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Abstract: With the outbreak of COVID-19 that has prompted an increased focus on self-care, more
and more people hope to obtain disease knowledge from the Internet. In response to this demand,
medical question answering and question generation tasks have become an important part of natural
language processing (NLP). However, there are limited samples of medical questions and answers,
and the question generation systems cannot fully meet the needs of non-professionals for medical
questions. In this research, we propose a BERT medical pretraining model, using GPT-2 for question
augmentation and T5-Small for topic extraction, calculating the cosine similarity of the extracted
topic and using XGBoost for prediction. With augmentation using GPT-2, the prediction accuracy
of our model outperforms the state-of-the-art (SOTA) model performance. Our experiment results
demonstrate the outstanding performance of our model in medical question answering and question
generation tasks, and its great potential to solve other biomedical question answering challenges.

Keywords: BERT; GPT-2; XGBoost; T5-Small; medical question answering; transfer learning

1. Introduction and Background

In recent years, human diseases and healthcare have received extensive attention.
With the outbreak of COVID-19 at the beginning of 2020, huge efforts have been dedicated
to the prevention, treatment, diagnosis, and rehabilitation of COVID-19 [1]. Many stud-
ies on COVID-19 have been published in major medical research communities (such as
PubMed [2,3], bioRxiv [4], WHO [5], and medRxiv [2]). However, medical terminologies
in academic research and publications hinder the majority of non-professionals from better
acquiring the urgently needed medical knowledge. This has become a deep and insur-
mountable gap between advanced research and public demand [6]. Since medical question
answering (QA) systems based on natural language processing (NLP) play a critical role to
improve the quality of current health care systems, developing accurate and robust medical
QA models has become a research priority [7].

Disease knowledge includes various information about a disease, such as signs, symp-
toms, diagnosis, and treatment [8–10], which are essential for NLP in healthcare and
biomedicine. NLP in healthcare addresses at least three issues: (1) medical question an-
swering (QA) system, ranking candidate paragraphs to answer the question; (2) medical
terminology inference [11], predicting whether a given hypothesis (a description of the
patient) could be inferred from a given premise (another description of the patient); (3)
disease name recognition [12], detecting disease information from the text. To address the
above issues, it is crucial for NLP models to capture disease knowledge, that is, to detect
the semantic relationship between the description text and the disease.

Due to the development of deep learning, NLP has made unprecedented progress.
The NLP community attaches great importance to automated question answering (QA). In
contrast, the reverse research—automatic question generation—has received significantly
less attention. However, question generation (QG) [13–16] has a large number of potential
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applications, such as improving the training of QA systems [17,18] and helping create
new resources in the field of medical question answering. Automatic question generation
and personalized questions can help identify relevant medical questions and retrieve the
most desired answers. It helps with the insufficiency in the medical question database
and alleviates the burden on healthcare providers to manually answer questions, which
further benefit the prevention and treatment of diseases, such as COVID-19. Consumers
can also get the most understandable answers with a fast response, through simple and
straightforward medical questions.

In the research field of medical question answering and question generation, there are
still lots of challenges. First of all, key problems in medical question answering include:
(1) the number of samples is insufficient, thus, deep learning models cannot learn well;
(2) the manual labeling of medical professional terminologies is challenging and time
consuming. Meanwhile, in medical automatic question generation (AQG) systems there
are also challenges: (1) similar to question answering systems, the samples of questions and
medical terminologies are limited; (2) the universality of problem generation is challenging.
The generated problems may be too professional, which does not match the simple ques-
tions the public demands. In order to overcome the above challenges, data augmentation
together with transfer learning becomes a better option.

In this paper, we propose a model for medical question answering based on BERT,
GPT-2 [19], and T5-Small [20], three latest variants of the transformer architecture [21].
Our study aims to improve the performance of medical question answering. The main
idea is that since question answering and question generation are naturally related tasks,
some work, such as training a QA system with limited samples, would be beneficial to
both tasks. Essentially, the transformer architecture consists of two main blocks, namely
stacked encoders and decoders, which are connected in cascade. The encoder includes two
parts: self-attention sublayer and feedforward neural network. Self-attention allows the
current node not only to focus on a word, but also to obtain the semantics of the context.
The decoder also contains the two layers of the encoder, as well as an encoder-decoder
attention layer between the two, which helps process specific parts that need attention.
Compared with the original transformer architecture, GPT-2 discards the encoder block
and keeps the decoder stack. It provides the functions of a conventional language model
and is powerful at predicting the next token in a sequence. Therefore, it is suitable for the
question generation task. However, it cannot guarantee that the generated questions are
valid and answerable because it is not optimized.

In contrast, BERT is a masked language model. It establishes word embeddings in a
context-specific and bidirectional manner. Furthermore, by applying a specific regression
head, BERT is trained for discriminative QA. Specifically, it predicts answers in the given
paragraph for a given question. Beyond QA, BERT has demonstrated extreme versatility
in many downstream tasks. Compared with conventional transformer and in contrast
to GPT-2, BERT discards the decoder block and keeps the encoder stack. As BERT is a
general purpose language model, most disease names and medical terminologies are not
included in BERT’s vocabulary. We pretrained BERT on a large scale biomedical corpus
and it demonstrated much better performance in biomedical text mining tasks.

