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Abstract: The small and transparent nematode Caenorhabditis elegans is increasingly employed for
phenotypic in vivo chemical screens. The influence of compounds on worm body fat stores can be
assayed with Nile red staining and imaging. Segmentation of C. elegans from fluorescence images is
hereby a primary task. In this paper, we present an image-processing workflow that includes machine-
learning-based segmentation of C. elegans directly from fluorescence images and quantifies their Nile
red lipid-derived fluorescence. The segmentation is based on a J48 classifier using pixel entropies and
is refined by size-thresholding. The accuracy of segmentation was >90% in our external validation.
Binarization with a global threshold set to the brightness of the vehicle control group worms of each
experiment allows a robust and reproducible quantification of worm fluorescence. The workflow is
available as a script written in the macro language of image], allowing the user additional manual
control of classification results and custom specification settings for binarization. Our approach can
be easily adapted to the requirements of other fluorescence image-based experiments with C. elegans.

Keywords: image classification; Caenorhabditis elegans; segmentation; fluorescence microscopy; image]J

1. Introduction

Caenorhabditis elegans is a 1 mm sized, plain, transparent roundworm and represents
a promising model for phenotype directed screening [1-3]. It is widely used for the iden-
tification of genes and chemicals that regulate fat storage, as key mammal fat-regulatory
genes and pathways are conserved in the worm [4,5]. In recent years great efforts have
been made to study the fat metabolism of C. elegans. Several methods have been described
to quantify lipid content in worms [6,7]. C. elegans stores lipids differently than mammals.
Nematodes have neither adipocytes nor a liver-like organ. Triacyl glycerides (TAG) are
stored in the intestine and epidermis in lipid droplets, lysosome-related organelles, and
the yolk [4]. The latter is transported to the germline, which also deposits a considerable
amount of lipids [8].

Whole organism lipids can be extracted and later analyzed by chromatographic tech-
niques or biochemical assays [9]. Because of the worm’s transparent body, GFP fusion
proteins as markers for lipid-rich particles, like the yolk (VIT-2::GFP) and lipid droplets
(DHS-3::GFP), are reported [10,11]. Label-free imaging techniques such as spectroscopic
coherent Raman [12] and coherent anti-Stokes Raman scattering imaging [13,14] are impor-
tant tools for C. elegans lipid-storage studies, but require expensive equipment. The most
commonly used technique is histochemical staining, e.g., with Oil Red O [15,16] or the
solvatochromatic dye Nile red [17-19]. There are controversial opinions on which stains
and methodologies are best suited for lipid content quantification [4,12,15]. O’'Rourke and
coworkers pointed out that vital Nile red stains lysosome-related organelles of the intestine
and not neutral lipid stores [15]. Because the vital Nile red fluorescence intensity increases
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during short-term starvation [20], Lemieux and coworkers [4] suggested that Nile-red-
stained organelles function as normal lipid reservoir junctions and increase accordingly
during lipid mobilization. Whole body lipid staining has also been questioned in general
by the observation that most intestinal lipid particles are yolk or serve yolk production and
are not energy reservoirs orthologous to mammals [12]. Despite all these considerations,
Nile red staining brings several advantages, particularly its fast and easy application and
its good sensitivity [4].

We have recently established a miniaturized fat accumulation assay in 96-well plates
based on the staining of lipid compartments with Nile red [21]. For the efficient quanti-
tation of lipid-derived fluorescence of worms, an image processing workflow capable of
segmenting worms from fluorescence microscopy images was necessary.

In the field of image processing, assigning a pixel to either the region of interest—such
as the worm—or to the background, is called segmentation. Because manual segmentation
is time-consuming and dependent on researchers and their constitution [22], great efforts
have been made for automating the segmentation procedures of microscopical images of
C. elegans [23-25]. There are several well-established procedures for the segmentation of
C. elegans on brightfield images. The online tool IPPOME accurately segments images of
worms on agar pads by noise-reduction and the Chan—Vese algorithm [16]. The worma-
chine is a MATLAB-based image analysis tool which incorporates worm segmentation
from agar brightfield images by auto-thresholding. Objects are then identified as worms
by a size thresholding step and a convolutional neural network [26]. The wormsizer is an
image] plugin for the segmentation and size measurement of C. elegans brightfield images.
After image preprocessing to remove uneven illumination, segmentation is performed
with a simple global thresholding approach refined by size-filters [27]. Fudickar, Bornhorst,
and coworkers [28,29] have successfully trained machine-learning classifiers for brightfield
images from agar plates obtained by do-it-yourself microscopes using smartphones or
Raspberry Pi camera modules. The wormtoolbox [30], available through cellprofiler [31],
can be used for static brightfield images of adult worms in liquid culture. In this process,
segmentation is performed by binarization with Otus’s thresholding. Afterwards, objects
are identified as worms by a model using shape descriptors retrieved from object skeletons.
This tool also enables the disentanglement of touching worms for individual worm seg-
ments [30]. There are also some procedures described for the segmentation and processing
of Nile red fluorescence images. Escorcia and coworkers [32] have reported a very detailed
description of quantifying Nile red fluorescence from worms on microscope slide images,
but their method is highly handcrafted, e.g., by manual segmentation of the worms.

