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Abstract: Feature-based retinal fundus image registration (RIR) technique aligns fundus images
according to geometrical transformations estimated between feature point correspondences. To
ensure accurate registration, the feature points extracted must be from the retinal vessels and
throughout the image. However, noises in the fundus image may resemble retinal vessels in local
patches. Therefore, this paper introduces a feature extraction method based on a local feature of retinal
vessels (CURVE) that incorporates retinal vessels and noises characteristics to accurately extract
feature points on retinal vessels and throughout the fundus image. The CURVE performance is tested
on CHASE, DRIVE, HRF and STARE datasets and compared with six feature extraction methods
used in the existing feature-based RIR techniques. From the experiment, the feature extraction
accuracy of CURVE (86.021%) significantly outperformed the existing feature extraction methods
(p ≤ 0.001*). Then, CURVE is paired with a scale-invariant feature transform (SIFT) descriptor to
test its registration capability on the fundus image registration (FIRE) dataset. Overall, CURVE-SIFT
successfully registered 44.030% of the image pairs while the existing feature-based RIR techniques
(GDB-ICP, Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17 and D-Saddle-HOG) only registered
less than 27.612% of the image pairs. The one-way ANOVA analysis showed that CURVE-SIFT
significantly outperformed GDB-ICP (p = 0.007*), Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17
and D-Saddle-HOG (p ≤ 0.001*).

Keywords: image registration; fundus image; feature extraction

1. Introduction

Retinal fundus image registration (RIR) is an essential tool in facilitating the diagnosis
and treatment of retinal diseases [1]. RIR aligns fundus images according to geometrical
transformation estimated from correspondence between fixed and moving images. Existing
RIR techniques can be grouped based on the type of correspondence utilized in estimating
the geometrical transformation, namely, intensity-based and feature-based.

The intensity-based RIR technique searches the similarity between the intensity pat-
terns in fixed and moving images to estimate the geometrical transformation. The similarity
between the intensity patterns is established using a similarity metric such as mutual in-
formation [2], cross-correlation [3] and phase correlation [4,5]. However, the registration
performance of the intensity-based RIR technique is limited in the presence of non-uniform
intensity distribution and homogenous texture [6], which is commonly observed in fundus
images. Furthermore, the intensity patterns from the non-overlapping area can mislead the
similarity metric in estimating inaccurate geometrical transformation.
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Generally, the feature-based RIR technique is more reliable and robust in register-
ing fundus images compared to the intensity-based RIR technique. This is because the
feature-based RIR technique estimates the geometrical transformation according to the
correspondence of local features such as feature points. However, the feature-based RIR
technique requires the feature points to be extracted from reliable information to ensure
accurate registration. Reliable information is distributed throughout an image and repeat-
able despite the changes in viewpoint or intensity [7]. The feature-based RIR technique
is mainly comprised of feature extraction, feature descriptor, matching and estimating
geometrical transformation. Feature extraction plays a crucial role in ensuring the feature
points are detected and selected from reliable information by examining the local patches.

The feature extraction method in the existing feature-based RIR techniques extracts
feature points from retinal vessels [8], vessel bifurcations [9], corner [10], extrema [11–13]
or distinctive structure information [14]. Among this information, the retinal vessel is
the most reliable because it can be found throughout the fundus image and is repeatable
despite the changes in viewpoint or intensity. Additionally, the appearance of the retinal
vessels within the local patches are consistent as a continuous line in 2-dimensional, and
curvature shape in 3-dimensional, despite its size and contrast. However, the noises such
as the retinal nerve fiber layer, underlying choroidal vessels, microaneurysm and exudates
can also appear as curvature shapes in the local patches.

Therefore, this paper introduces a new feature extraction method based on the local
feature of retinal vessels (CURVE). The proposed CURVE extracts feature points throughout
the fundus image with the ability to discriminate the aforementioned noises. To register
the fundus images, a feature-based RIR technique framework (CURVE-SIFT) is described
where CURVE is paired with the scale-invariant feature transform (SIFT) descriptor [15].

The remainder of this paper is organized as follows. Section 2 highlights and discusses
the issues of the feature extraction method in the existing feature-based RIR techniques.
Section 3 describes the methodology of the CURVE-SIFT technique. The experimental
settings in developing and evaluating the CURVE-SIFT technique are presented in Section 4.
Section 5 reports and discusses the experimental results. Finally, the conclusion and future
work are given in Section 6.

2. Related Works

The majority of the existing feature-based RIR techniques [13,16–18] mainly utilized
the SIFT detector [15] to extract the feature points. SIFT detector finds extrema from
local patches in a hierarchical difference of Gaussian (DoG) scale-space to allow feature
points to be found based on the structure of various sizes. Then, the extrema that are low
contrast and on edges are rejected to ensure the final feature points are distinctive and
repeatable. However, the retinal vessels exhibit inconsistent contrast levels throughout the
fundus image. Therefore, Ghassabi et al. [11] utilized robust uniform SIFT (UR-SIFT) [19]
to overcome this issue.

The UR-SIFT is an improvement of the SIFT detector, where the feature points are
selected according to the strength of the texture surrounding the points. This enables
UR-SIFT to be more efficient in extracting feature points on retinal vessels compared to
the standard SIFT detector. Furthermore, UR-SIFT ensures the extracted feature points
are distributed throughout the hierarchical DoG scale space. The distribution is set in
reverse from the scale coefficients of the scale space. This results in more feature points
being extracted in the lower part of the hierarchical DoG scale space where the images are
larger and finer. Opposite to this, fewer feature points are extracted in the upper part of
the hierarchical DoG scale space where the images are smaller and coarser.

Ghassabi et al. further improved their work by introducing a stability score as part
of the selection criterion [8]. The stability score incorporates Frangi’s vesselness measure
(FVM) [20], a vessel enhancement filter that suppresses noise in the image. Incorporating
FVM enabled the ability of [8] to discriminate between retinal vessels and noises.
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Extracting feature points on retinal vessels from the underexposed region in the
fundus image is addressed in [12], where the illumination invariant Difference of Gaussian
(iiDoG) operator was incorporated into the hierarchical scale space [21]. iiDoG operator
is composed of normalized difference of Gaussian (nDoG) and DoG operators based on
a piecewise function. The combination of these operators increases the visibility of the
underexposed region while leaving the correctly exposed region unchanged. This work
utilized a similar approach as in SIFT detector to extract extrema from the hierarchical
iiDoG scale space. A threshold is introduced to discard the extrema on the retinal surface
before the final feature points are selected. The threshold is based on the distribution of the
intensity in the local patch.

Other than SIFT, the existing feature-based RIR techniques [10,22–24] extract geometric
corner [25], Harris corner [26] and speeded up robust features (SURF) [27,28]. Meanwhile,
Ramli et al. [14] introduced D-Saddle to extract feature points from the low-quality region
based on distinctive structural information.

There are several issues that can be outlined from the highlighted feature extraction
methods. First, feature enhancement algorithms such as DoG and iiDoG operators are
mainly incorporated in building the hierarchical scale space. These operators increase the
visibility of the retinal vessels as well as the noises, which make it more challenging for the
feature extraction method to discriminate between them.

Second, the feature extraction methods are mainly without a proper selection module
to select feature points on retinal vessels. A proper selection module should consider both
retinal vessels and noise information as they may appear similarly within a local patch.
Therefore, considering both in the selection module allows for more robust discrimination
between retinal vessels and noises.

3. Methodology

The CURVE-SIFT technique constitutes five main stages, as shown in Figure 1. Stage 1
converts the input images to grayscale. The proposed CURVE in Stage 2 extracts feature
points from the input grayscale images, which also highlights the main contribution of
this paper. Stage 3 computes the SIFT descriptor to describe the surrounding region of
each CURVE feature point. From the computed descriptors, matches are established, and
outliers are removed in Stage 4. Finally, Stage 5 estimates the geometrical transformation
between fixed and moving images. The details of these stages are explained in the following
sub-sections. The mathematical symbols and notation used in this section are listed in
Appendix A (Table A1).