In our proposed model, we first use BERT to build word vectors for medical samples
and obtain medical word-embedding vectors. After that, we use GPT-2 to augment the
question (Q). After the augmentation, we use T5-Small from Google to extract predictions
S1 and S2 using answer (A) and question (Q), respectively. Finally, we calculate the cosine
similarity of S1 and S2, and evaluate the accuracy with XGBoost. The main contributions
of this research are as follows:

• We use GPT-2 to augment the question (Q) samples and use S (meaning) and A
(answer) as keywords to generate complete sentences as data augmentation for a
problem;

• We use T5-Small, a transfer learning model, to perform the S1 extraction on answer
(A) and the S2 extraction on question (Q), which is based on a larger corpus. We put
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more biomedical corpus into our proposed augmentation model for learning, which
improves the prediction accuracy of the model in medical question answering tasks.

Experiments on the benchmark datasets for medical question and answer tasks show
that, compared with state-of-the-art (SOTA) performance that integrates BERT with disease
knowledge, our proposed model is more effective and more competitive. Specifically, we
introduce GPT-2 for data augmentation and use T5-Small for extraction, which improves
the overall performance of the system.

The rest of this paper is organized as follows. Section 2 reviews research work related
to QA and QG systems in the biomedical field. Section 3 explains our proposed model. In
Section 4, several comprehensive experiments are conducted to evaluate the effectiveness
of the proposed system. Finally in Section 5 we conclude the paper and provide future
work.

2. Related Work
2.1. Medical Question Answering and Data Augmentation

The main issues faced by medical question answering tasks are focused on insufficient
samples [22] and medical terminologies [23]. To address those issues, various transfer learn-
ing and augmentation models have been proposed to improve the prediction performance
of the system [24,25]. Semantic biomedical question answering is an important task in the
application of biomedical question answering [26,27]. Due to the reliability of answers
it can provide, it has attracted widespread attention. In a question answering system, a
better word representation is very important, and proper word embeddings can usually
considerably improve the performance of the system. With the successful application of
pretraining models in general natural language processing tasks, pretraining models have
also been widely used in the field of biomedicine. Pretraining models have demonstrated
their effectiveness in biomedical question answering tasks [28]. In addition to proper word
embedding, named entity recognition is also important in biomedical question answering.
Inspired by transfer learning, Peng et al. developed a model to fine-tune BioBERT with a
named entity dataset to improve the performance of question answering. In addition, the
model uses BiLSTM to encode the question text to obtain sentence-level information. The
model also uses bagging to further improve its overall performance, which better combines
question-level and token-level information. The model has been evaluated on BioASQ 6b
and 7b datasets, and the results demonstrate its advantages and promising potentials [29].
When adapting to specialized domains, such as the COVID-19 literature, model fine-tuning
and pretraining can be costly. In order to improve their domain adaptation, Pergola et
al. proposed an approach called biomedical entity-aware masking (BEM), which allowed
masked language models to learn entity-centric knowledge based on pivotal entities at
hand, and used these entities to drive the fine-tuning of the language model (LM). The per-
formance of this model on several biomedical quality assurance datasets was comparable
to state-of-the-art models [30].

Healthcare has attracted significant attention, especially during the pandemic. In
order to seek healthcare information, tons of questions have appeared on the Internet,
which makes it even more urgent to develop an efficient and reliable question answering
system. However, people often provide unnecessary information in their questions, such
as a patient’s medical history, demographic information, etc. It adds the challenges of
understanding natural language questions. In addition, it is crucial to provide accurate and
relevant answers instead of paragraphs or even documents. To achieve a reliable medical
question answering system, the main tasks include question summarization, as well as
multi-answer summarization. The MEDIQA 2021 challenge tackled three summarization
tasks in the medical domain: consumer health question summarization, multi-answer
summarization, and radiology report summarization. Yadav et al. (NLM at MEDIQA
2021) proposed an approach that first pretrained transformer models on a task-specific
summarization dataset and introduced a transfer learning method for question summa-
rization and multi-answer summarization tasks, and then fine-tuned the model for these
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two tasks by incorporating medical entities. Their approach won the second, sixth and
fourth place for the question summarization task in ROUGE-1 (the overlap of unigram
(each word) between the system and the reference summaries), ROUGE-2 (the overlap of
bigrams between the system and the reference summaries) and ROUGE-L (the longest
common subsequence (LCS)-based statistics) scores, respectively, ref. [31].

