap, and the data features of the two entities
datasets may slightly overlap. FTL addresses limited data sets and label samples in this
scenario, thus increasing the model’s performance while protecting user privacy.

The research in FTL is still in the early stages, and there is plenty of room for im-
provement. Chen et al. [20] proposed FedHealth assuming FTL data partition. FedHealth
method collects data from several users/organizations using FL then offers a personalized
model for each user/organization using transfer learning. First, the model learns to classify
human activity and then extends the task to Parkinson’s disease classification with transfer
learning. In this case, FTL developed a global model for disease prediction in one task and
then could be transferred to another task.

4.3. Data Distribution (Statistical Data Heterogeneity) Challenge

FL can solve the limited data quantity issue by combining data from each client
without directly sharing each client’s private data. However, FL also faces statistical data
heterogeneity challenges due to data distribution at each client. The data distributions at
each client are likely to be different, leading to poor global model performance [23,24]. Zhao
et al. [23] demonstrated that the data distributions might considerably decrease FL model
performance due to weight divergence induced by different population distributions.
Within an FL environment, data distribution is frequently classified into IID and non-
IID. Non-IID can result from an imbalance in the amount of data quantity, features, or
labels. Non-IID is a common occurrence in the medical domain. Various medical tools
manufacturers, different calibrated techniques, and different medical data acquisition
techniques are the main reasons why each medical institution generates nonidentical data
distribution. For instance, Li et al. [18] described how each medical institution uses various
brain scanner manufacturers and instructions for each patient when taking autism brain
imaging data. Specifically, during data acquisition, one medical site instructs patients to
keep their eyes open while others instruct them to close their eyes during scanning. In the
following subsection, we describe the non-IID characteristics and mitigation methods.
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4.3.1. Non-IID Characteristics

The non-IID characteristics among healthcare nodes in the FL environment can take
on four different forms such as (1) quantity distribution skew, (2) label distribution skew,
(3) feature distribution skew, and (4) concept shift skew [24,25]. The non-IID characteristic
summarized from 24 published FL studies applied for medical application is listed in Table 2.

Quantity skew (imbalance data) characteristic. Quantity skew characteristic in non-
IID occurs when the class distribution of data instances I is not equal or far from equal
across nodes in the FL scheme. An illustration of quantity skew is shown in Figure 9.
In the IID scenario, the amount ratio of positive and negative instances is almost equal.
For instance, in node two, the negative and positive amount ratios are 45% and 55%,
respectively. In the non-IID case, the ratio of positive and negative instances is far from
equal. For example, in node one, positive instances are around 5%, while negative ones
are 95%. Krawczyk et al. [57] divided imbalance data categories into slight imbalance
and severe imbalance. A slight imbalance is when the majority class is uneven by a small
amount in the training dataset, and the ratio ranges from 1:4 up to 1:100. Severe imbalance
data distribution is when the data distribution of the majority class is uneven by a vast
amount in the training dataset, the ratio is more than 1:100. For example, the ratio of
imbalance data in fraud detection tasks is up to 1:1000.

Figure 9. Non-IID from quantity skew (i.e., imbalanced dataset) characteristic. (a) IID: the amount ratio of positive and
negative instances is equal or slightly equal; (b) non-IID: the ratio of positive and negative instances is far from equal. For
example, the positive and negative instances ratio is 5% and 95% in node one, respectively.
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Quantity skew characteristic exists in FL for medical application experiment datasets
such as [18,19,46,52,53]. Quantity skew (i.e., imbalanced dataset) is common in the med-
ical dataset since it is acquired from multiple healthcare institutions, and the number of
instances in a class is not equally distributed for each institution. For instance, larger
hospitals have more patient records than small clinics in rural areas. Huang et al. [19]
tried to resolve this challenge by developing an imbalanced eICU dataset to predict patient
mortality where the ratio is 5% and 95% for death and alive categories, respectively.

Label distribution skew characteristic. For label distribution skew, the distribution of
labels P(yi) varies between different nodes. In the medical case, larger hospitals generally
have more disease-related records than small clinics in rural areas. An illustration for label
distribution skew characteristic is shown in Figure 10. In the IID setting, the distribution
of labels Y is the same across all nodes. However, in the non-IID setting, the distribution
of labels Y varies between each node. Specifically, there is a label yi that only exists in
one or several nodes in the FL environment. This label distribution skew characteristic
was initially demonstrated in FedAvg’s experiment [16]. Data samples with the same label
are divided into subsets, and each client is assigned to no more than two subsets with
distinct labels. Following FedAvg, this configuration is employed in published FL studies
for medical applications [38].

Figure 10. Non-IID from label distribution skew (prior probability shift) characteristic. (a) IID: The distribution of labels Y
exists in all nodes; (b) non-IID: the distribution of labels Y varies between different nodes. For instance, node two does not
have the labels y2 and y3 while node one has all labels.

Feature distribution skew characteristic. In the feature distribution skew character-
istic, the distribution of features P(xi) varies between different nodes. An illustration
of features distribution skew is shown in Figure 11. In the case of IID, the distribution
of features X is the same across all nodes, while in the non-IID case, the distribution of
features X varies between each node. Specifically, there is a feature xi that only exists in
one or several nodes in the FL environment. For instance, node two does not have the x1
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and x2 features while other nodes have those features. Missing features or missing data is
a common occurrence in medical datasets. For instance, missing features can be caused by
failures of measurement on medical images. Measurement in medical image acquisition
requires the images to be in focus. Medical images that are not in focus or blur can cause
missing pixel values. The absence of some features in one or several nodes in the features
distribution skew can be a problem in the FL training process. Data imputation techniques
such as probability principal component analysis (PPCA) and multiple imputations using
chained equations (MICE) can be employed to mitigate the problem [58].

Figure 11. Non-IID from feature distribution skew characteristic. (a) IID case: the distribution of features X exists in all
nodes; (b) non-IID case: the distribution of features X varies between each node. For instance, node two does not have the
features x1 and x3 while the other nodes have those features.