Figure 1. A general framework of the CURVE-SIFT technique.
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3.1. STAGE 1: Pre-Processing

The conversion of the input images from color to grayscale follows the calculation of
luminance in Recommendation ITU-R BT.601-7 [29] given below:

I = 0.2989R+ 0.587G + 0.1140B (1)

where, I is the input image in grayscale,R is the red channel, G is the green channel and
B is the blue channel. The grayscale conversion based on luminance was chosen for this
study because it has been shown to be superior to other grayscale conversions in terms of
highlighting texture visibility [30] and trade-off between accuracy and processing cost.

3.2. STAGE 2: Feature Extraction

This sub-section describes the proposed CURVE to extract feature points on retinal
vessels. CURVE is composed of feature detection and feature selection modules. The feature
detection module detects candidate feature points according to the curvature shape of the
retinal vessels. The curvature shape of the retinal vessels is observed when its grayscale
image is depicted in 3D (see Table A2 in Appendix B). However, the detected candidate
feature points are located on retinal vessels as well as noises. Therefore, the feature
selection module removes the detected candidate feature points associated with noises by
considering the unique characteristics of both retinal vessels and noises in intensity profiles.
Then, the final feature points are chosen based on the strength of the retinal vessels. The
steps in the feature detection and feature selection modules are summarized in Figure 2.

Figure 2. Overview of CURVE feature extraction in Stage 2. CURVE is composed of a feature
detection module and feature selection module.

3.2.1. Feature Detection Module

The feature detection module examines local patches in the images of the hierarchical
Gaussian scale space to detect extrema within the curvature shape of various sizes. This
module involves three main steps, as explained below.

(a) STEP 1: Building a hierarchical Gaussian scale space

The initial step of the feature detection module is to build a hierarchical Gaussian
scale space. The hierarchical Gaussian scale space enables the detection of the candidate
feature points on various sizes of retinal vessels at the lower octave as the images are
larger and finer with detailed information. At the higher octave, the candidate feature
points are detected on thicker retinal vessels as the images are smaller and coarser with
prominent information.

Building the hierarchical Gaussian scale space (G) involves generating three oc-
taves (P = 3 | p = 0, . . . , P− 1) and six levels (Q = 6 | q = −1, · · · , Q− 2) per octave,
as in [15,31].
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The initial Gaussian image Gp,q at p = 0 and q = −1 is created through convolution of
input image I with width of relative Gaussian kernel σ̌p,q at p = 0 and q = −1 as follows:

G0,−1 = I ∗ σ̌0,−1 (2)

with, σ̌0,−1 is denoted by:

σ̌0,−1 =
√

σ2
0,−1 − σ2

s (3)

The width of the relative Gaussian kernel σ̌p,q assumes the input image I is pre-filtered
with a sampling Gaussian kernel σs ≥ 0.5 [15]. Thus, σ0,−1 can be expressed as in [15,31]:

σ0,−1 = σ0·2−1/Q−3 (4)

where, σ0 = 1.6 is the base width of the Gaussian kernel.

σ̌0,−1 =
√

σ2
0,−1 − σ2

s (5)

To obtain Gp,−1 at higher octave p ∈ [1, . . . , P− 1], Gp−1,2 is downsampled by half.
The subsequent Gp,q at p ∈ [0, . . . , P− 1] and q ∈ [0, . . . , Q− 2] can be obtained from the
convolution between Gp,−1 in the respective octave with the relative Gaussian kernel of
width σ̌q given by:

σ̌q = σ0·
√

22q/Q−3 − 1 (6)

(b) STEP 2: Detecting local extrema

The feature detection module continues with the detection of extrema within the local
patches of 3 × 3 pixels. An extremum represents the maximum or minimum intensity
value of the center pixel compared to the eight immediate neighbors in the local patch. The
local patches across the image are overlapped by 1/3 of its size. The extrema found near
the border of the field of view (FOV) are excluded from further processing using a mask
image.

(c) STEP 3: Test extrema if within curvature structure

The retinal vessels generally exhibit curvature shape in 3-dimensions. Therefore, the
extrema are tested if they are within the curvature structure by performing two tests as
reported in [32]. These tests are the inner ring test and outer ring test.

• STEP 3(a): Inner ring test

The inner ring test considers eight pixels surrounding an extremum (aj
∣∣ j ∈ [1, . . . , 8]),

as depicted in Figure 3a. Four out of eight pixels are tested at a time for patterns × and +,
as shown in Figure 3b–e. These patterns are formed when the intensities of two opposing
pixels are brighter (dark green dot) than the other two opposing pixels in orthogonal (pink
dot). The extrema can pass this test with one or two patterns. Then, the central intensity
value β is estimated by taking the median value of four pixels if the extremum passes with
one pattern, and eight pixels if it passes with two patterns. The extrema that failed the
inner ring test are eliminated.

Figure 3. Inner ring test. (a) Eight pixels denoted by aj, j ∈ [1, . . . , 8] surrounding an extremum, e. (b,c) Patterns in the
shape of ×. (d,e) Patterns in the shape of +. Pixels with a dark green dot have higher intensity values than pixels with a
pink dot.
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• STEP 3(b): Outer ring test

A circumference of 16 pixels surrounding an extremum that passes the inner ring test
forms the outer ring pixels ( bl | l ∈ [1, . . . , 16]) as shown in Figure 4a. These pixels are
divided into groups of low, middle and high as defined below:

Group low (red dot) : Ibl
< β− ε

Group middle (purple dot) : β− ε ≤ Ibl
≤ β + ε

Group high (green dot) : Ibl
> β + ε

(7)

where, Ibl
is the intensity of the outer ring pixels and ε is the offset. The offset ε is set to

0.0010 as the intensity value of the pixels is in the range of [0, 1] [14].

Figure 4. Outer ring test. (a) Sixteen pixels denoted by bl , l ∈ [1, . . . , 16] surrounding an extremum, e. (b–e) Examples of
outer ring patterns. Pixels with red dot are from group low, pixels with purple dot are from group medium and pixels with
green dot are from group high.

Then, the extrema are tested for the outer ring patterns consisting of consecutive
and alternating arcs from groups low and high. The length of each arc can be between
2 to 8 pixels. These arcs can also be separated by pixels from group middle up to two
pixels. Examples of the outer ring patterns are depicted in Figure 4b–e. The extrema that
pass the outer ring test are the extrema found within the curvature structure, as shown
in Figure 5. These extrema are assigned as candidate feature points and included in the
feature selection module.
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Figure 5. Example of candidate feature point (pointed by black arrow) from feature detection module.
The candidate feature point is an extremum within a curvature structure.

3.2.2. Feature Selection Module

The feature selection module includes exclusion and selection processes. The exclusion
process discards the candidate feature points associated with noises while the selection
process selects the final feature points according to the strength of the retinal vessels. These
processes require gradient and binary interpolated patches as input.