Hence, to quantify the fluorescence of individual worms, it is necessary to record
both brightfield as well as fluorescence images. Segmentation into region of interest (the
worms) and background is calculated using the reported procedures in the brightfield
channel. The segmentation results can then be used as a mask for the actual fluorescence
images [30,33,34]. However, acquiring brightfield images of worms in 96-well liquid culture
in addition to fluorescence images can cause problems, such as poor segmentation due to
illumination variations at the well edges or fluorescence bleaching; other requirements,
such as an increased amount of hard disk space and an increased recording time, must also
be considered.

Our fluorescence images allowed for the easy recognition of worms by operators; they
also enabled operators to manually distinguish C. elegans from background signals derived
from, e.g., bacteria or precipitates. Therefore, the goal was to develop a new, simple,
and automated image processing workflow which does not require brightfield images for
segmentation. Our final workflow in this study is shown in Figure 1 and comprises (1) the
adjustment of contrast and brightness of the fluorescence images, (2) classification into
worm and background, (3) refinement by particle-size thresholding, (4) segmentation, and
(5) binarization of images for quantitation.
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Figure 1. Workflow of the image processing approach. After fluorescence image acquisition, machine

Worm Images

learning classification is performed followed by size thresholding to eliminate false positive areas and
manual quality control. Each resulting mask is multiplied with its respective contrast- and brightness-
adjusted image. Fluorescent areas are quantified in the segmented images after binarization.

2. Materials and Methods

This section describes our approach to sample preparation, image acquisition, and
image processing including classification, segmentation, and quantitation. An overview of
the method is shown in Figure 1. Supplementary Material S1 offers a detailed step-by-step
instruction of the presented approach. The source code, written in the image] macro lan-
guage, a scripting language built into image], can be found in Supplementary Material S2.
The plugin used for image enhancement “Adjust contrast and brightness” is provided with
Supplementary Material S3.

2.1. Nile Red Assay

For Nile red assay, the C. elegans mutant strain 55104 with genotype glp-4(bn2) and
E. coli OP50 were used. The mutant strain was selected because it shows an elevated
fat mass and sterility at the restrictive temperature of 25 °C [35]. Both organisms were
obtained from the Caenorhabditis Genetics Center (University of Minnesota). Details
of the miniaturized Nile red assay in C. elegans including the composition of all media
and reagents have been published recently [21]. Briefly, hermaphrodite animals were
maintained on nematode growth medium (NGM) agar plates seeded with 20 ug of OP50 at
16 °C as described by Stiernagle [36]. A synchronized culture was obtained by a bleaching
technique, described by Porta-de-la-Riva and coworkers [37]. The synchronized nematodes
were grown on fresh agar plates for 12 h at 16 °C, then switched to 25 °C and maintained
until they reached the L4 stage. Up to 10 worms were put into each well of a 96-well
plate in S-medium containing 10 mg/mL washed and air dried OP50 bacteria and 100
nM Nile red. Vehicle control and test samples were added to reach a final concentration
of 1% dimethylsulfoxide (DMSO). Worms were kept under light exclusion at 25 °C for 4
days. Worms were paralyzed with NaN3 prior to imaging using a Zeiss Axio Observer
Z1 inverted fluorescence microscope equipped with a rhodamine filter (filter set 20) and
an Axio Cam MRm camera system. The numerical aperture of the 5x objective was 0.55.
Every worm was imaged using the same settings and same sub-saturating exposure times.
Images were saved in tiff-RGB format.