Question generation (QG) can automatically generate questions from a given context [13],
which can be used to build QA datasets. Yue et al. (2020) applied the QG method to synthe-
size QA pairs on new clinical contexts without requiring manual annotation, and showed
that the generated datasets can be used to improve QA models on new contexts [32].
Suwarningsih [33] has created an educational electronic health system in the form of a
health question and answer system. It uses a dynamic neural network to validate informa-
tion with answers, which can effectively provide answers that focus on valid information.
The model provides a corpus in the form of a QA pair, which can be automatically gener-
ated and provide accurate information for users with upper respiratory tract infections.
The accuracy rate of the model is 71.6%. Based on all above research on medical question
answering and question generation, transfer learning can effectively improve the accuracy
of model prediction. This paper adopts T5-Small, a transfer learning model of text-to-text
transformer, to improve the accuracy of the system.

2.2. GPT-2 and Question Answering System

Created by OpenAI in 2019, Generative Pre-trained Transformer 2 (GPT-2) is an
unsupervised deep learning transformer-based language model. It is widely used in text
translation, question answering, summarization, etc. Esteva et al. used Wikipedia to train
a multi-hop question answering model, which treats a query as a question and generates
answers from the retrieved documents. In the same way, they trained an abstractive
summarizer to generate a summary. The summarizer consists of a BERT encoder and
a modified GPT-2 decoder. The model was tested on COVID-19-related datasets and
achieved top performance based on key metrics: normalized discounted cumulative gain,
precision, mean average precision, and binary preference [34]. To address the challenge of
real-world relation extraction (RE) tasks, Papanikolaou proposed the GPT-1-based Data
Augmented Relation Extraction (DARE). DARE is designed to augment training data by
appropriately fine-tuning GPT-2 to generate examples. Combined with a gold standard
dataset (a set of data that has been manually prepared or verified and considered to
represent “the objective truth” as closely as possible), the generated training data is used
to train a BERT-based RE classifier. A series of experimental results demonstrates the
advantage of the proposed method, which improves up to 11 F1 scores. Furthermore,
DARE reaches a new level in three widely used biomedical RE datasets [35]. Oniani et al.
used the GPT-2 language model to automatically answer questions related to COVID-19.
They applied transfer learning to retrain it on the COVID-19 open research dataset corpus.
They used four different approaches to improve the quality of the generated responses.
Performance evaluation showed that the work achieved significant results in designing a
chatbot to produce high-quality COVID-19-related question answering [36].

2.3. T5 and Question Answering

The Text-To-Text Transfer Transformer (T5) model is a modern, large-scale multi-
tasking model that is trained by multiple NLP tasks in a unified text-to-text framework [37].
Through extensive pretraining and transfer learning, it has achieved tremendous success in
various NLP benchmark tasks, including the GLUE benchmark [38]. This text-to-text frame-
work can be conveniently adapted to any NLP task, including machine translation, docu-
ment summarization, question answering, and classification tasks. T5 is flexible enough
and successful for many tasks. In [39], a generative closed-book question-answering task is
studied. In [40], a QA system based on the T5 model with 770M parameters is provided,
which explored the efficacy of generating COVID-19 answers from an input question. The
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advantage of this framework is that it is context-free. However, the results in [40] are not
directly comparable to other frameworks.

3. Materials and Method
3.1. Dataset

Pretraining Dataset. In this paper, we used the disease knowledge dataset used in
DiseaseBERT [41] for pretraining. The Medical Subject Headings (MeSH) disease and
mental disorder branch was selected as the disease vocabulary. A total of 5853 target
disease terms from MeSH were searched through Wikipedia articles and 14,617 paragraphs
of disease knowledge were collected. The code and data for the dataset are provided
in [17]. We used the training procedure proposed in DiseaseBERT [41]: disease knowledge
infusion training, which augments BERT-like pretrained models with disease knowledge
to achieve better performance in answering medical questions, medical inference, and
disease name recognition. In the DiseaseBERT pretraining dataset, the extraction of S is as
follows. Taking the first item in the first column of Table 1 as an example: “hemorrhagic
septicemia” (disease) is the name of the disease, which is extracted from an article title on
Wikipedia and “diagnosis” (aspect) is from a section title in that same Wikipedia article.
Q is constructed by the disease and aspect in S. A is the answer to Q. Table 1 shows some
examples of the disease knowledge dataset.

Table 1. Disease knowledge dataset examples.

S Q A

Hemorrhagic septicemia:
diagnosis

What are the diagnosis of
hemorrhagic septicemia?

Diagnosis on bases of blood
smear and clinical findings.

Hemorrhagic septicemia:
treatments

What are the treatments of
hemorrhagic septicemia?

Sulphadimadine 100 mL
orally and injection of

oxytetracycline 40 mL for
3 days continuously.

Microsporidiosis: diagnosis What are the diagnosis of
microsporidiosis?

The best option for diagnosis
is using pcr.

Microsporidiosis: treatments What are the treatments of
microsporidiosis?

The best option for diagnosis
is using pcr.

Hemorrhagic septicemia :
treatments

What are the treatments of
hemorrhagic septicemia?

Fumagillin has been used in
the treatment. another agent

used is albendazole.

...... ...... ......

Ego: general What is ego? Ego or ego may refer to:

Borderline leprosy: general What is borderline leprosy?