(a) STEP 4: Preparing gradient and binary interpolated patches

The initial step of the feature selection module is to extract a square patch with the
size of sp × sp pixels for each candidate feature point from the respective Gp,q. The size of
the patch is varied depending on the octave position (p) of the candidate feature point to
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ensure the retinal vessel can be captured within the patch despite the image size of Gp,q.
The side length

(
sp
)

of the patch is an odd number computed as follows:

sp = sinitial − 4(p + 1) (8)

where, sinitial is the initial side length. There are three possible values for sinitial as defined
in (9). sinitial is set by referring to the size of the initial Gaussian image G0,−1. These values
are determined by observing the retinal vessels with the thickest width on the fundus
images from five datasets; CHASE_DB1 [33,34], DRIVE [35,36], HRF [37,38], STARE [39,40]
and Fundus Image Registration (FIRE) dataset [41]. Furthermore, by considering scale or
zoom less than 1.5 [8]. The sinitial is suitable for input images larger than that of the largest
image used to determine sinitial (10 megapixels). This is because hierarchical Gaussian scale
space down-sampled the input image by half as the level increased and reduced the image
details as the octave increased, allowing the vessels of varying sizes to fit in the square
patch even for input images larger than 10 megapixels.

sinitial


35 pixels if G0,−1 > 1000× 1000 pixels
25 pixels if G0,−1 ≤ 1000× 1000 pixels > 600× 600 pixels
21 pixels if G0,−1 ≤ 600× 600 pixels

(9)

The extracted gradient patch is up-sampled using cubic interpolation with a refine-
ment factor of two to smooth the region around the vessel edges. Then, this interpolated
patch is converted to a binary image as depicted in Figure 6(aii,bii). These patches are used
as input for exclusion and selection processes.

Figure 6. Examples of the (i) gradient and (ii) binary interpolated patches extracted from (a) retinal
vessel and (b) noise. Red ‘×’ represents the position of the candidate feature point on the patch.

(b) STEP 5: Exclusion process

The curvature structure in the local patch represents retinal vessels of various sizes
as well as noises such as the retinal nerve fiber layer, underlying choroidal vessels, mi-
croaneurysm and exudates. Therefore, five exclusion criteria specifying the characteristics
of the retinal vessels and noises on the sum of intensity profiles are presented to discard
candidate feature points on noises.

The intensity profile is the intensity value of the pixels extracted from a cross-sectional
line running through the patch. In this study, the intensity profiles extracted from multiple
cross-sectional lines are summed to distinctively highlight the characteristics of the retinal
vessels and noises in the interpolated patch. The intensity profiles are extracted from a
total of Ltotal cross-sectional lines that parallel each other with Ldistance distance between
the lines. These cross-sectional lines are positioned either along or perpendicular to the
main orientation of the interpolated patch. The main orientation is the angle between the
x-axis and major axis of the ellipse on the prominently connected region of the binary
interpolated patch.

The Ltotal , Ldistance and orientation of the cross-sectional lines are set according to the
exclusion criteria as summarized in Table 1. The length of the cross-sectional lines in the
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pixel can be determined from Ltotal and Ldistance to ensure the lines do not exceed the size
of the interpolated patch in any orientation as follows:

Llength = sbin − (Ldistance.Ltotal) (10)

where, Llength is the length of the cross-sectional lines, sbin is the side length of the binary
interpolated patch, Ldistance is the distance between the parallel cross-sectional lines and
Ltotal is the total cross-sectional lines.

Table 1. Settings and details of exclusion criteria in STEP 5.

STEP 5(a):
Exclusion
Criterion 1

STEP 5(b):
Exclusion
Criterion 2

STEP 5(c):
Exclusion
Criterion 3

STEP 5(d):
Exclusion
Criterion 4

STEP 5(e):
Exclusion
Criterion 5

Settings to extract the sum of intensity profiles from interpolated patches

Interpolated Patch Binary Gradient – – Binary and
gradient

Cross-sectional
lines

Ltotal 5 7 – – 7

Ldistance 3 pixels 5 pixels – – 5 pixels

Orientation Along main
orientation

Perpendicular
to main

orientation
– –

Perpendicular
to main

orientation
Details of exclusion criteria

Input

Sum of
intensity

profiles from
binary

interpolated
patch

Sum of
intensity

profiles from
gradient

interpolated
patch

Valley with
maximum
depth from
STEP 5(b)

Valley with
maximum
depth and

global
minimum from

STEP 5(c)

Sums of
intensity

profiles from
binary and

gradient
interpolated

patches

Candidate
feature point

On Vessels
A horizontal

line.
Figure 7(aii)

With at least a
valley.

Figure 8(aii)

Is global
minimum.

Figure 9(aii,bii)

At-axis.
Figure 10a,b

Intersected
when overlaid.
Figure 11(aiii)

On Noise
With at least a

peak.
Figure 7(bii)

Without valley.
Figure 8(bii)

Is local
minimum.

Figure 9(cii)

At 1st or 4th
section on

x-axis.
Figure 10c

Apart from
each other

when overlaid.
Figure 11(biii)

Figure 7. Exclusion criterion 1. (i) Cross-sectional lines and (ii) sum of intensity profiles for binary interpolated patch with
(a) retinal vessel and (b) noise. A candidate feature point is discarded if any peak is found on the sum of intensity profiles
from binary interpolated patch as in (b)(ii).
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Figure 8. Exclusion criterion 2. (i) Cross-sectional lines and (ii) sum of intensity profiles for gradient interpolated patch
with (a) retinal vessel and (b) noise. A candidate feature point is discarded if the sum of intensity profiles from gradient
interpolated patch is without any valley as in (b)(ii).

Figure 9. Exclusion criterion 3. (i) Cross-sectional lines and (ii) sum of intensity profiles for gradient interpolated patch with
(a) normal retinal vessel, (b) retinal vessel with central light reflex and (c) noise. A candidate feature point is discarded
when the valley with the maximum depth is a local minimum as in (c)(ii).

Figure 10. Exclusion criterion 4. (a,b) The valley with the maximum depth is on the 2nd or 3rd section for retinal vessels.
(c) The valley with the maximum depth is on the 1st or 4th section for noise. A candidate feature point is discarded when
the valley with the maximum depth is at the 1st or 4th section, as in (c).



Appl. Sci. 2021, 11, 11201 10 of 30

Figure 11. Exclusion criterion 5. Cross-sectional lines on (i) gradient and (ii) binary interpolated patches for (a) retinal
vessel and (b) noise. (iii) The intersection between sums of intensity profiles from (i) and (ii). A candidate feature point is
discarded when the overlaid sums of intensity profiles are apart from each other, as in (b)(iii).

Ltotal LdistanceAtx

• STEP 5(a): Exclusion criterion 1

Retinal vessel in a binary interpolated patch forms a nearly straight and wide con-
nected region, as depicted in Figure 7(ai). This characteristic can be represented by the sum
of the intensity profiles extracted from five cross-sectional lines positioned along the main
orientation of the patch. The Ltotal , Ldistance and orientation for these cross-sectional lines
are chosen to best express the retinal vessel of various sizes in the patch. For retinal vessels,
the sum of the intensity profiles appears as a horizontal line, as depicted in Figure 7(aii).
Contrarily, the noise comprises an inconsistent connected region, as shown in Figure 7(bi),
which results in the detection of peaks in the sum of intensity profiles. Therefore, a
candidate feature point with peaks on the sum of intensity profiles is discarded.

• STEP 5(b): Exclusion criterion 2

For the gradient interpolated patch associated with the retinal vessel as in Figure 8(ai),
the cross-sectional lines with Ltotal = 7, Ldistance = 5 and positioned perpendicular to the
main orientation are fully intersected by the vessel. Therefore, the sum of the intensity
profiles from these cross-sectional lines will consist of at least a valley, as depicted in
Figure 8(aii). In opposite, no valley can be found on the sum of the intensity profiles
extracted from the patch associated with noise, as shown in Figure 8(bii). Thus, this
candidate feature point is discarded from further processing.

• STEP 5(c): Exclusion criterion 3

The valleys discovered in STEP 5(b) are further examined for their depth and posi-
tioned on the y-axis. For a candidate feature point located on a retinal vessel, the valley
with the maximum depth is at the lowest position of the y-axis or global minimum, as
shown in Figure 9(aii,bii). Therefore, a candidate feature point is discarded if the valley
with the maximum depth is a local minimum, such as in Figure 9(cii).