2.2. Data Sets

The images originate from four different experiments in 96-well plates, performed over
four consecutive weeks. Each experiment corresponds to one 96-well plate with worms
treated by 9 different plant extracts covering the constituents of different lipophilicity and
scaffold classes. The image stacks of three experiments were used as external test sets
(ETS1-3); the fourth image stack was split into three stacks used to select suitable attribute
subsets (TS1-3). Tangling and touching worms in the images were manually excluded from
evaluation. Image sets can be found in Supplementary Material Figure S2.
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2.3. Image Enhancement

For the correction of defects and enhancement, we developed a plugin for image]
(Supplementary Material S3) that enables the user to adjust contrast and brightness to the
mean and standard deviation (SD) that can be individually set according to a region of
interest, a reference image, or predefined numeric values. This step results in a normalized
version of the original image, which is calculated using a linear transfer curve (y) as follows:

y=kx+d

k= (SDset/ SDcurrent)
d = meanger — k-meancurrent

The subscript “set” refers to the mean or SD to which the mean or SD of the “current”
image is adjusted. Please note that this plugin is integrated as a function, “adjustCB,” in
the macro “Find fluorescence in C. elegans” (Supplementary Material S2).

2.4. Training of Classifier

Using FIJI software [38] on a HP tower desktop, 20 images belonging to the training
set were converted from RGB- to 8-bit gray level format. Images were scaled to a width of
694 and a height of 520 pixels. In the segmentation settings of the “Trainable Weka Segmen-
tation,” class 1 was defined as “worm” and class 2 as “background.” The option “balance
classes” was selected and the “Result overlay opacity” was set to 33. The J48 classifier was
selected and the following different training attributes were tested on their applicability for
the classification process: Gaussian blur, Hessian, Membrane projections, Mean, Maximum,
Anisotropic diffusion, Lipschitz, Gabor, Laplacian, Entropy, Sobel filter, Difference of Gaus-
sians, Variance, Minimum, Median, Bilateral, Kuwahara, Derivatives, Structure, Neighbors.
Depending on the filter and where applicable the values of sigma were defined as 1-16 or
16-32, respectively. Areas belonging to the worm were added to the class “worm” with the
freehand selection tool as well as areas of the background to the class “background.”

2.5. Selection of Algorithm and Attributes

The selection of the classification algorithm as well as the attribute selection was
done with the WEKA software 3.8.3 package [39]. The package provides a collection of
machine learning algorithms for data mining tasks. In this study, all algorithms were
trained after varying the default settings of WEKA with the given values. The following
algorithms were compared using 10-fold cross validation according to their Matthews
correlation coefficient (MCC) and the time to build a classifier (Random Tree, J48, LMT tree,
Decision stump, Hoeffding tree, Random Forest, REPTree, SMO, Naive Bayes, PART). After
selecting an algorithm, classifiers based on 8 different subsets of attributes were trained
in the way described in the previous subsection. Instead of selecting all attributes that
could be selected for training, the selection was reduced to Entropy, Variance, Hessian, and
Laplacian. The combination of those filter subsets with the respective range of sigma and
the number of attributes as well as the number of instances are shown in Table 1.
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Table 1. Ranking of attributes using the InfoGainAttributeEvaluation in the WEKA software.

Ranking Attributes Ranking Attributes
0.9717 Entropy_16_256 0.692 Membrane_projections_0_19_1
0.9717 Entropy_16_64 0.692 Membrane_projections_5_19_1
0.9717 Entropy_16_128 0.692 Membrane_projections_3_19_1
0.8915 Entropy_32_256 0.6905 Entropy_32_64
0.8915 Entropy_32_128 0.6862 Gabor_2_1.0_0.5_0_2.0
0.8845 Variance_16.0 0.6832 Gabor_1_4.0_1.0_2_2.0
0.8287 Hessian_Eigenvalue_2_32.0 0.6828 HesSia“—ND‘i’frfr;aelrili‘ffogemal“e—
0.8265 Variance_32.0 0.6827 Median_16.0
0.8186 Laplacian_16.0 0.6656 Gabor_1_1.0_1.0_0_2.0
0.7814 Laplacian_32.0 0.6654 Hessian_32.0
0.7714 Gabor_1_1.0_0.25_0_2.0 0.6642 Membrane_projections_1_19_1
0.759 Entropy_16_32 0.6469 Gabor_2_1.0_0.25_0_2.0
0.7534 Gabor_1_2.0_1.0_0_2.0 0.6446 Sobel_filter_16.0
0.7509 Gabor_1_4.0_2.0_0_2.0 0.6127 Hessian_Trace_16.0
0.7473 Mean_16.0 0.6091 Entropy_32_32
0.7434 Hessian_Trace_32.0 0.6077 Gabor_2_4.0_2.0_2_2.0
0.741 Gabor_1_1.0_0.5_0_2.0 0.6074 Gabor_2_4.0_1.0_2_2.0
0.7384 Hessian_16.0 0.599 Hessian_Eigenvalue_2_16.0
0.7277 Gabor_1_4.0_1.0_0_2.0 0.5965 Membrane_projections_4_19_1
0.7213 Maximum_16.0 0.5858 Hessian_Determinant_32.0
0.7106 Membrane_projections_2_19_1 0.5853 Gabor_2_1.0_1.0_0_2.0
0.7088 Gabor_1_4.0_2.0_2_2.0 0.5836 Structure_smallest_16.0_3.0
0.6956 HessiaI]})_i ?g;z;i;]jil%%walue_ 0.5789 Hessian_ND?frfr;aelriiifgiiogenvalue_
0.6948 Gabor_1_2.0_2.0_0_2.0 0.5717 Hessian_Determinant_16.0
0.6935 Hessian_Eigenvalue_1_32.0 0.5614 Mean_32.0