Concept Shift Skew. There are two forms in the concept shift skew: the same label but
different features P(x|y) and the same features but different label P(y|x). An illustration of
concept shift skew is depicted in Figure 12. The same label but different features in non-IID
characteristic is related to vertical federated learning data partition where each node shares
the sample index I but have different features X , while in the case of the same features but
the different label in non-IID characteristics is not applicable in most FL studies.
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Figure 12. Non-IID from concept shift skew characteristic. (a) IID case; (b) non-IID same features but different label case;
(c) non-IID same label but different features case.

4.3.2. Non-IID Mitigation Methods

Different non-IID characteristics may need different mitigating measures. There
are three methods in the published FL for medical applications to improve the model
performance with the non-IID dataset: (1) balancing the training dataset, (2) tuning the
model hyperparameter in the FL algorithm, and (3) domain adaptation.

Balance the training dataset method. When dealing with quantity skew in non-IID
characteristics, researchers balance the quantity of minority and majority classes in the
training dataset with the synthetic data augmentation technique. It is important to note
that the balancing method in the FL environment should keep the data secure and private.
There are two methods to generate synthetic data augmentation in the FL environment: (1)
local data augmentation and (2) server data sharing.

(1) The healthcare node generates a synthetic sample to balance the training dataset in
the local data augmentation method. The synthetic minority oversampling technique
(SMOTE) [21,49], generative adversarial method (GAN) [44], or geometric transfor-
mation [40,48,53] is employed to generate a synthetic sample in an FL environment.
The SMOTE algorithm is an oversampling technique where the synthetic data are
generated for the minority class. For instance, Wu et al. [21] and Rajendran et al. [49]
employ SMOTE to balance the heavy imbalance in a fall detection and lung cancer
training dataset, respectively. Zhang et al. [44] proposed secure synthetic COVID-19
data by combining the GAN and differential privacy method. Feki et al. [40], Duo
et al. [48], and Yang et al. [53] applied geometric transformations such as random
flipping, random rotation, and random translation to balance the quantity of minority
class in their training dataset for the data augmentation method.

(2) The aggregate server securely shares a small portion of data to the healthcare node
in the server data sharing method. For instance, Zhao et al. [23] proposed a global
shared dataset partition to train non-IID data. The author demonstrated that by
simply sharing 5% of data, they could get a 30% boost accuracy score. However, it
raises model communication costs and is prone to data privacy attacks during the
data sharing process.
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Adaptive Hyperparameters Method. The adaptive hyperparameters method tries to
find the proper FL hyperparameters values for each node during the training process. Each
node can have different values of the FL hyperparameters, such as learning rate, loss score,
and weighting coefficient. There are two published adaptive hyperparameters methods
in the published FL studies for medical application: (1) weighting coefficient [16,19,20,45],
and (2) adaptive loss function [46].

(1) The weighting coefficient αk is a variable that indicates the relative influence of each
node k on the aggregation equation in Equation (2) to update the global model.
Initially, McMahan et al. [16] proposed FedAvg that the weighting coefficient is
αk =

nk
n as shown in Equation (6), where nk and n are the private data points hold by

node k and the total data from all nodes that participated during training, respectively.
In this case, a node with significant data points has a considerable effect on the
global model. This method worked well when dealing with label distribution skew
characteristics experimented in their studies [16,20].

wg
t+1 ←

K

∑
k=1

nk
n
× wk

t+1 (6)

In comparison, Chen et al. [20] proposed that the weighting coefficient is αk = 1
K ,

where K is the total nodes participating in FL as shown in Equation (7). In this scenario, the
author considered that each node would contribute equally to the aggregation function.

wg
t+1 ←

K

∑
k=1

1
K
× wk

t+1 (7)

Huang et al. [19] proposed that the weighting coefficient is αk =
mc

k
∑C

c=1 mc
k
, as shown in

Equation (8), where mc
k and ∑C

c=1 mc
k are denoted as the clusters size in medical node k and

the total number of clusters in community-based federated learning, respectively. In their
method, the algorithm considers the weighted average from the cluster patient community.

wg
t+1 ←

K

∑
k=1

mc
k

∑C
c=1 mc

k

× wk
t+1 (8)

Finally, Chen et al. [45] proposed that the weighting coefficient is αk =
nk
n ×( e

2
)−(t−timestampk), as shown in Equation (9), where e is the natural logarithm number to

denote the time effect and timestampk is the round in the newest updated local model.
Their proposed weighting coefficient considers not only the data samples held by node k
shown by the portion of data nk

n but also the time required to update the global model in
the local node.

wg
t+1 ←

K

∑
k=1

nk
n
×

( e
2

)−(t−timestampk)
× wk

t+1 (9)

(2) In addition, the adaptive loss function has the ability to change conditions based on
the loss score function. The loss function was used to measure the model performance.
The lower the loss score, the better a model was trained. Specifically, Huang et al. [46]
proposed the LoAdaBoost method based on loss function in the FL environment for
patient mortality prediction. In their proposed method, the adaptive loss function
boosts the training process adaptively from the weak learners node. On each training
step, the local node will send both the local model and training loss. If the training
loss score is more than the loss threshold, it will be retraining again. Otherwise, it will
send to the aggregate server.

Domain Adaptation Method. Domain adaptation (DA) is a subset of transfer learning
in which a model developed in one or more “source domains” is applied to a new (but
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related) “target domain.” DA is used when the source and target domains share the same
feature space but different data representations and distribution [59]. In comparison,
transfer learning is used when the target domain’s feature is different from the source
domain’s feature. The goal of DA is to minimize discrepancies in data distributions.
Li et al. [18] incorporated domain adaptation in their FL algorithm. The fundamental
assumption is that DA approaches can increase the overall performance of multiple nodes in
the FL environment with non-IID. Specifically, the author implemented a mixture of expert
(MoE) and adversarial domain adaptation methods. The MoE implements adaptation near
the model output layer, whereas the adversarial domain alignment implements adaptation
on the data knowledge representation level.

Table 2. Summary of different data partition methods, number of nodes, non-IID characteristics, and non-IID mitigation
employed in the published federated learning for healthcare applications.