• STEP 5(d): Exclusion criterion 4
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The valley with maximum depth and global minimum from STEP 5(c) is examined
for its position on the x-axis. The sum of the intensity profiles is divided into four sections
of equal size. The valley with the maximum depth is expected to be at the second or third
section on the x-axis if a candidate feature point on a retinal vessel is either normal or
with central light reflex as shown in Figure 10a,b Therefore, a candidate feature point is
excluded if the valley with the maximum depth is located at the first and fourth sections,
as in Figure 10c.

• STEP 5(e): Exclusion criterion 5

This criterion overlaid the sum of the intensity profiles from gradient and binary
interpolated patches. The intersection can be found when a candidate feature point is
located on a retinal vessel and vice versa, as depicted in Figure 11. Thus, the candidate
feature point is discarded when the overlaid sums of the intensity profiles are apart from
each other.

(c) STEP 6: Selection process

The exclusion process removes the majority of the candidate feature points detected
on noises. However, the remaining candidate feature points may include points detected
on noises with a high structural similarity as the retinal vessels in the interpolated patches.
Therefore, the selection process includes two main steps to select the final feature points,
namely, distribution and selection weightage. The distribution will ensure the final feature
points are selected throughout the image, while the selection weightage highlights the
strength of the retinal vessel in the patch for each candidate feature point.

• STEP 6(a): Distribution

The distribution of the feature points all over the image is vital to ensure a high
registration accuracy [42]. There are two procedures involved in distributing the feature
points. First, the feature points are distributed across the hierarchical Gaussian scale space
by computing the maximum number of feature points (Np,q) for each Gaussian image Gp,q.
Np,q is set proportionally inverse to the width of the Gaussian kernels used when building
the scale space as described in [8,11,19]:

Np,q = Ntotal .Fp,q (11)

The proportion of the feature points Fp,q is given by:

Fp,q =
f0

µ(Q)p+q+1
(12)

The proportion in the initial image of the scale space f0 and the constant factor µ can
be expressed as:

f0 =
µP(Q)−1

∑
P(Q)
n=1 µn−1

(13)

µ = 2
1
Q (14)

where, P is the total octave with index p ∈ [1, . . . , P− 1], Q is the total level with index
q ∈ [−1, . . . , Q− 2], n is the index of the images in the hierarchical Gaussian scale space
and Ntotal is the total feature points in the hierarchical Gaussian scale space. In this study,
Ntotal is set to 4500 points, which empirically shows to provide a reasonable amount of
feature points to perform image registration. However, if the candidate feature points are
detected at less than 4500 points, Ntotal is set to 90% of the total candidate feature points.

The second procedure distributes Np,q across partitioned grids in each Gaussian image
Gp,q. This operation begins by partitioning Gp,q into rectangle grids of 150× 150 pixels. The
maximum number of feature points Nu in a grid image of index u is computed as follows:

Nu = DCu.Np,q (15)
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The distribution coefficient for a grid image (DCu) represents a combination of three
factors. These factors are entropy [43], peak deviation nonuniformity [44] and total candi-
date feature points detected in the grid image.

The first factor of the entropy (EG) [43] defines the texture of the grayscale grid
image. The grid image with high contrast retinal vessels, regardless of the sizes, will yield
a large entropy value and vice versa. However, the entropy value presents a minimal
distinction between the grid image with low contrast retinal vessels and with only noises
or retinal surface.

Therefore, peak deviation nonuniformity (UG) [44] is included as the second factor.
This factor is sensitive to the changes in the grayscale level. Thus, it is beneficial in
distinguishing between the grid image containing low contrast vessels and the grid image
with only noises.

In the coarser grid image, particularly at the higher octave, fewer candidate feature
points are detected compared to the finer grid image. However, the values of the entropy
and peak deviation nonuniformity measured from the coarser and finer grid images only
show a minimal difference. To compensate for these factors, the total candidate feature
points detected in the grid image (TG) is considered as the third factor.

The distribution coefficient DCu for a grid image u can be expressed as the combination
of the three factors:

DCu = WEG
EG

∑U
u EG

+ WUG
UG

∑U
u UG

+ WTG
TG

∑U
u TG

(16)

where, WEG is the weight factor for the entropy, WUG is the weight factor for the peak
deviation nonuniformity, WTG is the weight factor for the total candidate feature points, u is
the index of the grid image with u ∈ [1, · · · , U] and U is the total grid in a Gaussian image
Gp,q. The weight factors are empirically set to WEG = 0.3, WUG = 0.3 and WTG = 0.4 to
give a distinctive representation in describing the grid image.

• STEP 6(b): Selection weightage

The selection process is continued by computing selection weightage for each candi-
date feature point. The selection weightage highlights the strength of the retinal vessels
indicated by entropy, area of the intersected region and the mean histogram of gradient
orientation at the vessel edges.

The entropy (EP) is computed as in [43] to describe the texture in the gradient in-
terpolated patch. Next, the area of the intersected region (AP) is determined between
the sums of intensity profiles from the gradient and binary interpolated patches in STEP
5(e), as depicted in Figure 12. The lowest intersection point on the y-axis is used as the
reference level to approximate the area of the intersected region using the trapezoidal rule.
The area of the intersected region expresses the strength of the retinal vessels in terms
of size and contrast. For example, the intersected region has a larger area for a thicker
and high contrast retinal vessel. The area decreases as the size and contrast of the retinal
vessel decreases.

Figure 12. Area of intersected region between the sums of the intensity profiles from exclusion
criterion 5.
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The mean histogram of the gradient orientation at the vessel edges (HP) is estimated
using both gradient and binary interpolated patches. Initially, the partial derivative is
performed on the gradient interpolated patch to obtain gradient orientation for each
pixel. The partial derivative is approximated using the central difference as it gives
a more accurate approximation compared to other techniques, such as forward and
backward approximations.

Then, the binary interpolated patch is used to obtain the vessel edges by performing
binary dilation to increase the thickness of the edges. Once the pixels on the vessel edges
are identified, the gradient orientation is extracted. The gradient orientation for these
pixels is organized into a histogram of 36 bins, as shown in Figure 13. In this histogram,
the non-zero frequencies are averaged to represent the mean histogram of the gradient
orientation at the vessel edges. The mean histogram will yield a high value for a high
contrast retinal vessel as the edges are thicker and the gradient orientation is more uniform.
In contrast, the mean histogram will yield a low value for the low contrast retinal vessel as
the edges are thinner and the gradient orientation is less uniform.

Figure 13. (a) Example of gradient orientation at the edges of the retinal vessel in a gradient
interpolated patch. (b) Close-up from the red rectangle region. (c) Histogram of 36 bins generated for
the gradient orientation in (a). The frequency in the histogram signifies the total occurrence of the
gradient orientation within the respective bin.

The selection weightage denoted by SWi is computed for each candidate feature point
(i) to highlight the strength of the retinal vessels as expressed below:

SWi = WEP
EP

∑TC
i HP

+ WAP
AP

∑TC
i AP

+ WHP
HP

∑TC
i HP

(17)

where, WEP is the weight factor for the entropy, WAP is the weight factor for the area of the
intersected region, WHP is the weight factor for the mean histogram of the gradient orienta-
tion at the vessel edges, i is the index of the candidate feature point with i ∈ [1, · · · , TC]
and TC is the total candidate feature point in a Gaussian image Gp,q. The weight factors
are empirically set to WEP = 0.3, WAP = 0.4 and WHP = 0.3 to distinctively highlight the
strength of the retinal vessels.