2.6. Evaluation of Attributes on Test Set

The classifiers that have been trained with the attribute subsets were applied to an
external test set of 199 images (ETS1) and compared to the results of manual segmentation
of the same test set. All classification results were binarized into two classes: worm
and background. Quantitation was performed using the Analyze Particles function. For
graphical evaluation of the false positive (FP) area, the manual classification image was
subtracted from the machine learning classification result. For the quantitation of the
true positive (TP) area, the manual classification result was inverted and subtracted from
the machine learning classification. This process is illustrated in Figure 2. The condition
positive (P) areas were considered as the quantitation results from the manual process and
the background of those images is seen as the condition negative (N) area. True negative
(TN) and false negative (FN) true positive rate (TPR), true negative (TNR), accuracy (ACC),
MCC, precision (PPV), and F1 value (F1) were calculated as follows:

TN=N—-FP,FN=P - TP

TP TN
TPR = TP + EN’ TNR = TN + FP
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ML classification

TP + TN
TP + TN + FP + EN
TP - TN — FP - FN

ACC =

MCC =
\/(TP + FP) (TP + FN) - (TN + FP) - (TN + EN)

TP

PPV=————

TP + FP
Bl — 2TP

2TP + FP + FN
Manual classification Evaluation of TP/TN — FP/FN

\

Figure 2. Calculation of FP and TP areas. Manual classification results were subtracted from machine-learning classification

results and the areas were measured to obtain FP and TP values. In case of TP the manual classification results had to be

inverted prior to subtraction.

2.7. Evaluation of Size-Thresholding

The classification result of the classifier with subset 1 was edited in FIJI based on the
results of the Analyze Particles function. The mean size of single worms was determined by
visual inspection, measuring the size of 20 worms with a result of 6283 (+-1243) pixels. Var-
ious size-thresholds (3000, 3500, 4000, 4500, and 5000 pixels) were validated to differentiate
between worm and non-worm areas by comparison of size-thresholded machine learning
results to those of manual segmentation. Calculations were performed as described in
Evaluation of Attributes on test sets.

2.8. Binarization

Segmented and size-thresholded images were set to “Default dark” and multiplied
with the original images using the Image Calculator function. Instead of choosing a general
value for transforming the 8-bit grayscale into a binary image using SetThreshold function,
the threshold was individually set for each experiment so that 0.3-0.4% of the brightest
pixels of the vehicle control group worms contained the value white (1). Once the threshold
was determined, it was applied to all images belonging to the same experiment. Afterwards
the pixels containing the value white (1) were measured by the “Analyze Particles” function.
The measured value of each worm corresponds to the fluorescence of the worm.

2.9. Experimental Validation, Nile Red Assay

The applicability of the presented method was outlined using positive controls flu-
oxetine and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as an application
example in [21]. Fluoxetine (F-132) and AICAR (A9978) were obtained from Sigma Aldrich
with a purity of >98%. Each treatment and concentration was tested in 6-well replicates
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with up to 10 worms per well. The mean worm fluorescence (measured pixels with a
value of 1) of each treatment cohort was calculated. The experiments were performed three
times independently and the mean fluorescence was presented + SD. GraphPad Prism
4.03 software was used for statistical analyses; statistical significance of the differences
between vehicle and treatment groups were tested by ANOVA (analysis of variance) with
Bonferroni post-test.