Borderline leprosy is a
cutaneous skin condition with
numerous skin lesions that are

red irregularly shaped
plaques.

Synovial chondromatosis:
general

what is synovial
chondromatosis?

Synovial chondromatosis is a
disease affecting the

synovium, a thin flexible
membrane around a joint.

Priapism: physiology What are the physiology of
priapism?

The mechanisms are poorly
understood but involve

complex neurological and
vascular factors.

Acute myeloid leukemia:
symptoms

What are the symptoms of
acute myeloid leukemia?

Image:amlcase-
66.jpg|thumb|upright.
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Validation Dataset. The following two datasets are used as the validation dataset:
MEDIQA-2019 [42] and TRECQA-2017 [43], as shown in Tables 2–4.

Table 2. Basics about MEDIQA-2019 and TRECQA-2017 [41]: number of questions (outside parenthe-
sis) and number of associated answers (inside parenthesis).

Datasets Train Dev Test

MEDIQA-2019 208 (1701) 25 (234) 150 (1107)

TRECQA-2017 254 (1969) 25 (234) 104 (839)

Table 3. MEDIQA-RQE test set examples: premise–hypothesis pair [42].

ID (Label) Type Question

Pair #1 (True) Premise

I have a list of questions about Tay sachs disease and
clubfoot 1. what is TSD/Clubfoot, and how does it effect
a baby 2. what causes both? can it be prevented, treated,

or cured 3. How common is TSD? how common is
Clubfoot 4. How can your agency help a women/couple
who are concerned about this congenital condition, and
is there a cost? If you can answer these few questions I
would be thankful, please get back as soon as you can.

Hypothesis How does congenital talipes equinovarus affect a child?

Pair #2 (True)

Premise When and how do you know when you have congenital
night blindness?

Hypothesis What are the symptoms of X-linked congenital
stationary night blindness ?

Pair #3 (True)

Premise
Polycystic ovarian syndrome Is it possible for parents to
pass this on in the genes to their children - is there any

other way this can be acquired?

Hypothesis Can polycystic ovary syndrome be inherited ?

Pair #4 (False)
Premise spina bifida; vertbral fusion; syrinx tethered cord. can u

help for treatment of these problem

Hypothesis Does Spina Bifida cause vertebral fusion?

Pair #5 (False)
Premise

aricella shingles How can I determine whether or not I
have had chicken pox. If there is a test for it, what are
the results of the tests I need to know that will tell me

whether or not I have had chicken pox? I want to know
this to determine if I should have shingles vaccine

(Zostavax) Thank you.

Hypothesis Who can catch shingles?

The MEDIQA-2019 or MEDIQA 2019 challenge was based on questions submitted
to the medical QA system CHiQA14. There were mainly three tasks in the MEDIQA
2019 challenge: natural language inference (NLI), recognizing question entailment (RQE),
and question answering (QA). The objective was to filter and improve the ranking of
automatically retrieved answers. Medical experts manually re-ranked the retrieved answers
and provided reference ranks and scores. In the MEDIQA-QA validation dataset, there are
25 consumer health questions and 234 associated answers returned by CHiQA and judged
manually. In the MEDIQA-QA test set, there are 150 consumer health questions and 1107
related answers. All QA training, validation, and testing sets are published on its website.
The purpose of the test set is for the official and final challenge evaluation.

The Text Retrieval Conference 2017 Live QA (TRECQA-2017) organized a medical
question answering task. The medical task was organized in the scope of the CHQA project.
The task aimed to address the automatic question answering of consumer health questions
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submitted to the National Library of Medicine (NLM). The NLM is on the NIH campus
and it is the world’s largest biomedical library, leading the research, development, and
training in biomedical informatics and health information technology. There are more than
100,000 requests submitted to the NLM every year, including over 10,000 consumer health
questions (CHQs). CHQs cover a broad range of questions related to diseases, medications,
or medical procedures. The NLM also constructs relevant resources by manually annotating
relevant question elements.

Table 4 shows several examples of consumer health questions. The first CHQ asks
about the treatment of a disease (retinitis pigmentosa) and includes a lot of descriptive and
personal information. The second CHQ is about a problem (“abetalipoproteinemia”) and
multiple questions. The third CHQ asks about ingredients in a medicine (Kapvay).

One approach to question answering is question analysis, which retrieves relevant
question elements that lead to correct answers. Another approach is to retrieve similar
or equivalent questions from history questions. CHQ may include a lot of irrelevant
information, for example some background or descriptive information, which introduce
more challenges, as shown in Table 4. If there are multiple subquestions in one question,
the answer should cover each subquestion. We recommend trusted medical website for
relevant answers, such as NIH and PubMed abstracts.

Table 4. TRECQA-2017 dataset examples.