Finally, a total of Nu candidate feature points with the highest value of the selection
weightage SW are selected as feature points in each grid image. Then, the positions of the
selected feature points are refined to sub-pixel accuracy at the respective Gp,q, as in [15,45].
The feature points with refined positions are converted from the position at the respective
scale space to the coordinate system of the initial Gaussian image G0,−1 follows:

Km = 2p.Km,p,q (18)

where, Km is the feature point of index m in the coordinate system of the initial Gaussian
image G0,−1 and Km,p,q is the feature point of index m in the coordinate system at the
respective octave p and level q.
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3.3. STAGE 3: Feature Descriptor

SIFT descriptor [15] is assigned to each feature point extracted from fixed and moving
images. VLFeat toolbox [46] with default settings is used to compute the SIFT descriptor.

3.4. STAGE 4: Matching

The matches are obtained by establishing pairwise distances between SIFT descriptors.
The distances are computed using the sum of squared differences (SSD). The outliers in
the matches are eliminated using M-estimator SAmple Consensus (MSAC) algorithm [47].
MSAC eliminates the outliers when the distance between the matches in the fixed image and
the projected matches from the moving image exceeds a specified threshold. The projection
is performed according to the non-reflective similarity transformation and estimated from
two randomly selected matches. The distance threshold is set between 1 and 100 with an
increasing step of 0.1. The random trial is repeated 5000 times, and the desired confidence
is set to 99%.

3.5. STAGE 5: Geometrical Transformation

Similarity and local weighted mean transformations [48] are estimated for each image
pair from the established inliers. Only the transformation that gives the best registra-
tion accuracy is chosen for evaluation. The radius of influence for local weighted mean
transformation is set in the range of 10 to the total inliers with an increasing step of two.

4. Experimental Setup

The CURVE-SIFT was implemented in MATLAB R2016b running on a virtual machine
from Google Cloud Engine with specifications of Intel Xeon® E5 2.6GHz (24 vCPUs) and
40 GB of RAM. Toolboxes employed were Image Processing, Computer Vision, Signal
Processing and VLFeat [46].

The evaluation was divided into two parts. First, CURVE was evaluated in extracting
feature points on retinal vessels. The performance of CURVE was compared with five
feature extraction methods from the existing feature-based RIR techniques, namely, Harris
corner [26], SIFT [15], SURF [27,28], Ghassabi’s [8] and D-Saddle [14]. Then, CURVE-SIFT
was evaluated in registering image pairs from three retinal image registration applications
and compared with five existing feature-based RIR techniques; GDB-ICP [13], Harris-
PIIFD [10], Ghassabi’s-SIFT [8], H-M 16 [16], H-M 17 [9] and D-Saddle-HOG [14]. In the
experiment, these five existing feature-based RIR techniques were utilized exactly as they
are. H-M 16, H-M 17 and D-Saddle-HOG were originally developed using FIRE dataset for
super-resolution, image mosaicking and longitudinal study applications, while Ghassabi’s-
SIFT, GDB-ICP and Harris-PIIFD were developed for image mosaicking and low-quality
image using other datasets.

4.1. Datasets

A total of five public datasets at the original image size were employed in the eval-
uation. The original image size was used in the experiment as decreasing the spatial
resolution of the fundus image can degrade its quality and led to an inaccurate diagnosis
and treatment of retinal diseases [49]. Four of the datasets evaluated the feature extraction
performance, namely, CHASE_DB1 [33,34], DRIVE [35,36], HRF [37,38] and STARE [39,40].
These datasets contain fundus images affected by pathological cases. The provided ground
truth images are in the form of the segmented vessels performed by experts. This en-
ables the evaluation of the extracted feature points on the retinal vessels. The details of
CHASE_DB1, DRIVE, HRF and STARE datasets are described in Table 2.
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Table 2. Descriptions of CHASE_DB1, DRIVE, HRF and STARE datasets for evaluating feature extraction performance.

Descriptions
Datasets

CHASE_DB1 DRIVE HRF STARE

Total images 28 40 45 20
Image size (pixels) 999 × 960 564 × 584 3504 × 2336 605 × 700

Total patients 14 40 45 20
Age (Years) 9–10 25–90 N/A N/A

Pathological cases Vessel
tortuosity

33 images without sign of
diabetic retinopathy

7 images with mild early
diabetic retinopathy

15 images of healthy
patients

15 images of diabetic
retinopathy
15 images of

glaucomatous

Abnormalities that
obscure the blood

vessel appearance, such
as hemorrhaging, etc.

Field of view 30◦ 45◦ 45◦ 35◦

Year 2012 2004 2009 2000
Ground truth images 56 60 45 40

Intensity distribution 1 22.6136 49.3307 34.9433 49.5126
1 Described by peak deviation nonuniformity intensity. Values close to 0 indicates non-uniform intensity distribution in the image.

The registration performance of CURVE-SIFT is evaluated in the Fundus Image Reg-
istration dataset (FIRE) [41]. This dataset is the only public fundus image registration
dataset with ground truth annotation. The FIRE dataset consists of 134 image pairs divided
into super-resolution, image mosaicking and longitudinal study applications, as described
in Table 3. All image pairs are affected by diabetic retinopathy where vessel tortuosity,
microaneurysms and cotton-wool are visible on the images. Each image pair includes
10 corresponding ground truth annotations identified by experts.

Table 3. Descriptions of FIRE dataset for evaluating registration performance.

Descriptions
Retinal Image Registration Applications

Super-Resolution Image Mosaicking Longitudinal Study

Total images 71 49 14
Image size (pixels) 2912 × 2912

Total patients 39
Age (Years) 19–67

Pathological cases Diabetic retinopathy
Field of view 45◦

Year 2006 to 2015
Ground truth images 10 corresponding points for each image pair

Anatomical differences 1 No No Yes
Scale ≈1 ≈1 ≈1

Overlapping area (%) 86–100 17–89 95–100
Rotation (◦) 0◦–12◦ 6◦–52◦ 1◦–4◦

1 Anatomical differences observed between fixed and moving images.

Registering image pairs from super-resolution, image mosaicking and longitudinal
study applications involve a combination of several challenges, namely, overlapping area
and rotation. The overlapping area is an intersection region between fixed and moving
images. A small overlapping area limits the amount of similar information between im-
ages, which can be insufficient to estimate an accurate geometrical transformation. The
rotation in the fundus image is introduced to access part of the retina or due to involun-
tary movement by the patient. The rotation alters the orientation of similar information
between images. This alteration can be challenging for the feature-based RIR technique to
establish correspondences.

The super-resolution application combines multiple fundus images with a large over-
lapping area and small rotation. The super-resolution application is performed to increase
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the density of the spatial sampling, which can resolve the blurred edges of the retinal
vessels caused by patient movements or improper imaging setup.

The image mosaicking application aligns multiple fundus images to generate an image
with a wider view of the retina. The wide view image of the retina can be used to view
the full extent of the retinal disease in one big picture during diagnosis [50,51] and during
the preparation of eye laser treatment for diabetic retinopathy [52]. However, registering
image pairs from the image mosaicking application can be challenging as it involves a
combination of small overlapping areas and large rotation.

The longitudinal study application combines multiple fundus images that are acquired
at different screening sessions. Therefore, the anatomical changes due to progression or
remission of retinopathy such as increased vessel tortuosity, microaneurysms and cotton-
wool spots can be observed between fixed and moving images. The longitudinal study
application is essential in monitoring the progression of retinal diseases, such as glaucoma
and age-related macular degeneration, which usually undergoes a long degeneration
process [53].

4.2. Evaluation Metrics
4.2.1. Feature Extraction Performance

(a) Extraction accuracy

The extraction accuracy expresses the ability of a feature extraction method to extract
feature points on retinal vessels. The extraction accuracy for an image can be computed by:

ExAc =

total f eature points extracted
on vessels

total f eature points
× 100% (19)

where, ExAc is the extraction accuracy in percentage.
The extraction accuracy for an image is set to 0% when the feature points extracted

are below the minimum requirement of three points to perform a transformation. One-way
Analysis of Variance (ANOVA) with Tukey’s post hoc was performed to compare the
extraction accuracy between methods.