2.10. Experimental Validation, Triacyl Glyceride Assay

Two cohorts of approximately 1400 L4 worms at a density of 200 worms/mL in
S medium supplemented with 10 mg/mL OP50 as a food source were incubated at 25 °C
under agitation. Depending on the sample vehicle control 1% DMSO, 100 uM fluoxetine,
or 100 uM AICAR was added. After four days of treatment, worms were cleared of
bacteria and media by washing with ddH,O and multiple centrifugation/decantation
steps. The bacteria-free worm pellets were lyophilized, taken up in 100 pL 5% Nonidet
and then lysed using a bioruptor plus sonication system (Diagenode, Liege, Belgium)
at 4 °C and in 30 high intensity 30 s on/off cycles. The lysate was heated to 95 °C
for 5 min, and after cooling, 50 pL of the lysates were set aside for the TAG assay. The
other 50 uL were supplemented with 100 puL of RIPA lysis buffer and lysed again in
100 high intensity cycles, centrifuged and the supernatant used for bicinchoninic acid
(BCA) assay. The TAG assay was performed using triglyceride quantification kit from
Sigma-Aldrich (Sigma-Aldrich Handels Gmbh, Wien, Austria) (MAK-266) according to the
manufacturer’s instructions. A six step concentration series of trioleate standard in assay
buffer in two technical replicates, and a ten-fold diluted sample lysates in four replicates
(and two further technical replicates for background control) were pipetted into a black
96-well plate and incubated with lipase at room temperature. No lipase was added to the
background control wells. After 20 min, a TAG probe and enzyme mix were added. After an
incubation time of 60 min under light exclusion, fluorescence intensity was measured with
a Tecan Sparks (Tecan, Grodig, Austria), excitation wavelength 535 nm (bandwidth 25 nm),
emission wavelength 590 nm (bandwidth 20 nm). Protein quantification was performed
using the BCA assay kit (BCA1) from Sigma-Aldrich according to the manufacturer’s
instructions for 96-well plates. Sample lysates and a dilution series of BSA protein standard
were added in duplicates to the wells of a clear 96-well plate. Following this, BCA working
reagent, consisting of copper (II) sulfate pentahydrate and BCA solution, was added and
the plate was incubated for 30 min at 37 °C. Afterwards, the absorbance was measured
with a Tecan Sparks (Tecan, Grodig, Austria) at 562 nm.

3. Results
3.1. Segmentation/Selection of the Machine Learning Algorithm and Attribute Subset

For the selection of the most-suited machine learning algorithm, twelve classifiers
were compared according to their MCC and time to build the ten-fold cross correlation
model using default parameters in the software. For this purpose, a dataset of 20 labeled
images based on all 141 attributes available in the Trainable WEKA Segmentation plug-in
was evaluated (Supplementary Material Figure S1). Because the MCC value differed only
slightly between all trees, it was decided to focus on those trees that perform pruning
(Random, J48, and LMT), meaning that parts with little impact on classifying instances
are removed. The resulting smaller tree that does not perfectly classify every pixel of the
training set is less prone to overfitting. The J48 tree was selected for further evaluation as it
is based on the C4.5 algorithm listed as one of the top ten algorithms in data mining [40].

For selecting the best-suited attributes, the classifying power of each attribute was
evaluated by measuring the information gain with respect to a class, using the WEKA
InfoGainAttributeEval algorithm. The algorithm measures how each feature contributes to
decreasing the overall entropy. Thereby, the value of an attribute is calculated as follows:

InfoGain(Class,Attribute) = H(Class) — H(Class | Attribute)
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where H(Class) is the marginal entropy of the class and H(Class | Attribute) is the con-
ditional entropy of the class with respect to the attribute. The InfoGainAttributeEval
algorithm was chosen for attribute evaluation, since the previously selected ML algorithm
J48 is based on the same principle of evaluating the worth of attributes for the classification
process. Therefore, the InfoGainAttributeEval algorithm can be used to rank the attributes
that are of value for the J48 algorithm. Based on the results in the ranking, attributes can be
removed that would be cut off by the J48 pruning tree regardless. In this way, the process
can be sped up by eliminating redundant attributes prior to the ML classification process.
The resulting ranking, with the top-scoring 50 attributes, is shown in Table 1.

Classifiers which are based on different subsets of attributes were compared ac-
cording to their performance on three image tests sets (TS1: 67 images; TS2: 66 images;
TS3: 66 images). The test sets were compared to manually classified images. The evaluation
started with a test of a classifier considering the full range of image attributes for decision
making. Each following classifier was simplified, whereby the subset with the lowest
contribution to classifying power, calculated by the InfoGainAttributeEval algorithm, was
removed, resulting in the eight classifiers shown in Figure 3. Filters used in the subset
selection include entropy (ENT), variance (VAR), Hessian (HES), and Laplacian (LAP).