CHQ 1

Subject: ClinicalTrials.gov - Compliment.
Message: Hi I have retinitis pigmentosa for 3years. Im suffering from this
disease. Please intoduce me any way to treat mg eyes such as stem cell . . . I
am 25 years old and I have only central vision. Please help me. Thank you

CHQ 2:

Subject: abetalipoproteimemia
Message: hi, I would like to know if there is any support for those suffering
with abetalipoproteinemia? I am not diagnosed but have had many test
that indicate I am suffering with this, keen to learn how to get it diagnosed
and how to manage, many thanks

CHQ 3: Subject: ingredients in Kapvay
Message: Is there any sufites sulfates sulfa in Kapvay? I am allergic.

3.2. System Architecture

Our system is based on BERT, GPT-2, and T5-Small. We first pretrain BERT with
disease knowledge, in order to obtain medical-word-embedding vectors. Next, we apply
GPT-2 for sample augmentation to generate complete sentences, using S and Q (in Table 1)
as input data. After that, we use T5-Small (the T5 model with 60 million parameters) to
extract S1 and S2 from A and Q, respectively. Because S1 and S2 are text, we use word2vec
to convert them to vectors. We then calculate the cosine similarity between S1 vector and S2
vector, which is used as input for XGBoost to find the optimal answer. We also use the last
hidden state (LHS) from T5-Small, which is the sequence of hidden states at the output of
the last layer of the decoder of the model. We calculate the cosine similarity between LHS1
and LHS2, which is also used as input information for XGBoost. The system architecture is
shown in Figure 1.
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Figure 1. System architecture.

3.2.1. Fine-Tuning GPT-2

Transformer-based models [21] have become the most advanced technology for several
NLP tasks. One of the tasks is language generation. It requires the generated text to be
grammatically correct, cohesive, and meaningful. GPT-2 model released by OpenAI [44] is
a transformer-based language model. It can generate remarkably fluent sentences, even
paragraphs, for a given topic. In addition, GPT-2 can also perform various NLP tasks, such
as classification.

GPT-2 is trained to predict the next word, given all the previous words in some text.
Its architecture implements a deep neural network, specifically a transformer model, and
uses an attention mechanism. The language model outperforms RNN/CNN/LSTM-based
models. GPT-2 is pretrained on a very large corpus of English data, only on raw text
without labeling. It is trained to predict the next word in sentences only using words before
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it but no future ones, that is, using k previously seen words to predict the next word. This
is achieved by maximizing the following possibilities as shown in Equation (1):

L(U) = ∑
i

logP(ui|ui−1, . . . , ui−k; Θ) (1)

where Θ is the neural network parameter and the objective is to maximize the probability
of token ui being at position i based on k previously seen tokens: ui−1, . . . , ui−k.

In this paper, we employed the GPT-2 model to generate a complete sentence, taking
S and answer A as the inputs. The generation algorithm works as follows: keyword x is
the starting word, model G is the GPT-2 model, and length is the set length of the result
sentence. Question Q is the sentence input to the model, and finally the result sentence is
generated. Here, we define the input as {x, G, length}. At each timestep, the model G is
initialized, and based on the input sentence, the most likely token is predicted as the next
token. Then, the token together with the input sentence Q becomes the input to G for the
next timestep. When the result sentence reaches the set length, the generation is complete
and the result sentence is the final output.

3.2.2. Extraction of S1 and S2 Using T5-Small

In this paper, we chose the T5 model with 60 M parameters, known as T5-Small.
T5-Small is convenient for fine-tuning and pretraining. Compared with other variants of
the T5 architecture, the training speed of T5-Small is faster. We use the T5-Small model to
extract S1 and S2 from answer (A) and question (Q) in the dataset. Specifically, we use A as
the input and S1 as the output. Similarly, we use Q as the input and S2 as the output. Real
Q is all the unprocessed and unextracted relevant texts in the DiseaseBERT pretraining
dataset. We use Equation (2) to represent how we get S1 using T5-Small as the model and
A as the input:

S1 = T5([POS] ◦ A + ◦[SEP]) (2)

Similarly, we use Equation (3) to represent how we get S2 using the T5-Small as the
model and Q as the input:

S2 = T5([POS] ◦Q + ◦[SEP]) (3)

Here, [POS] and [SEP] are special symbols. Taking S2 as an example, it can be inferred
from Equation (3) that the trained generator will directly generate S2 for the target domain
document Q, where Q is considered as a relevant (positive) document of S2. Irrelevant
(negative) documents can be sampled from the target corpus.

3.2.3. S1, S2, and XGBoost Prediction

We used the same dataset to train and cross-validate the models of different classifiers.
Based on the average of the training accuracy and the test accuracy, and the standard
deviation of the test accuracy, we finally chose XGBoost which was the most accurate and
robust classifier. We used the XGBoost model to predict the answer. Based on the test
results, considering the feature range, feature correlation, data distribution (such as the
ratio of positive and negative examples) and model parameters, we iteratively improved
the results of the model.