(b) Factors influencing the extraction accuracy

Two factors influencing the feature extraction accuracy were investigated. These
factors are changes in image size and intensity distribution throughout the image. The
relations were investigated using Spearman’s rank-order correlation. The image size and
the intensity distribution of the fundus images in CHASE, DRIVE, HRF and STARE datasets
are summarized in Table 2. The intensity distribution is described by peak deviation
nonuniformity [44].

4.2.2. Registration Performance

(a) Success rate

Success rate measures the ability of a feature-based RIR technique to register image
pairs and meet the specified requirement of target registration error (TRE). TRE is the mean
distance in pixel between the ground truth annotations in a fixed image to the transformed
ground truth annotations from the moving image. A perfect registration for an image pair
is represented by TRE values equal to 0.

However, achieving a perfect registration can be challenging in a real-world applica-
tion. Thus, the registration for an image pair is considered successful if the obtained TRE is
below one pixel for super-resolution applications and five pixels for image mosaicking and
longitudinal study applications [54]. The success rate can be computed as given below:

Success rate =

total image pairs with
success f ul registration

total image pairs
× 100% (20)
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The one-way ANOVA with Tukey’s post hoc was performed to compare the success
rate between the feature-based RIR techniques.

(b) Factors influencing the success rate

Factors of overlapping area and rotation were investigated for their influence on the
success rate using Spearman’s rank-order correlation. It should be noted that for this
evaluation, the successful registration was set below five pixels for all image pairs despite
its registration application. As the details of the overlapping area and rotation are not
initially provided by the FIRE dataset, this information is measured as follows.

The overlapping area in percentage is obtained from the overlap area between the
fixed image and transformed moving image. The moving image is transformed to the
orientation of the fixed image using affine transformation inferred from the corresponding
ground truth annotations. The rotation for an image pair is measured from the average
angle between corresponding ground truth annotations without considering the effect
of translation, as in [14]. Thus, results were in the larger angle of rotation. The range of
overlapping area and rotation in the FIRE dataset is provided in Table 3.

5. Results
5.1. Feature Extraction Performance

CURVE extracts an average of 2482 feature points from the CHASE, DRIVE, HRF
and STARE datasets, where 2149 of them are accurately associated with retinal vessels.
This constitutes an average feature extraction accuracy of 86.021% with a variation of
9.199% between images, as outlined in Table 4. Furthermore, the one-way ANOVA analysis
shows that the feature extraction accuracy of CURVE was significantly outperformed by
all existing feature extraction methods (p < 0.001*). CURVE obtained the biggest accuracy
difference with SIFT detector (69.857%) and the smallest difference with Harris corner
(44.408%). Examples of CURVE feature points extracted from four datasets are depicted
in Figure 14.

Table 4. Overall feature extraction accuracy (%) in CHASE_DB1, DRIVE, HRF and STARE datasets.

Feature Extraction Method Total Images Mean Standard Deviation Min Max

Harris corner 133 41.613 21.317 0.000 92.857
SIFT detector 133 16.164 5.411 5.241 30.299

SURF 133 18.929 4.206 9.502 30.412
Ghassabi’s 133 28.280 5.975 17.055 44.197
D-Saddle 133 20.509 4.791 12.221 31.273
CURVE 133 86.021 9.199 59.677 97.842

Figure 14. Examples of feature points extracted by CURVE. Top row: Images with the lowest
extraction accuracy in each dataset. Bottom row: Images with the highest extraction accuracy in
each dataset.
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The high feature extraction accuracy of CURVE is contributed to by the utilization
of both the retinal vessels and noise characteristics in the feature detection and selection
modules. Thus, enabling accurate discrimination between the retinal vessels and noises.
Contrarily, Ghassabi’s and D-Saddle enhanced the fundus image to increase the visibility
of the retinal vessels. However, this enhancement also increases the visibility of the noise,
which led both methods to yield low feature extraction accuracy. The extracted feature
points located on the noises for these methods were observed to be on the edge of the optic
disc, retinal nerve fiber layer, underlying choroidal vessels and macula. The other feature
extraction methods such as Harris corner, SIFT detector and SURF are without a specific
feature selection module to extract feature points on retinal vessels. These feature extraction
methods were used in the existing feature-based RIR techniques [10,13,16], where the
authors focused on the development of the feature descriptor and transformation model.

Other than that, the minimal usage of rigid thresholds or variables allows CURVE to
accurately extract feature points from fundus images with varying sizes. This is shown
by the smallest Spearman’s rho among all methods and insignificant correlation between
the changes in image size and the extraction accuracy of CURVE (rs = −0.032, p = 0.712)
as presented in Table 5. Furthermore, the extraction accuracy of D-Saddle (rs = −0.138,
p = 0.114) and Ghassabi’s (rs = −0.142, p = 0.104) exhibit insignificant correlation with the
changes in image size but their correlations are stronger than CURVE. In contrast, SIFT
detector is very sensitive to the changes in image size among all methods where its feature
extraction accuracy decreases in larger images (rs = −0.649, p < 0.001*).

Table 5. Correlation between extraction accuracy and factors.

Feature Extraction Method
Image Size Intensity Distribution

rs p-Value rs p-Value

Harris corner −0.178 0.041 * 0.360 <0.001 **
SIFT detector −0.649 <0.001 ** 0.138 0.113

SURF 0.590 <0.001 ** −0.398 <0.001 **
Ghassabi’s −0.142 0.104 0.314 <0.001 **
D-Saddle −0.138 0.114 0.386 <0.001 **
CURVE −0.032 0.712 0.342 <0.001 **

rs: Spearman’s rho. **: Correlation is significant at the 0.01 level (2-tailed). *: Correlation is significant at the 0.05 level (2-tailed).

However, CURVE performance is significantly affected in the presence of non-uniform
intensity distribution in the image (rs = 0.342, p < 0.001*). CURVE is sensitive towards the
non-uniform intensity distribution because it highly depends on the intensity changes to
locate the curvature of the retinal vessels in the feature detection module. Furthermore,
CURVE does not incorporate any feature enhancement algorithm. The feature enhancement
algorithms, such as DoG and iiDoG operators, can suppress the non-uniform intensity
distribution and increase the visibility of the retinal vessels but at the cost of increasing
the visibility of the noises. Thus, it is avoided in the proposed CURVE. Contrarily, the
correlation between SIFT detector and the intensity distribution is not significant and the
weakest among all feature extraction methods (rs = 0.138, p = 0.113).

5.2. Registration Performance

The evaluation continues by accessing the registration performance of CURVE-SIFT
and six existing feature-based RIR techniques [8–10,13,14,16]. From the experimental
results outlined in Table 6, CURVE-SIFT successfully registered a total of 59 image pairs
in the FIRE dataset with a success rate of 44.030%. The one-way ANOVA analysis shows
that the success rate of CURVE-SIFT significantly outperformed GDB-ICP at p = 0.007*,
whereas Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17 and D-Saddle-HOG at p < 0.001*.
The biggest success rate difference was observed between CURVE-SIFT and Harris-PIIFD
(40.299%), while the smallest difference was with GDB-ICP (16.418%).
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Table 6. Success rate (%) in the FIRE dataset.