Data
Partition Purpose Number of

Nodes
Non-IID

Characteristics Non-IID Mitigation Studies/Year

HFL

Combining all
samples from a

group of selected
nodes St to
increase the
sample size

10 Quantity Skew Balancing the training dataset Brismi et al., 2018 [52]

50 Quantity Skew Not Available Huang et al., 2019 [19]

20 Quantity Skew Balancing the training dataset Chen et al., 2020 [45]

90 Quantity Skew Adaptive Hyperparameters:
Adaptive Loss Function Huang et al., 2020 [46]

4 Quantity Skew
Domain Adaptation: Mixture

of Expert and Domain
Adversarial

Li et al., 2020 [18]

5 Quantity Skew Not Available Shao et al., 2020 [47]

10 Quantity Skew Not Available Sheller et al. [38]

5 Quantity Skew Balancing the training dataset:
SMOTE Algorithm Wu et al., 2020 [21]

10 Not Available Not Available Abdul Salam et al.,
2021 [54]

4 Quantity Skew Balancing the training dataset:
Geometric Transformation

Chhikara et al., 2021
[37]

8 Quantity Skew Not Available Cui et al., 2021 [39]

3 Quantity Skew Balancing the training dataset:
Geometric Transformation Dou et al., 2021 [48]

4 Quantity Skew Balancing the training dataset:
Geometric Transformation Feki et al., 2021 [40]

6 Quantity Skew Not Available Lee et al., 2021 [41]

10 Quantity Skew Balancing the training dataset Liu et al., 2021 [42]

2 Quantity Skew Balancing the training dataset:
SMOTE Algorithm Rajendran et al. [49]

3 Not Available Not Available Sarma et al. [50]

5 Quantity Skew Not Available Vaid et al., 2021 [55]

8 Not Available Not Available Xue et al., 2021 [51]

8 Not Available Not Available Yan et al., 2021 [43]

3 Quantity Skew Balancing the training dataset:
Geometric Transformation Yang et al., 2021 [53]

100 Label Distribution
Skew

Balancing the training dataset:
Generative Adversarial

Network (GAN)
Zhang et al., 2021 [44]
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Table 2. Cont.

Data
Partition Purpose Number of

Nodes
Non-IID

Characteristics Non-IID Mitigation Studies/Year

VFL

Combining all
features from a

group of selected
nodes St to

increase features
dimension

7 Not Available Not Available Cha et al., 2021 [56]

FTL

Improve the model
performance with
small data size and
unlabeled samples

7 Quantity Skew Balancing the training dataset Chen et al., 2020 [20]

HFL: horizontal federated learning; VFL: vertical federated learning; FTL: federated transfer learning.

4.4. Data Privacy Attacks and Protections

Data security and privacy are critical issues in medical applications. In FL, it is usual
for all nodes to calculate and upload their local model weights and parameters to an
aggregate server. The steps of uploading and processing the weights and parameters may
leak sensitive patient information contained in the medical data. The possible attacks
include model inversion and membership inference attacks, which may leak patient data to
an attacker. The common solutions for data privacy protection include differential privacy
and homomorphic encryption [21] based techniques, which can guarantee the security
of transferring the local weights and parameters in federated learning. In the following
subsection, we describe the possible data privacy attacks and protections in FL.

4.4.1. Data Privacy Attacks on Federated Learning

There are two types of possible data privacy attacks on federated learning. The first
attack is trying to recreate the input data, such as model inversion attack, and the second
attack is to discover the training data such as membership inference attack.

Model Inversion (MI) Attack. The model inversion attack is an attack method for
recreating data on which a machine learning model was trained [60]. In the case of federated
learning for healthcare applications, this can leak the sensitive patient data used in the
model’s training process. Fredrikson et al. [60] demonstrated the MI attack that, given
the machine learning model and several demographic data about a patient, an attacker
could generate the patient’s genetic markers. Specifically, the attack exploits the predicted
output probability confidence score from the machine learning model when predicting
the class given the features data. Given a machine model learning model as a function
ŷ = f (w; x1, . . . , xn) where ŷ, w, and X = {x1, x2, . . . , xn} are predicted probability class,
machine learning parameters, and features vector as an input, respectively. The model
inversion attack aims to exploit a sensitive feature, for instance feature x1, given some
information about the other features x2, . . . , xn and the predicted output probability ŷ. One
solution to overcome this threat is to use differential privacy mechanism which can be
incorporated into the learning process to protect the data from inversion attacks, such as
inferring model weights (discussed in Section 4.4.2).

Membership inference attack. Given a machine learning model f (w; x1, . . . , xn) and
some sample instances, the membership inference attack task tries to discover whether
the instance exists or not in the training dataset [61]. Membership inference attack poses
a significant privacy issue as the membership can expose a person’s private information.
For instance, determining a person’s presence in a hospital’s clinical trial training dataset
indicates that this patient was once a patient at the hospital. The patient and the hospi-
tal are the two key parties interested in defending against such membership inference
attacks. The patients consider their memberships confidential and do not wish for their
sensitive information to be made public. At the same time, the hospital does not want
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to be prosecuted for leaking patient data. Almadhoun et al. [62] demonstrated the first
membership inference attack in the medical area that infers the personal information of
the participants in a genomic dataset. Truex et al. [63] showed the threats of membership
inference attack when the attacker is a member in the FL environment. The member could
be the aggregation service or one of the client nodes. Their FL configuration is different
from the one discussed above. Instead of pooling the weights to construct a new global
model, each node trains their local model and contributes just the prediction probability
when inferring a new instance. The process of membership inference attack consists of three
steps [61]. Firstly, the attackers aim to develop a shadow dataset D′ that mimics the target
model training dataset D. Secondly, the attacker create a shadow model using the shadow
dataset D′ which mimics the target model behavior. In this step, the attacker observed the
shadow model behavior in response to instances known to have been provided during
training against those that were not. This behavior is utilized to create an attack dataset
that captures the different instances in the training data and data that have not been seen
previously. Finally, this attack dataset is used to construct a binary classifier that predicts
whether an instance was previously used in the target model output.