Cosine similarity is one of the most commonly used text analysis methods to measure
text similarity. Therefore, it is popular in NLP tasks. Many NLP applications need to
calculate the semantic similarity between two short texts. It is flexible enough to be applied
in almost any setting, as long as the document can be represented as a vector. Meanwhile,
calculating cosine similarity is not a time-consuming task [45].
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Cosine similarity observes the angle between vectors without considering weight and
magnitude. Equation (4) calculates cosine similarity, where S1 and S2 are vectors.

cosine similarity =
S1 ∗ S1√

S1 ∗ S1 ∗
√

S2 ∗ S2
(4)

The term frequency-inverse document frequency (TF-IDF) technology is used to find
relevant words in files or documents. It measures the frequency of any word in a given
document or dataset. TF-IDF is mainly used for text mining and increasingly used for
natural language processing. In this paper, we used the TF-IDF of S1 and S2 as one of the
three-dimensional input of XGBoost. Equations (5) and (6) shows the calculation:

TF(W) =
Total no. o f times the word appear in the text

Total words in text
(5)

IDF(w) = log
Total Number o f Documents

Number o f documents that have w in it
(6)

The training process of the sentence similarity model is as follows: we calculate the
cosine similarity between S1 and S2, the cosine similarity between LHS1 and LHS2, and
the TF-IDF between S1 and S2. These results are used as the three-dimensional input to the
XGBoost classifier. After testing, we iteratively adjust previous modules to maximize the
overall performance of the model.

4. Experiments and Results
4.1. Model and Experiment Design

Large-scale LMs, such as BERT and its variants, can capture real-world knowledge
(collected from its massive encyclopedic training corpus) and can be directly applied for
tasks, such as QA. RoBERTa, BlueBERT, BioBERT, ClinicalBERT, SCiBERT are all variants
of BERT, with information from knowledge bases, such as WikiData and WordNet, injected
into BERT. We finally chose the best performance model in [41] as SOTA and compared its
performance to that of the model in this paper.

OpenAI has released four GPT-2 models: 124 million (124 M), 355 million (355 M),
774 million (774 M), and 1.5 billion (1.5 B) parameters models. The 1.5 billion model is ten
times larger than the original GPT-2 model. The 1.5 B model outperforms all other models in
the original paper, however, it is hard to fine-tune and to use for transfer learning. It’s very
time-consuming to train the model even on the Tensor Processing Units (TPUs) provided
by Google Colaboratory. In this paper, we chose the original GPT-2, the TPU-trainable
version of GPT-2 [46].

With a batch size of eight, after the first 2000 iterations the loss did not decrease, so we
continued for an additional 500 iterations, and then stopped training. In terms of hardware,
we used the cloud TPU provided by Google Colaboratory. Due to the memory limit of
Google Colaboratory, we chose eight batches. With 25 GB RAM and taking advantage of
Google drive [35], we had plenty of storage for transfer learning. For the optimizer, we
used Adam [36] and set the learning rate to 0.0001 (1 × 10−4).

For the QA task, we used T5-Small as the encoder-decoder model. For the perturbation
function qφ, we added two feedforward layers with ReLU on the encoder. For the T5-Small
model, we trained it using three epochs with batch size of 20 for extracting S1 and batch
size of 64 for extracting S2, and used the Adam optimizer with a learning rate of 0.0001. We
used a beam search with a width of four to generate answers to generative questions. The
probability of dropout was 0.1, which was used for regularization. In terms of hardware,
we used a GPU Tesla V100 16G and a CPU i7-10875h.

The parameters that XGBoost needed to adjust were max_depth, learning_rate,
n_estimators, reg_lambda, and reg_alpha. Through experiments, we found that when
other parameters stayed unchanged, parameters reg_lambda and reg_alpha did not change
the performance of the XGBoost model. On the other hand, any change in n_estimators,



Appl. Sci. 2021, 11, 11251 11 of 15

max_depth, and learning_rate changed the performance of the model, which had a neg-
ative correlation with the evaluation results. A smaller value of those parameters was
associated with a higher accuracy. We finally chose the parameters as: “n_estimators” = 20,
“max_depth” = 5, “learning_rate” = 0.0001(1 × 10−4).

4.2. Evaluation Metrics

Evaluation methods play an important role in assessing and measuring the perfor-
mance of a QA system. The main metrics we used were accuracy (Acc), mean reciprocal
rank (MRR), and precision. We used these metrics to evaluate our model before and af-
ter augmentation as well as to compare with the SOTA model. We used Equation (7) to
calculate the accuracy.

Acc =
TP + TN

TP + TN + FP + FN
(7)

In Equation (7), TP is the number of true positives, which means a segment is correctly
selected. TN is the number of true negatives, which means a segment is correctly not
selected. FP represents the number of false positives, which means a segment is incorrectly
selected. FN is the number of false negatives, which means a segment is incorrectly not
selected.

It can be observed from Equation (7) that a system with high computational accuracy
may be found to have a high TN rate. To solve this issue, precision can be used as a second
metric, which is calculated as the number of true positives divided by the total number of
true positives and false positives. It can be calculated through Equation (8).

Precision =
TP

TP + FP
(8)

Finally, we used mean reciprocal rank (MRR) as shown in Equation (9) to calculate the
answer relevance.