All classification results were binarized into two classes: worm (=white (1)) and
background (=black (0)). Quantitation was performed in FIJI using the Analyze Particles
function and the following values were calculated: TP, FP, FN, TN, TPR, TNR, ACC, and
the MCC. It could be observed that Subset 1, which uses 22 attributes based on entropy
with a sigma range of 1-16 for decision making, led to a classifier that showed the highest
ACC (94.56%), sensitivity (73.48%), specificity (96.63%), and MCC (67.99%), resulting in the
best performance for the three test sets TS1-3 (Table 2, Figure 4). Performance is hereby
calculated as mean of ACC, TPR, TNR, and MCC.

Table 2. Evaluation of the performance of different attribute subsets on test sets (TS1-TS3). Performance is calculated as
mean of ACC, TPR, TNR and MCC.

Performance No. of
Subset Attribute Subsets TS1 TS2 TS3 Attributes Instances
1 ENT 1-16 0.8296 0.8312 0.8342 22 237
2 ENT 16-32 0.8187 0.8208 0.8308 10 86
3 ENTVAR 1-16 0.8187 0.8208 0.8308 27 98
4 ENTVAR 16-32 0.7734 0.7919 0.8070 12 55
5 ENTVARHES 1-16 0.7822 0.7869 0.8107 75 132
6 ENVARHES 16-32 0.8202 0.8285 0.8221 28 225
7 ENTAVRHESLAP 1-16 0.7708 0.7798 0.8073 80 127
8 ENTVARHESLAP 16-32 0.6921 0.7085 0.7513 30 98

3.2. Segmentation/Size-Thresholding Settings

As can be seen in Figure 3, the largest classified areas of the images belong to the
worm, whereas unattached areas are considerably smaller and belong to FP. To select the
best settings for the size of the areas that should be removed from the classification result
(termed size-thresholding), a histogram showing the areas of test sets TS1-3 was created
(Figure 5) to visually demonstrate a valid size cut-off between FP areas and the worm. The
histogram shows bell-shaped distributions; the most left one in Figure 5 belongs to objects
below 4000 pixels consisting only of objects that do not belong to nematodes as verified
by visual inspection, while the remaining objects are considered worms. The minimum
between these two distributions is indicated in Figure 5 by a red line. This observation
was evaluated after applying five different cut-offs ranging from 3000 to 5000 pixels. The
performance is calculated as the mean value of the resulting TPR, TNR, ACC, and MCC,
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showing the highest performance of 0.8478 at the cut-off of 4000 pixels. Using this setting
for size-thresholding additionally to the classification process, the MCC could be improved
from 68.0% to 73.2%, while the ACC, sensitivity, and specificity could be increased by
1% each.

Figure 3. (A-H) Classification results of classifiers with different subsets; (I) all available filters; (J) original worm image;
(K) mask created by manual classification; (L) false positive (FP) areas after classification based on Subset 1.
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Figure 4. Bars represent the mean performance (£SD) of attribute subsets 1-8 derived from three
test sets TS1-3. The performance was calculated as the mean value of TPR, TNR, ACC, and MCC.
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Figure 5. Histogram of all classified areas measured in test sets TS1-3 based on attribute subset 1.
Bars represent the number of objects with a certain area (pixel); the red bar indicates the minimum

between two distributions.

3.3. Validation

The final segmentation method is based on the J48 algorithm using the entropy filter
with a range of sigma from 1 to 16 and subsequently excluding areas with a size smaller than
4000 pixels from the binary image. Results of the classification process—available as binary
masks—were multiplied with the original images. For validation, three external test sets
(ETS1-3) were used consisting of 117, 121, and 137 images, respectively. The segmentation
method shows a high specificity and ACC of more than 90% for all three external test sets
(Figure 6). This indicates that background areas of the image were correctly assigned giving
a high TNR. A total of 67-75% of areas classified as worms were correctly assigned, which
is eminently proficient giving the fact that manual segmentation is subject to inter-operator
variations of approximately 20% [41-43]. Moreover, the automated segmentation reduces
the time of user interaction by 75%.
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Figure 6. Mean performance metrics of segmentation on three different external test sets. Bars
represent the mean value of TPR, TNR, ACC, MCC, PPV, and F1 of ETS1-3 £ SD.

3.4. Binarization

The resulting segmented images were binarized for fluorescence quantitation. Setting
a fixed value for the global thresholding binarization led to high SD in the results. Setting
the value for each experiment individually, so that 0.3-0.4% of the brightest pixels of the
vehicle control group worms contained the value white, resulted in a high reproducibility
of results.