4.4.2. Data Privacy Protections for Federated Learning

There are two methods to protect data privacy from data leakage and attacker in
the FL environment: perturbation and encryption. The perturbation method preserves
private data and model privacy by adding a controlled random noise to the training data
or the machine learning model parameters during the training process. For instance,
differential privacy [18,43,44,55] and hybrid exchange parameters [39] algorithms are the
perturbations techniques implemented in the FL studies published in medical applications.
In comparison, the encryption method preserves private data and model privacy by
encrypting the parameters exchanged and the gradients in the aggregation process in the
FL environment, such as the homomorphic encryption algorithm [20,21,51].

Data Privacy Protections with Differential Privacy (DP) Method. Combining
a deep learning model with privacy protection is an emerging research focus. For
instance, many researchers use differential privacy (DP) methods to secure the deep
learning model. Inspired by the successfully implemented DP in centralized learning,
several researchers implemented DP in distributed training, especially in FL studies
for medical application [18,43,44,55]. Dwork et al. [64] introduced differential privacy as
a notion of privacy, ensuring that data analytics do not compromise privacy. It ensures
that the effect of an individual’s data on the model output is restricted. In other words,
differential privacy aims for an algorithm’s result to be nearly identical whether or not
the dataset contains data about a specific individual. This technique can prevent the
membership inference attack where the attacker tries to find if a specific individual is
in the training dataset. Differential privacy is achieved by adding controlled statistical
noise to the machine learning model’s input or output. Whereas the addition of noise
ensures that specific individual data contributions are hidden, it also provides insights
into the entire population without compromising privacy. The quantity of added noise is
called the privacy budget denoted by epsilon (ε). Gaussian and Laplace are two controlled
random noise mechanisms implemented in differential privacy for the FL studies in medical
applications. Differential privacy with Gaussian noise mechanism is a common technique
used in FL studies [18,43,44,55]. For instance, in their training dataset, Li et al. [18] and
Vaid et al. [55] incorporated the Gaussian noise in the model learning process to protect
from model inversion attacks. In addition, Zhang et al. [44] and Yan et al. [43] proposed a
differential privacy technique with a generative adversarial network (DPGAN) to generate
private data samples at a medical node in a federated environment. Specifically, Zhang
et al. [44] implemented controlled noise to the gradient value in the discriminator part
of their generated adversarial network (GAN) for image sampling in federated learning,
interfering with original data distribution. Their experiments showed that this method
could address the lack of data availability and the non-IID issue in FL while keeping patient
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data private. In addition, Zhang et al. [44] evaluated that the smaller the Gaussian noise as
part of DP will improve the model performance. Besides the Gaussian noise mechanism,
differential privacy with the Laplace noise mechanism is implemented by Li et al. [18] in
their studies. Li et al. [18] showed when the Laplace noise level was too high the deep
learning model performance failed to classification task.

Data Privacy Protection with Homomorphic Encryption Method. Homomorphic
encryption (HE) was used to ensure data privacy by encrypting the parameter exchanged
in the gradient aggregation process. There are many recent FL studies for healthcare
application that implemented HE during FL training [20,21,51]. Homomorphic encryption
was categorized into fully homomorphic encryption (FHE) and additively homomorphic
encryption (AHE) [65]. An FHE scheme is an encryption method that allows analytical
functions to be run directly on the encrypted data while producing the same encrypted
output as if the functions were executed in plaintext. In other words, if we perform an
add or multiply operation on the ciphertext, the decryption result is the same as the actual
result obtained by performing the same operation on the plaintext. In comparison, the AHE
is an encryption method that allows only one type of operation to be run directly on the
encrypted data and produces the same encrypted output as if the functions were executed
in plaintext. In other words, the AHE scheme is intended for use with specific applications
that require simple addition or multiplication operations. Formally, an encryption method
is called homomorphic over an operation “+” if it supports Equation (10):

E〈w1〉+ E〈w1〉 = E〈w1 + w2〉 ∀w1, w2 ∈W (10)

where E〈.〉 is the encryption method and W is the machine learning model parameters.
For instance, in the AHE scheme, for parameters w1 and w2, one can obtain E〈w1 + w2〉 by
using E〈w1〉 and E〈w2〉 without knowing w1 and w2 explicitly. Most of the FL studies for
healthcare applications leverage the AHE rather than the FHE since FHE is computationally
more expensive than AHE. For example, Chen et al. [20] and Wu et al. [21] incorporated the
AHE in their local model parameters sharing and gradient aggregation between healthcare
nodes and the aggregate server. Xue et al. [51] adopted two AHE schemes for a lightweight
privacy module to prevent the patient EMRs’ privacy leakage in the medical edge devices.

4.5. Benchmark Medical Dataset for Federated Learning

The dataset utilized in FL studies can vary depending on the task. For instance, some
datasets concentrate on the performance of classification tasks, while others concentrate
on segmentation tasks. There are datasets such as LEAF [66] and FedVision [67] for FL
algorithm benchmarking. However, there is no specific open public medical dataset for FL
algorithm benchmarking due to limited quantity, patient security, and privacy. Therefore,
a comprehensive list of relevant medical datasets is compiled from published FL papers
for future research on this topic. From 24 published FL papers in the healthcare area,
16 publications used the public dataset listed in Table 3. We exclude eight publications
from the list because these papers use their institution/private dataset.

Besides benchmark medical datasets for federated learning, numerous scientific re-
search communities and industries have developed various tools to accelerate the growth
of federated learning. We summarized in Table 4 the federated learning tools based on
data configuration challenges.



Appl. Sci. 2021, 11, 11191 24 of 35

Table 3. Summary of public medical datasets in recent FL studies applied for a medical area for algorithm benchmarking.

Dataset Type Dataset Name Description FL Study

H
ea

lt
hc

ar
e

da
ta

se
t

Medical Image
Classification

Autism Brain Imaging
Data Exchange (ABIDE)

I [68]

The ABIDE I is a consortium dataset openly sharing
1112 functional magnetic resonance imaging (fMRI)

dataset from 539 patients with autism spectrum
disorders.