MRR =
1
n

N

∑
i=1

RR(qi) (9)

4.3. Performance Evaluation

In this section, we present the experimental results and performance evaluation of
our system. We especially evaluate the effectiveness of the T5-Small model and data
augmentation using the GPT-2 model. The performance of our model running on two test
sets (MEDIQA-2019 and TRCEQA-2017) is shown in Table 5. The ALBERT + disease model
is the best performance model as studied in [41] and we take it as the SOTA model. Without
GPT-2 augmentation, our system can achieve a performance very close to the SOTA model,
while after GPT-2 augmentation our system outperforms the SOTA model. For example,
our system achieves 80.23% in terms of accuracy and 84.31% in terms of precision, which
are superior to 79.49% in terms of accuracy and 84.02% in terms of precision obtained by
the ALBERT + disease (SOTA) model on MEDIQA-2019. Similarly, our proposed system
shows better performance on TRCEQA-2017 than the SOTA model in terms of accuracy,
precision and MRR. The results demonstrate the advantage of using the GPT-2 model and
the T5-Small model for medical question answering and question generation tasks.

Table 5. Experimental results: comparison with SOTA.

Models
MEDIQA-2019 TRCEQA-2017

Acc MRR Precision Acc MRR Precision

T5-Small + XGBoost + disease * 79.11 91.04 82.41 79.75 57.63 62.87

GPT-2 + T5-Small + XGBoost + disease * 80.23 92.17 84.31 80.5 58.49 63.71

ALBERT + disease * (SOTA) 79.49 90 84.02 80.1 57.21 62.4
* “+ disease” means that we train BERT through disease knowledge injection before fine-tuning
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Tables 6 and 7 present the results of getting S2 from Q before and after data augmenta-
tion. The test set is MEDIQA-2019. As shown in Table 7, after augmentation using GPT-2,
the training loss and validation loss at epoch 3 are significantly reduced, while Rouge-1 (the
overlap of unigram (each word) between the system and the reference summaries), Rouge-2
(the overlap of bigrams between the system and the reference summaries), and Rouge-L
(the longest common subsequence (LCS)-based statistics) are significantly increased. The
results indicate the improvement of generating S with the augmentation using GPT-2.

Table 6. Training process and results of Q2S before augmentation (on MEDIQA-2019).

Epoch Training Loss Validation Loss Rouge-1 Rouge-2 Rouge-L Rougelsum Gen Len

1 1.465100 0.778861 10.915500 9.591100 10.847200 10.841800 1.336200

2 0.136700 0.088763 94.831500 93.273400 95.031000 95.016300 9.840600

3 0.099000 0.063339 95.130600 93.521000 95.134200 95.125400 9.860800

Table 7. Training process and results of Q2S after augmentation (on MEDIQA-2019).

Epoch Training Loss Validation Loss Rouge-1 Rouge-2 Rouge-L Rougelsum Gen Len

1 1.540800 0.703044 7.854000 6.959400 7.797700 7.801300 0.987300

2 0.087000 0.057968 98.035900 96.298300 98.036500 98.016100 9.844000

3 0.076400 0.041612 98.125900 96.552000 98.133500 98.118200 9.864200

We also provide the results of getting S2 from Q on the test set TRECQA-2017, as shown
in Tables 8 and 9. Table 8 presents the results before augmentation and Table 9 presents
the results after augmentation. Similar to the above results, as shown in Table 9, after
augmentation using GPT-2, the training loss and validation loss at epoch 3 are significantly
reduced, while all other results are also improved.

Table 8. Training process and results of Q2S before augmentation (on TRECQA-2017).

Epoch Training Loss Validation Loss Rouge-1 Rouge-2 Rouge-L Rougelsum Gen Len

1 1.5477 0.701432 8.1709 7.1679 8.1113 8.1318 1.0161

2 0.0871 0.057756 97.9991 96.2342 98.0032 97.9846 9.8444

3 0.0755 0.041416 98.1493 96.5391 98.152 98.1347 9.8673

Table 9. Training process and results of Q2S after augmentation (on TRECQA-2017).

Epoch Training Loss Validation Loss Rouge-1 Rouge-2 Rouge-L Rougelsum Gen Len

1 0.0895 0.070495 97.8938 95.9368 97.8686 97.8596 9.8269

2 0.0702 0.040085 98.1784 96.6557 98.1859 98.1808 9.8611

3 0.0276 0.036042 98.2122 96.7045 98.217 98.2109 9.8683

In Tables 10 and 11, we demonstrate some full negative and full positive results. A full
positive means the prediction is completely in line with the real answer, and a full negative
means that the answer obtained by our prediction result is completely inconsistent with
the real answer. After augmenting Q with the GPT-2 model and extracting Q2S with the
T5-Small model, we are able to get a more accurate and a larger number of full positive
predictions. Q2S-Prediction is the result achieved by augmenting Q (question) with GPT-2
and then extracting it using the T5-Small model. A2S-Prediction is the result of extracting
A (answer) using T5-Small. The column cos_sim is the cosine similarity between Q2S-
Prediction and A2S-Prediction. Table 10 demonstrates some full negatives while Table 11
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demonstrates some full positives. From the results of the two tables, we can learn that we
should not count only on cosine similarity to make decisions. That is also why we chose
XGBoost, which takes a three-dimensional input and cosine similarity is part of it.