In order to evaluate the performance of the complete image processing workflow, the
number of measured pixels after FP results were manually removed was compared to the
results without manual quality control. Application of the whole image processing method
led to an ACC of 0.998 (£0.001) and an MCC of 0.833 (4-0.034), as shown in Table 3.

Table 3. Mean performance of machine learning classification combined with binarization obtained
for external test sets ETS1-3.

ETS Sensitivity Specificity ACC MCC Precision
ETS1 1.0000 0.9980 0.9980 0.8592 0.7627
ETS2 0.9999 0.9977 0.9977 0.7952 0.6817
ETS3 1.0000 0.9993 0.9993 0.8453 0.7602

3.5. Experimental Validation

The applicability of the method presented herein, summarized in Figure 1, has been
demonstrated before [21]. The results are briefly outlined here using the drugs fluox-
etine and AICAR. AICAR and fluoxetine were previously reported to reduce Nile red
fluorescence in C. elegans [17], and were therefore selected as positive controls for the
validation of our image processing method. The two agents were tested in three inde-
pendent experiments and the images were evaluated using the presented workflow. The
mean fluorescence of three experiments is shown in Figure 7B. Fluoxetine significantly
reduced fluorescence to 58.0% (£5.9) at 100 uM and 75.6% (44.1) at 10 uM, while AICAR
significantly reduced fluorescence to 42.9% (£12.4) at 250 pM and 50.6% (£11.9) at 100 uM,
compared to vehicle-treated worms. Biochemical TAG quantification showed a similar
reduction of TAG with a TAG/ protein ratio of 47.8% after treatment with 100 uM fluoxetine
and 90.5% with 100 uM AICAR (Figure 7C).
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Figure 7. (A) Representative images of worms treated with (a) fluoxetine (100 uM), (b) fluoxetine
(10 uM), (c) vehicle control (1% DMSO), and their corresponding areas measured after binarization
(d-f) (B) Bar charts represent the mean Nile red fluorescence of worms from three independent
experiments (£ SD). Worms were treated with Ctrl (vehicle control, 1% DMSO), fluoxetine (10 pM
and 100 uM), and AICAR (100 uM and 250 uM). The significance was assessed by one-way ANOVA
and Bonferroni post-test (** p < 0.01, *** p <0.001). (C) White bars represent either Nile red fluorescence
(n =3; £5SD) compared to black bars representing extracted and biochemically quantified TAG content
of worms relative to protein content (1 = 2; £SD). Worms were treated with Ctrl (vehicle control, 1%
DMSO), fluoxetine (100 uM), and AICAR (100 uM).

4. Discussion

Entropy attributes—The concept of entropy is well established in bioimage segmen-
tation and is also the most important attribute in the presented classification process.
One reason for the superiority of entropy over geometric attributes, e.g., mean and vari-
ance, or structure-based filters, for our application can be explained by the high number of
transitions of brightness values in the stained worm intestine compared to the background.
Background fluorescence transitions, e.g., from large bacterial clusters and remains from
worm molting show, similar to worm fluorescence, a high amount of brightness transitions,
and are thus occasionally identified as worms by segmentation. However, these areas are
usually small and are removed by size thresholding. Other fluorescence signals, e.g., from
bacteria, are too weak and are removed upon binarization. Thus, the sensitivity increases
from 73.0% for correct assighment of worms on images to 99.7% for correct assignment of
worm fluorescence.

Reproducibility—The reproducibility of treatment effects (Figure 7B) was improved
by setting thresholds for global binarization corresponding to the brightest pixels of the
vehicle control group worms. Fixed global thresholding values have been shown to be
insufficient due to an unpreventable variance in the staining of biological systems, such
as worms and bacteria. Exemplary sources of variance between experiments are different
quality foods, slightly diverse worm populations, and the handling of Nile red, which is
known to bind to polypropylene [44], among other substances [45]. It is speculated that
most of these factors affect control worms and treated worms in the same way. Setting the
value for each experiment individually so that 0.3-0.4% of pixels were contained the value
white resulted in a high reproducibility of results. Additionally, Mori and coworkers [16]
set their staining intensities relative to the staining intensities of control worms.

Segmentation—Compared to established methods, the accuracy of the presented
worm segmentation is low. The mean F1 value of our segmentation is 0.67. The method of
Fudickar and coworkers [29] achieved an F1 value of 0.93. The worm segmentation also
results in inaccurate representation of the worm size. This makes certain measurements
on images dubious, such as the measurement of worm size and fluorescence density
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(fluorescence relative to worm areas). Hence, it is difficult to compare our results with
studies that quantify fluorescence densities [18,32]. Moreover, the fluorescence of very
small worms cannot be compared to very large worms. Thus, agents that inhibit a normal
worm development have to be excluded from analysis. The relevance of such nematotoxic
compounds for metabolic disease drug discovery is generally questionable. It is further
not possible to untangle worms in a way as described by Wiahlby and coworkers [30]. This
limits the number of worms per well to prevent them from becoming entangled.