[18]

Public COVID-19
Image Data Collection

[69]

The dataset consists of 108 healthy chest X-ray
images and 108 confirmed with COVID-19 chest

X-ray images taken from 76 patients.
[40,44,54]

Facial Emotion
Recognition (FER) 2013

[70]

The FER2013 dataset consists of 35,887 human facial
emotion images. The dataset is labeled into seven

emotions: neutral, anger, disgust, sadness, happiness,
surprise, and fear.

[37]

Medical Image
Segmentation

Brain Tumor Image
Segmentation

Benchmark (BraTS)
2017 and 2018 [71]

The BraTs 2017 were collected from 13 institutions
and consisted of 359 patients’ brain tumor scans. [38]

SPIE-AAPM
PROSTATEx dataset

[72]

The PROSTATEx dataset consists of 343 MRI prostate
image cancer from Siemens 3T MR scanners, the

MAGNETOM Trio, and Skyra.
[43,50]

Electronic Health
Record

MobiAct [73] The MobiAct dataset is human activity dataset taken
from 57 volunteers (42 men and 15 women). [21]

Human Activity
Recognition (HAR) [74]

The HAR dataset was collected from 30 volunteers.
Each subject performed different activities such as
walking, sitting, standing, and laying. There are

10,299 with 561 time-series features.

[20,45]

WESAD (Wearable
Stress and Affect
Detection) [75]

The WESAD is a dataset for wearable effect and
stress detection. Taken from 15 participants, the
WESAD consists of 12 features with 63,000,000

time-series samples.

[42]

Medical Information
Mart for Intensive Care

(MIMIC) III [76]

The MIMIC III dataset was collected from 40,000
patients during stayed in the ICU at Beth Israel

Deaconess Medical Center between 2001 and 2012.
[46]

The eICU collaborative
research database. [77]

Critical care datasets consist of 200,859 patients data
from 208 hospitals in the United States. [19,39,56]

N
on

he
al

th
ca

re
da

ta
se

t

Image classification,
sentiment analysis LEAF Dataset [66]

The LEAF Dataset Benchmarking framework consists
of images and text datasets such as EMNIST, Celeba,

Shakespeare, and Synthetic datasets.
[66]

Image
Classification

FedVision—Real World
image dataset for FL

[67]

The FedVision dataset contains more than 900
real-world images generated from 26 street cameras.

Precisely, it consists of 7 classes with a detailed
bounding box. This dataset has non-IID properties

reflecting a real-world data distribution.

[67]

ABIDE: autism brain imaging data exchange; BraTS: brain tumor image segmentation benchmark; eICU: electronic intensive care unit;
FER: facial emotion recognition; FL: federated learning; fMRI: functional magnetic resonance imaging; HAR: human activity recognition;
MIMIC: medical information mart for intensive care; MR: magnetic resonance; IID: independent and identical data distribution; WESAD:
wearable stress and affect detection.
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Table 4. Federated learning tools.

Framework
Name

Creator

Supported Techniques

URL
Data Partition Data

Distribution

Data Privacy
Attack

Simulation

Data Privacy
Protection
Methods

PySyft Open
Mined

X
HFL, VTL

X
IID, non-IID 5

X
DP, HE

https://github.com/
OpenMined/PySyft

(accessed on 7 July 2021)

TFF Google X
HFL 5 5 5

https:
//www.tensorflow.org/
federated (accessed on 7

July 2021)

FATE Tencent X
HFL, VFL, FTL 5 5

X
HE

https://github.com/
FederatedAI/FATE
(accessed on 21 July

2021)

Sherpa.ai Sherpa.ai X
HFL

X
IID, non-IID

X
Data Poison

X
DP

https:
//developers.sherpa.ai/

privacy-technology/
(accessed on 27 August

2021)

LEAF Sebastian
Caldas

X
HFL 5 5 5

https://leaf.cmu.edu/
(accessed on 21 July

2021)

HFL: horizontal federated learning; VTL: vertical transfer learning; FTL: federated transfer learning; IID: independent and identically data
distribution; DP: differential privacy; HE: homomorphic encryption.

4.6. FL Studies for Healthcare Applications

Published FL studies in medical applications mostly come with two tasks: classi-
fication and segmentation, as summarized in Table 5. In our selected papers, there are
24 studies. Out of these studies, 21 studies are on classification tasks, and three are on
segmentation tasks. The following subsections describe the existing studies on FL for
healthcare applications, organized by the application task type.

4.6.1. Classification Task in FL for Healthcare Applications

Classification is a common task tackled in the published FL applications in the medical
domain. In machine learning, classification algorithms learn how to classify or annotate
a given set of instances with classes or labels. There are several classification tasks that
are studied in federated learning setting in healthcare, e.g., autism spectrum disorder
(ASD) [18], cancer diagnosis [41,43,49], COVID-19 detection [40,44,48,54], human activity
and emotion recognition [20,21,37,42,45], patient hospitalization prediction [52], patient
mortality prediction [19,39,46,47,55,56], and sepsis disease diagnosis [51]. The summary of
classification tasks in FL studies for medical application is listed in Table 5.

Cancer diagnosis. Recent studies show that researchers are employing FL technology
to develop machine learning models for cancer diagnostic applications [41,43,49]. For
instance, Lee et al. [27] proposed a CNN-based model to classify whether thyroid nodules
were benign or malign. The training data were 8457 ultrasound images collected from
six institutions. The results show that the performance of the FL-based method was
comparable with centralized learning with accuracy, sensitivity, and specificity of 97%,
98%, and 95%, respectively. Similarly, Rajendran et al. [49] implemented FL with an MLP
model for lung cancer classification using two independent cloud providers. The model
initialized, trained, and transferred from one node to another node using a cloud repository.
The model achieved 92.8% accuracy to classify cancer. Another study by Yan et al. [43]
transformed all nodes’ raw medical image data onto a common space via image-to-image

https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://developers.sherpa.ai/privacy-technology/
https://developers.sherpa.ai/privacy-technology/
https://developers.sherpa.ai/privacy-technology/
https://leaf.cmu.edu/
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translation without violating FL’s privacy settings. The image-to-image translation was
done using a cycle generative adversarial network (CycleGAN) model. The performance
of the proposed method trained with eight medical nodes achieved 98% accuracy and 99%
area under the curve (AUC) to classify prostate cancer.