Feature-Based
RIR Technique

Total
Image Pairs 1 Mean Standard

Deviation
TRE (Pixels)

Min Max
Overall

GDB-ICP 37 27.612 44.875 2.354 10.416
Harris-PIIFD 5 3.731 19.024 3.319 1486.255

Ghassabi’s-SIFT 17 12.687 33.407 3.082 322.616
H-M 16 22 16.418 37.183 2.857 410.087
H-M 17 26 19.403 39.694 2.920 60.875

D-Saddle-HOG 16 11.940 32.548 4.583 27.266
CURVE-SIFT 59 44.030 49.829 1.928 1016.330

Super-resolution
GDB-ICP 17 23.944 42.978 0.486 4.575

Harris-PIIFD 2 2.817 16.663 0.785 12.850
Ghassabi’s-SIFT 13 18.310 38.950 0.665 15.798

H-M 16 18 25.352 43.812 0.554 13.903
H-M 17 20 28.169 45.302 0.489 5.696

D-Saddle-HOG 10 14.085 35.034 0.748 9.327
CURVE-SIFT 28 39.437 49.219 0.613 9.696

Image Mosaicking
GDB-ICP 16 32.653 47.380 1.946 6.323

Harris-PIIFD 0 0.000 0.000 10.041 3870.632
Ghassabi’s-SIFT 0 0.000 0.000 7.358 578.494

H-M 16 0 0.000 0.000 7.976 129.658
H-M 17 1 2.041 14.286 3.327 41.192

D-Saddle-HOG 2 4.082 19.991 3.082 366.401
CURVE-SIFT 26 53.061 50.423 1.787 19.799

Longitudinal Study
GDB-ICP 4 28.571 46.881 2.354 10.416

Harris-PIIFD 3 21.429 42.582 3.319 1486.255
Ghassabi’s-SIFT 4 28.571 46.881 3.082 322.616

H-M 16 4 28.571 46.881 2.857 410.087
H-M 17 5 35.714 49.725 2.920 60.875

D-Saddle-HOG 4 28.571 46.881 4.583 27.266
CURVE-SIFT 5 35.714 49.725 1.928 1016.330

1 Total image pairs with successful registration.

Moreover, the overall success rate of D-Saddle-HOG (14.085%) reported in this study
is much lower than in [14] because this study evaluates D-Saddle performance on the FIRE
dataset at the original image size of 2912 × 2912 pixels. Contrarily, the work presented
in [14] evaluates D-Saddle-HOG performance on the FIRE dataset at the smaller image
size of 583 × 583 pixels. The extraction accuracy of D-Saddle is insignificantly correlated
to the changes in image size, as shown in Table 5. However, D-Saddle-HOG employed a
Histogram of Oriented Gradients (HOG) descriptor [55] in its framework where a larger
image can decrease the number of correct matches or inliers established between the
computed HOG descriptor [56]. Insufficient amounts of the established inliers can lead to
the estimation of inaccurate geometrical transformation.

The most noticeable performance of CURVE-SIFT is observed in the image mosaick-
ing application. The image pairs from the image mosaicking application involved the
combination of smaller overlapping areas (17–89%) and larger rotation (6◦–52◦) in the
dataset. Despite these challenges, the success rate of CURVE-SIFT (53.061%) is significantly
outperformed for all existing feature-based RIR techniques (p < 0.001*). This performance
is contributed to by CURVE’s ability to accurately extract feature points on retinal vessels
and distribute them throughout the image to increase the chances of the inliers being
established within the overlapping area. Furthermore, the employed SIFT descriptor has
the ability to establish over 60% of inliers when the rotation is below 90◦ [57]. These abilities
are also expressed in the established Spearman’s rank-order correlations in Table 7, where
CURVE-SIFT yields smaller Spearman’s rho values indicating weaker correlations with the
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overlapping area and rotation compared to Harris-PIIFD, Ghassabi’s, H-M 16, H-17 and
D-Saddle. In contrast, the existing feature-based RIR techniques recorded a much lower
success rate with less than 32.653%, whereas Harris-PIIFD, Ghassabi’s and H-M 16 were
unable to register any of the image pairs in the image mosaicking application.

Table 7. Correlation between success rate and factors.

Feature-Based
RIR Technique

Overlapping Area Rotation

rs p-Value rs p-Value

GDB-ICP 0.443 <0.001 ** −0.380 <0.001 **
Harris-PIIFD 0.732 <0.001 ** −0.723 <0.001 **

Ghassabi’s-SIFT 0.795 <0.001 ** −0.766 <0.001 **
H-M 16 0.785 <0.001 ** −0.763 <0.001 **
H-M 17 0.773 <0.001 ** −0.765 <0.001 **

D-Saddle-HOG 0.769 <0.001 ** −0.745 <0.001 **
CURVE-SIFT 0.415 <0.001 ** −0.382 <0.001 **

rs: Spearman’s rho. **: Correlation is significant at the 0.01 level (2-tailed).

The image pairs from the super-resolution application are the least challenging in the
FIRE dataset as they involve a large overlapping area (86–100%) and small rotation (0◦–12◦).
However, the super-resolution application requires a very accurate registration with a TRE
of less than one pixel. For this reason, CURVE-SIFT only recorded a success rate of 39.437%
in this application, where the TRE of the failed registration ranged between 1.003 pixels
to 9.696 pixels. The success rate of CURVE-SIFT outperformed all existing feature-based
RIR techniques evaluated in this study but only significant with Harris-PIIFD (p < 0.001*),
Ghassabi’s-SIFT (p = 0.030*) and D-Saddle-HOG (p = 0.004*).

The image pairs from the longitudinal study application are the most challenging
for CURVE-SIFT to register, where it obtained the lowest success rate (35.714%) among
the applications in the FIRE dataset. Furthermore, no significant difference can be noted
between the success rate of CURVE-SIFT and existing feature-based RIR techniques. This
shows that the registration performance of CURVE-SIFT is affected when the anatomical
appearance is varied between images in the pair. Particularly, CURVE-SIFT failed to
register image pairs when the prominent differences of vessel thickness and tortuosity were
observed between images. The difference in vessel thickness between fixed and moving
images leads to different descriptors being computed for local features at the same part
of the vessels. As a result, these local features were unable to establish a correspondence,
resulting in low registration accuracy. In the event of increased tortuosity, the corresponding
local features were appropriately established. However, the tortuosity causes the vessels to
bend and alters the actual physical position of the vessels on the eyeball. Consequently,
the registration was performed between local features on the same part of the vessels
but at different physical positions, which resulted in high TRE. For existing feature-based
RIR techniques, the invariant features utilized in their works were extracted throughout
the image. Thus, minimize the impact of vessel thinning and tortuosity compared to our
work. Examples of registered image pairs for CURVE-SIFT in each application are depicted
in Figure 15.
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Figure 15. Examples of the successfully registered image pairs for CURVE-SIFT in the FIRE dataset. The green markers are
inliers on the fixed image, while red/blue markers are inliers on moving image. Right images: Close-up for yellow square
area as checkerboard image containing alternating rectangular regions from fixed image and moving image.

6. Conclusions

This paper introduces a new feature extraction method known as CURVE for the
feature-based RIR technique. The proposed CURVE aims to extract feature points on
retinal vessels and throughout the fundus image, which is important to ensure accurate
registration of fundus images. However, in the local patches, the noises, such as retinal
nerve fiber layer, underlying choroidal vessels, microaneurysm and exudates can also
appear similar to retinal vessels. Therefore, CURVE incorporates both characteristics of the
retinal vessels and noises in its modules to enable accurate discrimination between them.

The ability of CURVE to extract feature points on retinal vessels was demonstrated on
the CHASE_DB1 [33,34], DRIVE [35,36], HRF [37,38] and STARE [39,40] datasets. Then, the
CURVE performance was compared with five feature extraction methods from the existing
feature-based RIR techniques, namely, Harris corner [26], SIFT detector [15], SURF [27,28],
Ghassabi’s [8] and D-Saddle [14]. From the experiment, CURVE accurately extracts an
average of 86.021% of the feature points on retinal vessels and significantly outperformed
the existing feature extraction methods (p < 0.001*). Further analysis shows that the impact
of image size on CURVE performance is minimal (rs = −0.032, p = 0.712) but significantly
affected in the presence of non-uniform intensity distribution in the image (rs = 0.342,
p < 0.001*).