Fluorescence quantitation—Besides the different techniques for segmenting worms,
widely varying methods for quantifying fluorescence have been reported in the literature—
e.g., Lemieux and coworkers [17] quantified the total integrated fluorescence intensity
of only the two most anterior cells and corrected for background fluorescence with a
Gaussian segmentation mask; others used the total staining intensity relative to the area
of worm regions [15,16,18]. Jia and coworkers [46] measured fluorescence as the area
of lipid droplets in a circle posterior to the second bulb of the pharynx. Next to global
thresholding for binarizations, there are also studies that used auto thresholding, e.g., the
Triangle Threshold [47]. We compared the performance of different binarization methods
for reproducibility between independent experiments and the agreement with the results
of the biochemical TAG assay. Setting the worm regions relative to the area of segmented
worms led to a deterioration of results. This was attributed to the limited performance
of the segmentation on very low-fluorescent worms. Because of the limited staining and,
thus, the low pixel entropies in the head and tail of the worms, these areas are sometimes
segmented as background (Figure 3). However, these segmentation errors have no effect on
our binarization method. As shown in Table 3, there is only a minor difference between the
quantification of manually segmented and automatically segmented worms using global
threshold binarization set to the mean of control.

Positive controls—The first positive control, fluoxetine, is approved as an antidepres-
sant by the FDA and EMA and has shown anti-obesity effects in humans, proposed to be
due to an increased serotonergic activity in the brain [48-50]. The second positive control,
AICAR, is an investigational drug which reduces neutral lipid content in adipocytes and
showed anti-obesity effects in a mouse model [51]. Fluoxetine and AICAR have also been
reported to inhibit fat accumulation in C. elegans by independent mechanisms [17,52].
Fluoxetine inhibits fat accumulation through increased neural serotoninergic signaling
leading to an increased beta-oxidation [52]. Recently, a study demonstrated an increased fat
accumulation in C. elegans in response to fluoxetine treatment [53], but different conditions
were used. AICAR inhibits fat accumulation through the activation of the cellular energy
hub AMP-activated protein kinase (AMPK) [17]. The inhibition of fat accumulation by
the two compounds was also confirmed in our experiments. In this regard, the results
of the TAG assay were comparable to the results of our Nile red assay quantified by the
image processing process presented (Figure 7C). Thus, it can be concluded that the image
processing workflow is suitable for the quantitation of Nile red stained lipids in C. elegans.
However, it is important to note that the absolute quantitation achieved from Nile red
staining and biochemical lipid determination sometimes (as in the case of AICAR) does
not match perfectly. This has also been reported previously [18].

5. Conclusions

Using supervised learning and the addition of a size-threshold filter, we were able to
train a proficient classifier for the segmentation of worms on fluorescence images. Setting
the binarization according to control group images made the quantitation particularly
robust and delivers results with appropriate reproducibility. Since there is a lack of well
described routines for these image processing methods, we wrote a script in the macro
language of image] and share it in Supplementary Material S2. The presented workflow as
highlighted in Figure 1 offers: (1) reliable results with a high accuracy (2) decreased time
of user-interaction for image segmentation, and (3) a user-friendly view of the segmented
image enabling accurate quality control.
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The script can be quickly established and adapted to the requirements of different
fluorescence-staining assays. In this work we presented its performance on vital Nile red
stained worms. However, an application to images of worms stained with other fluores-
cence dyes is possible. The protocol therefore offers steps for individual specifications
of size thresholding, contrast and brightness adjustment, and settings for binarization,
including the manual control of classification results.

It is important to add that the Nile red assay used in this study is not able to quantify
TAG from storage droplets [15], and is rather an indirect measure [4,54]. However, the
assay, as well as the image processing workflow, is easy to use, easy to implement, fast,
and sensitive. It can facilitate the prioritization of agents, e.g., from natural sources [21], for
further analysis. Most importantly, the image processing workflow facilitates segmentation
for sufficient fluorescence quantitation directly from the fluorescence images, eliminating
the need to capture brightfield images.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/app112311420/5s1, S1: Step-by-step instruction, S2: Code “Find fluorescence in C. elegans”, S3:
Code “ADJUST CB”, Figure S1: Validation of machine learning algorithms, Figure S2: Biochemical
TAG quantification.
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