Table 5. Summary of FL publications applied in medical applications.

ML Task Clinical Tasks Medical Input Data Model Architecture FL Study

Classification

Autism spectrum disorders
(ASD) or Healthy control (HC) fMRI CNN [18]

Cancer diagnosis:

- Prostate cancer
- Thyroid cancer
- Lung cancer

- MRI
- Ultrasound

images
- Tobacco and

radon data

- GAN
- CNN
- MLP

[43]
[41]
[49]

COVID-19 detection X-ray images CNN [40,44,48,54]

Human activity Wearable device LSTM [20,21,45]

Human emotion Wearable device CNN [37,42]

Patient hospitalization Patient EHR SVM [52]

Patient mortality Critical care data MLP [19,39,46,47,55,56]

Sepsis disease Patient EHR Double Deep Q
Network [51]

Segmentation

Brain tumor MRI U-Net [38]

COVID-19 region 3D Chest CT 3D U-Net [53]

Prostate cancer MRI 3D Anisotropic Hybrid
Network [50]

CNN: convolutional neural network; CT: computed tomography; EHR: electronic health record; fMRI: functional magnetic resonance imaging;
GAN: generative adversarial network; MLP: multilayer perceptron; MRI: magnetic resonance imaging; SVM: support vector machine.

COVID-19 detection. For COVID-19 detection applications [40,44,48,54], FL is a po-
tential approach for connecting medical images data from medical institutions, enabling
them to develop a model while maintaining patient privacy. In this case, the model’s
performance is considerably enhanced from diverse medical datasets from several institu-
tions. For instance, Abdul Salam et al. [54] experimented with different federated learning
architectures for binary COVID-19 classification. Their results showed that the federated
learning model with GAN architecture and stochastic gradient descent (SGD) optimizer
had a higher accuracy while keeping the loss score lower than the centralized machine
learning model. The model performance achieved accuracy and AUC of 98.30% and 9.63%,
respectively. Similarly, Dou et al. [48] showed the efficacy of a federated learning system for
detecting COVID-19-related CT anomalies using patients’ medical data from one country
hospital as training data, then validating the model with medical data from other countries.
Specifically, the authors trained an MLP-model using 132 patients from three hospitals
in Hong Kong and validated the model generalizability performance using the medical
dataset from China and Germany. The system achieved 83.12% in terms of AUC. Feki
et al. [40] showed that increasing the number of medical nodes will decrease the training
round for the model to converge and increase the model performance in CT–X-ray COVID-
19 prediction. The authors proposed the CNN-based model architecture and achieved a
performance of 95.27% AUC score. Similar results were obtained by Zhang et al. [44], who
proposed an FL framework that enables medical nodes to generate high-quality training
data samples with a privacy-protection approach. Specifically, the proposed method solves
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the challenge of lacking COVID-19 medical training data in a federated environment. The
GAN-based architecture was employed in the proposed system and achieved a comparable
performance of 94.11% accuracy.

Human activity and emotion recognition. With increasing research on wearable
technology and the internet of health things (IoHT), FL technology is one of the solutions to
keep users’ privacy while collaborating to develop a model for human activity and emotion
recognition [20,21,37,42,45]. For example, Chen et al. [20] developed a deep learning model
for human activity classification such as walking, sitting, standing, and laying. Then the
author elaborates the trained CNN-based model with federated transfer learning to achieve
a personalization model for each edge device. The system achieved 99.4% accuracy in
classifying human activities. Similarly, Wu et al. [21] developed a cloud-edge federated
learning infrastructure to create a patient privacy-aware deep learning model for in-home
monitoring applications. The authors developed an autoencoder (AE) model architecture
then deployed the model into five different healthcare nodes. The FL system achieved an
accuracy of 95.41%. Chhikara et al. [37] combined the speech signal and facial expression
to create an emotion index for monitoring the patient’s mental health. Using the facial
emotion recognition (FER) dataset collected from several data silos, the author employed a
federated learning technique and AE-based architecture to create a secure machine learning
model to classify a human emotion. The FL algorithm showed an AUC of 88%.

Patient mortality prediction. Similarly, FL enables early predictive modeling based
on several sources, which can help to assist clinicians with extra information into the risks
and benefits of treating patients earlier [19,46,47,51,52,55,56]. Huang et al. [19] used drug
features to forecast critical care patients’ mortality, and ICU stays time. Their algorithm
based on AE architecture also addresses non-IID ICU patient data by grouping patients
into clinically significant communities with shared diagnoses and geographical regions,
then training one model per community. The proposed FL algorithm showed an AUC of
69.13%. In a similar study, Brismi et al. [52] proposed a method to forecast future patient
hospitalizations with heart-related disorders by solving the L1-regularized sparse support
vector machine (SVM) classifier in a federated learning environment. The proposed FL
model performed an AUC of 77.47%. Shao et al. [47] proposed an MLP-based model
framework to predict in-hospital mortality among patients admitted to the intensive care
unit. Their findings indicate that training the model in a federated learning framework
produces outcomes comparable to those obtained in a centralized learning environment
with an AUC of 97.76%. Vaid et al. [55] demonstrated federated learning with an MLP-
based model architecture to predict patient mortality with COVID-19 disease within seven
days. Their experiment showed that the federated learning algorithm successfully produces
a robust predictive model while preserving the patient’s confidential information with an
82.9% AUC score.

Other healthcare areas. Besides the healthcare areas mentioned above, FL also ap-
plied for sepsis disease [51] and autism spectrum disorder classification [18]. Xue et al. [51]
developed a fully decentralized federated framework (FDFF) that integrates a neural net-
work model across edge devices to extract knowledge from internet-of-things for healthcare
applications. The edge devices using FDFF can create a double deep Q-network (DDQN)
that gives suggestions for sepsis treatment. In addition, Li et al. [18] proposed FL for
multisite autism spectrum disorder (ASD) fMRI analysis.