The registration performance when utilizing CURVE feature points in the feature-
based RIR technique was demonstrated on the FIRE dataset. CURVE was paired with the
SIFT descriptor [41], and the registration performance of CURVE-SIFT was compared with
five existing feature-based RIR techniques; GDB-ICP [13], Harris-PIIFD [10], Ghassabi’s-
SIFT [8], H-M 16 [16], H-M 17 [9] and D-Saddle-HOG [14]. Overall, CURVE-SIFT success-
fully registered 44.030% of the image pairs in the FIRE dataset, while the success rate of the
existing feature-based RIR techniques is less than 27.612%. The one-way ANOVA analysis
showed that CURVE-SIFT is significantly outperformed GDB-ICP at p = 0.007* whereas
Harris-PIIFD, Ghassabi’s-SIFT, H-M 16, H-M 17 and D-Saddle-HOG at p < 0.001*. CURVE-
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SIFT obtained the highest success rate (53.061%) in the image mosaicking application,
while the success rates of the existing feature-based RIR techniques were only between
0% to 32.653%. The image mosaicking application consists of image pairs with smaller
overlapping areas compared to other applications in the FIRE dataset. Thus demonstrating
the ability of CURVE to extract feature points on retinal vessels throughout the image. This
is crucial to increase the chances of the inliers being established within the overlapping area
to estimate an accurate geometrical transformation. In the future, we will focus our efforts
to improve CURVE in extracting feature points from fundus images with non-uniform
intensity distribution. Moreover, we will explore the possibility of a fusion strategy to
combine deep convolutional neural network (CNN) with local feature point for feature
extraction [58]. However, at the time of this study, the size of the public RIR dataset was
small, which may result in model overfitting or underfitting [59]. The study will begin
once a larger dataset or suitable pre-trained model for RIR is available publicly.
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Appendix A

Table A1. Mathematical symbols and notation.

No. Symbol Description No. Symbol Description

1 σ̌p,q
Relative Gaussian kernel at octave p
and level q. 28 Ldistance

Distance between the parallel cross-sectional lines.
Exclusion criterion 1 : Ldistance = 3 pixels.
Exclusion criterion 2, 5 : Ldistance = 5pixels.

2 β Central intensity value. 29 Llength Length of the cross-sectional lines.

3 ε Offset, ε = 0.0010. 30 Ltotal

Total of the cross-sectional lines, an odd number.
Exclusion criterion 1 : Ltotal = 5 pixels.
Exclusion criterion 2, 5 : Ltotal = 7pixels.

4 µ Constant factor. 31 m Index of the feature point.

5 σ0 Base width of Gaussian kernel, σ0 = 1.6. 32 n Index of the images in the hierarchical Gaussian scale
space.

6 σs Sampling Gaussian kernel, σs = 0.5. 33 Ntotal
Total feature points in the hierarchical Gaussian
scale space, Ntotal = 4500points.

7 σp,q Absolute Gaussian kernel at octave p and. 34 Np,q The maximum number of feature points in Gp,q.
8 aj Pixel for inner ring test. 35 Nu The

9 AP
Area of the intersected region between the
sums of intensity profiles from the gradient
and binary interpolated patches.

36 p Octave index, p ∈ [0, . . . , P− 1].

10 bl Pixel for outer ring test. 37 P Total octave in the scale space, P = 3.

https://blogs.kingston.ac.uk/retinal/chasedb1/
https://blogs.kingston.ac.uk/retinal/chasedb1/
https://drive.grand-challenge.org/
https://www5.cs.fau.de/research/data/fundus-images/
https://cecas.clemson.edu/~ahoover/stare/
https://cecas.clemson.edu/~ahoover/stare/
https://projects.ics.forth.gr/cvrl/fire/
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Table A1. Cont.

No. Symbol Description No. Symbol Description

11 B The blue channel. 38 q Level index within an octave, q ∈ [−1, . . . , Q− 2].
12 DCu Distribution coefficient for a grid of index u. 39 Q Total level in each octave, Q = 6.
13 e Extremum. 40 R The red channel.
14 EG Entropy of a grid image. 41 sbin Side length of the binary interpolated patch.

15 EP Entropy of a gradient interpolated patch. 42 sinitial

Initial side length of the patch in pixels. sinitial
is set according to the image size of the initial Gaussian
image G0,−1.

sinitial


35 pixels if G0,−1 > 1000× 1000 pixels
25 pixels if G0,−1 ≤ 1000× 1000 pixels

> 600× 600 pixels
21 pixels if G0,−1 ≤ 600× 600 pixels

16 f0
Proportion of the feature points at the initial
Gaussian image G0,−1. 43 sp Side length of the patch at octave p.

17 Fp,q Proportion of the feature points at Gp,q. 44 SWi Selection weightage for a candidate feature point of index i
18 G The green channel. 45 TG Total candidate feature points detected in a grid image.
19 G Hierarchical Gaussian scale space. 46 u Index of the grids in Gp,q.
20 Gp,q Gaussian image at octave p and. 47 U Total grids in a Gaussian image Gp,q.

21 i Index of the candidate feature point in a
Gaussian image. 48 UG Peak deviation nonuniformity of a grid image.

22 I Input image in grayscale. 49 WAP
Weight factor for the area of the intersected region,
WAP = 0.4.

23 Iaj
Intensity of inner ring pixel aj
in grayscale, Iaj ∈ [0, 1]. 50 WEG Weight factor for the entropy, WEG = 0.3.

24 Ibl

Intensity of outer ring pixel bl
in grayscale Ibl

∈ [0, 1]. 51 WEP Weight factor for the entropy, WEP = 0.3.

25 j Index of inner ring pixels, j ∈ [1, . . . , 8]. 52 WHP
Weight factor for the mean histogram of the gradient
orientation at the vessel edges, WHP = 0.3.

26 Km Feature point of index m. 53 WTG
Weight factor for the total candidate feature points,
WTG = 0.4.

27 Km,p,q

Feature point of index m
in the coordinate system at the respective
octave p and level q.

54 WUG
Weight factor for the peak deviation nonuniformity,
WUG = 0.3.
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Appendix B

Table A2. Characteristics of retinal vessels and noises in blue squares. Red lines in (ii) and (iv) are cross-sectional lines to extract intensity profiles in (iii) and (v).

(i) Colour Patch (ii) Grayscale Patch (iii) Intensity Profile for (ii) (iv) Binary Patch (v) Intensity Profile for (iv) (vi) Grayscale Patch in 3-D

(a) Retinal vessel without
central light reflex

R
et

in
al

Ve
ss

el
s

(b) Retinal vessel with
central light reflex
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Table A2. Cont.

(i) Colour Patch (ii) Grayscale Patch (iii) Intensity Profile for (ii) (iv) Binary Patch (v) Intensity Profile for (iv) (vi) Grayscale Patch in 3-D

(c) Retinal nerve fibre
layer

N
oi

se

(d) Single underlying
choroidal vessels
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Table A2. Cont.

(i) Colour Patch (ii) Grayscale Patch (iii) Intensity Profile for (ii) (iv) Binary Patch (v) Intensity Profile for (iv) (vi) Grayscale Patch in 3-D

(e) Multiple underlying
choroidal vessels

N
oi

se

(f) Microaneurysm
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Table A2. Cont.

(i) Colour Patch (ii) Grayscale Patch (iii) Intensity Profile for (ii) (iv) Binary Patch (v) Intensity Profile for (iv) (vi) Grayscale Patch in 3-D

(g) Exudates

N
oi

se

(h) Edge of optic disc
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