Table 10. Prediction results of our system: full negatives.

Q2S-Prediction A2S-Prediction cos_sim

ingrown nail: prevention.
click here for mor. . .

sss: physiology: symptoms:
causes. hepatit. . . 0.671224

schistosoma japonicum:
prevention.

post kala-azar dermal
leishmaniasis: japonicum. . . 0.753213

central diabetes insipidus is a
disease charac. . .

traumatic shaking of a baby:
physiology: cau. . . 0.692533

Table 11. Prediction results of our system: full positives.

Real_Target Q2S-Prediction A2S-Prediction Cosine

ingrown nail:
prevention

ingrown nail:
prevention. click here

for mor. . .

ingrown toe nails:
physiology.

diagnosis: c. . .

0.752199

hives: symptoms hives symptoms:
symptoms of a coma.

cutaneous
condition|welts from

hives. causes . . .

0.666359

central diabetes
insipidus: treatments

central diabetes
insipidus is a disease

charac. . .

desmopressin:
treatments
physiology:
treatme. . .

0.743902

5. Conclusions

Medical question answering and question generation systems are facing limitations
in existing research, especially the lack of samples. In this paper, we designed a model
for medical question answering based on BERT, GPT-2, and T5-Small. We pretrained
BERT on medical samples for disease knowledge infusion, and used the GPT-2 model to
augment questions, and then used T5-Small to do the extraction. We also used XGBoost to
predict the answer and iteratively improve the results. Through extensive experiments,
our system demonstrated better performance compared with current medical question
answering and question generation system (SOTA method). Our study demonstrates the
effectiveness of question augmentation and transfer learning. Overall, our system shows
great potential to be applied to health question answering systems, especially COVID-19
question answering. It also helps solve the challenge to retrieve accurate answers for
medical recommendation systems.

Author Contributions: Conceptualization and methodology, S.Z. and Y.Z.; software, S.Z.; validation,
and original draft preparation, Y.Z.; review and editing, Y.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and code supporting the conclusions of this article are
available at https://github.com/ShuohuaZhou-NLPer/Question_Answering/, accessed on 17
November 2021.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/ShuohuaZhou-NLPer/Question_Answering/


Appl. Sci. 2021, 11, 11251 14 of 15

References
1. Zhao, Y.; Cheng, S.; Yu, X.; Xu, H. Chinese Public’s Attention to the COVID-19 Epidemic on Social Media: Observational

Descriptive Study. J. Med. Internet. Res. 2020, 22, e18825. [CrossRef] [PubMed]
2. Kataoka, Y.; Oide, S.; Arlie, T.; Tsujimoto, Y.; Furukawa, T. COVID-19 randomized controlled trials in medRxiv and PubMed. Eur.

J. Int. Med. 2020, 81, 97–99. [CrossRef] [PubMed]
3. Jin, Q.; Dhingra, B.; Liu, Z.; Cohen, W.W.; Lu, X. PubMedQA: A Dataset for Biomedical Research Question Answering. arXiv

2019, arXiv:1909.06146v1.
4. Ong, E.; Wong, M.U.; Huffman, A.; He, Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning.

bioRxiv 2020. [CrossRef]
5. Mahase, E. COVID-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ 2020, 368.

[CrossRef] [PubMed]
6. Surita, G.; Nogueira, R.; Lotufo, R. Can questions summarize a corpus? Using question generation for characterizing COVID-19

research. arXiv 2020, arXiv:2009.092900.
7. Yadav, S.; Gupta, D.; Abacha, A.; Demner-Fushman, D. Question-aware Transformer Models for Consumer Health Question

Summarization. arXiv 2021, arXiv:2106.00219.
8. He, Y.; Yu, H.; Ong, E.; Wang, Y.; Liu, Y.; Huffman, A.; Huang, H.H.; Beverley, J.; Hur, J.; Yang, X.; et al. CIDO, a community-based

ontology for coronavirus disease knowledge and data integration, sharing, and analysis. Sci. Data 2020, 7, 181. [CrossRef]
9. Li, X.; Liu, Q. Social Media Use, eHealth Literacy, Disease Knowledge, and Preventive Behaviors in the COVID-19 Pandemic:

Cross-Sectional Study on Chinese Netizens. J. Med. Internet Res. 2020, 22, e19684. [CrossRef]
10. Yang, H.; Wang, H.; Du, L.; Wang, Y.; Wang, X.; Zhang, R. Disease knowledge and self-management behavior of COPD patients

in China. Medicine (Baltimore) 2019, 98, e14460. [CrossRef]
11. Romanov, A.; Shivade, C.P. Lessons from Natural Language Inference in the Clinical Domain. arXiv 2018, arXiv:1808.06752.
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