4.6.2. Segmentation Task in FL for Healthcare Applications

Segmentation tasks with medical images have become an essential clinical task in health-
care applications. The medical image segmentation task is the process of identifying and
selecting a region of interest within a medical image. Medical images can be in several forms,
such as MRI or CT image scan. There are several published FL studies in medical image
segmentation, namely brain tumor disease [38], COVID-19 region [53], and prostate cancer
region [50]. The summary of published FL studies on segmentation tasks is listed in Table 5.
Specifically, in brain tumor segmentation using brain MRI medical images, Sheller et al. [38]
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applied the FL algorithm with CNN-based architecture for multi-institutional collaboration
in brain tumor segmentation tasks while preserving the patient data. Compared to existing
collaborative learning approaches, FL achieved the highest dice score of 85% and scaled
more effectively as the number of collaborating institutions increases. Using multinational
three-dimensional chest CT images from three countries, Yang et al. [53] applied federated
semi-supervised learning with 3D u-shape fully connected layer model architecture to seg-
ment the COVID-19 disease region. Federated semi-supervised learning can assure good
training performance even when some healthcare sites have a limited number of annotated
data compared to unannotated data. Additionally, the semi-supervised environment may
alleviate some of the strain associated with expert annotation, which is critical given the
present pandemic crisis. Similarly, Sarma et al. [50] performed prostate segmentation with a
3D anisotropic hybrid network (3D AH-Net) model on MRI with collaboration from industry,
public universities, and the federal institution. The proposed FL algorithm experimented with
three medical nodes showed a dice score of 88.9%.

RQ3: What are the research gaps and potential future research directions of FL related to
medical data?

4.7. Open Challenges

In this survey, we review the current progress on federated learning in the healthcare
field. We highlight the comprehensive solutions to federated learning issues related to
medical data configurations to provide a valuable resource for researchers. In what follows,
we list some potential research directions or open questions when federated learning is
applied in the healthcare area.

FL with Medical Data Stream. Medical data streams are collections of medical data
that increase constantly and rapidly over time, generated during the treatment and monitor-
ing of patients. For instance, in telemedicine or patient monitoring, the medical monitoring
devices generate a large amount of time-sensitive data when monitoring patient vital signs
such as temperature, heart rate, and blood pressure. This medical data is a stream of medi-
cal signals displayed for interpretation by physicians. Certain pieces of these data could
be used in real-time to alert physicians about changes in patient circumstances. Medical
data streams arrive periodically, and we would like to develop an analytic model that
extracts meaningful patterns or risk factors in real-time. Federated learning incorporated
with the medical data stream could improve training tasks and security performance, as
inconsistencies in evolving medical datasets and the data transmission between the FL
coordinator and participant nodes can be highly decreased [25]. However, the medical
data streams are usually fast, large, and we must handle them in real-time. In addition, the
medical data streams are dynamic, so our FL algorithm has to respond to these changes.
Thus, it is essential to design an efficient federated learning algorithm to achieve good
accuracy, low total memory, and minimum time in medical data streams.

FL with Hybrid Medical Data Partition. In the HFL data partition, the nodes share
the same features X and label Y but have different data samples I . Thus, the HFL aims
to solve limited sample size variability by combining data samples from all nodes when
developing a model, while for the VFL data partition the nodes share the same data
samples I but have different features X and labels Y . Therefore, the VFL aims to enrich
the features by combining features from all nodes when developing a model. However, we
need to simultaneously solve a limited sample size variability and enrich the features when
developing a model in practice. For instance, a healthcare node may possess either partial
features or data samples in healthcare insurance, which serves only a fraction of users and
only has partial records. Incorporating both the HFL and the VFL data partition will result
in a hybrid data partition. Compared to the HFL and the VFL, a hybrid FL data partition
has its challenges. In HFL, each node shares neither its local data nor labels. In contrast, in
VFL, the node shares the user’s index to the server or is securely stored in one node as a
key for aligning the features [56]. A hybrid FL data partition needs to deal with both types
of nodes, so the FL training algorithm can run without requiring the aggregate server to
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access any data, including the users’ index. New architecture and training algorithms in FL
will be required to utilize the benefits of the hybrid data partition effectively.

FL with Incentive Mechanism for Good Data Contributor. The internet of health
things (IoHT) uses internet of things (IoT) devices on e-health applications that enable
the connection between healthcare resources and patients. The IoHT devices such as
smartwatches and healthcare wearable trackers can record heart rate, body temperature,
and blood pressure. These rich healthcare data are excellent for personal smartphone
healthcare apps that can run on device federated learning. However, the IoHT nodes are
burdened by significant computation and communication costs during the federated model
training process. Without a proper incentive mechanism design, those IoHT nodes will be
reluctant to participate in federated learning. In addition, a suitable incentive mechanism
can have rewards and punishments. A good quality personal healthcare data contributor
can obtain a good incentive, while harmful data contributors can receive a punishment.
Thus, an effective and efficient incentive mechanism can attract good data contributors to
join federated learning.

Limitation and future perspective. There are two limitations to the present study.
The first limitation is that existing FL experiments focus exclusively on one of the non-IID
properties, such as data imbalance or label skew. However, there are no comprehensive
experiments in the medical dataset that examine multiple properties of non-IID. The future
perspective will find additional algorithms for addressing the issues associated with hybrid
non-IID features. The second limitation is the hyperparameter framework search for FL.
Hyperparameter tuning is a critical yet time-consuming step in the machine learning work-
flow. Optimization of hyperparameters becomes considerably more difficult in federated
learning, in which models are trained across a dispersed network of heterogeneous data
silos. Thus, an automatic tool or framework to select the optimal hyperparameters in the
FL model is critically needed in the future research.

5. Conclusions

We presented the advancement of federated learning growth in the context of health-
care applications over the last four years in terms of data properties such as data partition,
data distribution, data privacy attack and protection, and benchmark datasets. We hope
that this study stimulates additional research into FL in healthcare applications and even-
tually becomes a guideline for handling sensitive medical data. Several open challenges
remain, including FL for the medical data stream, FL with medical data hybrid partitions,
and incentive mechanisms for good medical data contributors. We envision the increased
popularity of FL for medical purposes in the near future, resulting in more advanced proto-
cols with security and privacy guarantees and the actual deployment of FL technology for
solving real-world problems in the healthcare domain.
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AMCA American medical collection agency
AUROC Area under the receiver operating characteristic curve
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Appendix A

Table A1. Full query term in publication databases.

Scientific Database Query Studies Results #

PubMed

((federated learning AND ((fft[Filter]) AND
(english[Filter]) AND (2018:2021[pdat]))) AND

(healthcare OR hospital OR clinic AND ((fft[Filter])
AND (english[Filter]) AND (2018:2021[pdat]))))
AND (“data quality” OR privacy protection OR
non iid AND ((fft[Filter]) AND (english[Filter])

AND (2018:2021[pdat]))) AND ((fft[Filter]) AND
(english[Filter])) AND ((fft[Filter]) AND

(english[Filter]))

21

IEEE Xplore

(“All Metadata”:federated learning) AND (“All
Metadata”:healthcare OR “All Metadata”:hospital

OR “All Metadata”:clinic) AND (“All
Metadata”:data quality OR “All Metadata”:privacy

protection OR “All Metadata”:non iid)

14

Web of Science
”Healthcare OR Hospital OR Clinic” AND

”federated learning” AND ”Data Quality OR
Privacy Protection OR non iid”

17

Science Direct
(“federated learning”) AND (healthcare OR
hospital OR clinic) AND (“data quality” OR

“privacy protection” OR “non iid”)
105

ACM Digital Library

[All: “federated learning”] AND [[All: healthcare]
OR [All: clinic] OR [All: hospital]] AND [[All:

“data quality”] OR [All: “privacy protection”] OR
[All: “non iid”]] AND [Publication Date: (1

January 2018 TO 30 June 2021)]

40
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Table A2. Federated learning studies for medical applications.

Authors Year Title Journal FL Studies

Brismi et al. 2018 Federated learning of predictive models from
federated electronic health records

International Journal of
Medical Informatics [52]

Huang et al. 2019
Patient clustering improves efficiency of federated
machine learning to predict mortality and hospital

stay time using distributed electronic medical records

Journal of Biomedical
Informatics [19]

Chen et al. 2020 FedHealth: A Federated Transfer Learning
Framework for Wearable Healthcare IEEE Intelligent Systems [20]

Chen et al. 2020
Communication-Efficient Federated Deep Learning
With Layerwise Asynchronous Model Update and

Temporally Weighted Aggregation

IEEE Transactions on
Neural Networks and

Learning Systems
[45]

Huang et al. 2020
LoAdaBoost: Loss-based AdaBoost federated
machine learning with reduced computational

complexity on IID and non-IID intensive care data
PLOS ONE [46]

Li et al. 2020
Multi-site fMRI analysis using privacy-preserving
federated learning and domain adaptation: ABIDE

results
Medical Image Analysis [18]

Shao et al. 2020

Stochastic Channel-Based Federated Learning With
Neural Network Pruning for Medical Data Privacy

Preservation: Model Development and Experimental
Validation

JMIR Formative Research [47]

Sheller et al. 2020
Federated learning in medicine: facilitating

multi-institutional collaborations without sharing
patient data

Scientific Reports [38]

Wu et al. 2020 FedHome: Cloud-Edge based Personalized
Federated Learning for In-Home Health Monitoring

IEEE Transactions on
Mobile Computing [21]

Abdul Salam
et al. 2021 COVID-19 detection using federated machine

learning PLOS ONE [54]

Cha et al. 2021
Implementing Vertical Federated Learning Using

Autoencoders: Practical Application, Generalizability,
and Utility Study

JMIR Medical
Informatics [56]

Chhikara et al. 2021
Federated Learning Meets Human Emotions: A

Decentralized Framework for Human–Computer
Interaction for IoT Applications

IEEE Internet of Things
Journal [37]

Cui et al. 2021
FeARH: Federated machine learning with

anonymous random hybridization on electronic
medical records

Journal of Biomedical
Informatics [39]

Dou et al. 2021
Federated deep learning for detecting COVID-19
lung abnormalities in CT: a privacy-preserving

multinational validation study
npj Digital Medicine [48]

Feki et al. 2021 Federated learning for COVID-19 screening from
chest X-ray images Applied Soft Computing [40]

Lee et al. 2021
Federated Learning for Thyroid Ultrasound Image

Analysis to Protect Personal Information: Validation
Study in a Real Health Care Environment

JMIR Medical
Informatics [41]

Liu et al. 2021
Learning From Others Without Sacrificing Privacy:
Simulation Comparing Centralized and Federated

Machine Learning on Mobile Health Data

JMIR mHealth and
uHealth [42]

Rajendran et al. 2021 Cloud-Based Federated Learning Implementation
Across Medical Centers

JCO Clinical Cancer
Informatics [49]
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Table A2. Cont.

Authors Year Title Journal FL Studies

Sarma et al. 2021 Federated learning improves site performance in
multicenter deep learning without data sharing

Journal of the American
Medical Informatics

Association
[50]

Vaid et al. 2021

Federated Learning of Electronic Health Records to
Improve Mortality Prediction in Hospitalized
Patients With COVID-19: Machine Learning

Approach

JMIR Medical
Informatics [55]

Xue et al. 2021
A Resource-Constrained and Privacy-Preserving

Edge-Computing-Enabled Clinical Decision System:
A Federated Reinforcement Learning Approach

IEEE Internet of Things
Journal [51]

Yan et al. 2021 Variation-Aware Federated Learning with
Multi-Source Decentralized Medical Image Data

IEEE Journal of
Biomedical and Health

Informatics
[43]

Yang et al. 2021
Federated semi-supervised learning for COVID

region segmentation in chest CT using multi-national
data from China, Italy, Japan

Medical Image Analysis [53]

Zhang et al. 2021
FedDPGAN: Federated Differentially Private

Generative Adversarial Networks Framework for the
Detection of COVID-19 Pneumonia

Information Systems
Frontiers [44]
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