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Abstract: This paper aims to meaningfully analyse the Horizon 2020 data existing in the CORDIS
repository of EU, and accordingly offer evidence and insights to aid organizations in the formulation
of consortia that will prepare and submit winning research proposals to forthcoming calls. The
analysis is performed on aggregated data concerning 32,090 funded projects, 34,295 organizations
participated in them, and 87,067 public deliverables produced. The modelling of data is performed
through a knowledge graph-based approach, aiming to semantically capture existing relationships
and reveal hidden information. The main contribution of this work lies in the proper utilization
and orchestration of keyphrase extraction and named entity recognition models, together with
meaningful graph analytics on top of an efficient graph database. The proposed approach enables
users to ask complex questions about the interconnection of various entities related to previously
funded research projects. A set of representative queries demonstrating our data representation and
analysis approach are given at the end of the paper.

Keywords: Horizon 2020; Natural Language Processing; text mining; knowledge graph; graph
analytics; unsupervised learning; keyphrase extraction; named entity recognition

1. Introduction

Horizon 2020 (H2020) is a recently completed EU funding programme for research
and innovation, which was running from 2014 to 2020 with a €80 billion budget (https://ec.
europa.eu/programmes/horizon2020/ (accessed on 27 November 2021)). Its main aim was
to ensure research and innovation funding for multi-national collaboration projects as well
as for individual researchers and SMEs. A wealth of data about funded H2020 projects can
be retrieved through CORDIS (Community Research and Development Information Service,
https://cordis.europa.eu (accessed on 27 November 2021)), the major public repository
and portal of European Commission, which offers diverse information on EU-funded
research projects and their results. Specifically, CORDIS provides valuable information
about the projects’ factsheets and results, public reports and deliverables, communication
and exploitation material, as well as links to related external sources (such as websites and
open access content).

The problem of finding the most appropriate call to prepare and eventually submit
a research proposal, as well as that of finding the most promising partners to collaborate
with in such endeavors, while also taking into account the required complementarity of
competences, certainly requires a large amount of manual inspection of both the aforemen-
tioned wealth of data and the hundreds of associated documents corresponding to call
descriptions and deliverables already produced in the context of the H2020 programme.
To properly address this issue, we perform a deep analysis of all these data and develop
an approach that enables users to obtain answers and insights about the issues under
consideration. Specifically, we represent, analyze, and understand the H2020 data existing
in the CORDIS repository (https://data.europa.eu/data/datasets/cordish2020projects
(accessed on 27 November 2021)), and accordingly build on robust Machine Learning (ML),
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Natural Language Processing (NLP) methods and tools, as well as a graph database, to
perform state-of-the-art text mining and graph data analytics.

The proposed methodology seamlessly integrates text mining techniques with graph
theory to enable users to ask questions about the underlying data. A comparative assess-
ment of the proposed methodology against existing ones, which is presented in detail
in Section 2.4, reveals that it does not merely provide visual statistical aggregations of
data, or keyphrases extracted from multiple documents; instead, it builds on prominent
text mining techniques to retrieve information about the topics of H2020 projects, thus
providing insights about latest research trends and potential collaborators, it constructs and
exploits a semantically rich knowledge graph that meaningfully models all the connections
between data and enables the users to perform diverse types of queries, it utilizes hybrid
keyphrase extraction techniques to capture more context through extracting keyphrases
consisting of multiple terms, and it is fully unsupervised.

Motivated by the fact that the preparation of a winning research proposal is a complex
and intense task, our aim was to extract meaningful new knowledge and insights from the
H2020 related data, and accordingly provide the evidence that organizations need in this
task. Specifically, during the preparation of their future research proposals (for instance,
proposals to be submitted in the recently launched calls of the Horizon Europe funding
programme), organizations need to follow specific steps including the assessment of the
innovative character of the idea and research to be funded, the identification of the most
relevant call/programme within a funding framework, the check of diverse eligibility
criteria, and the building of the appropriate consortium by making clear the role and
capacity of each participant.

For instance, when an ICT company specializing in AI-enhanced solutions, such as
chatbots, etc., considers the preparation of a research proposal that aims to develop a
beyond the state-of-the-art personal assistant for medical decision-making issues, it needs
to obtain answers to queries such as:

• What are the top-10 organizations that have coordinated (or participated in) the most health-
related projects of H2020?

• What are the topics of interest/expertise for each of these top-10 organizations that have
coordinated (or participated in) the most health-related projects of H2020?

• For a given list of topics (e.g., Medical Novision Making, Natural Language Processing,
Chatbot, Machine Learning, Medical Guidelines, Policy Making), which deliverables produced
by these top-10 organizations were related to pilot applications?

• For the list of topics above, what types of deliverables have been produced by these top-10
organizations?

• Which people from these top-10 organizations have been working on this list of topics (by
preparing the corresponding deliverables)? Have they also been working on additional ones?

Our analysis is performed on aggregated data concerning 32,090 funded projects,
34,295 organizations participated in them, and 87,067 public deliverables produced by these
organizations. The source of these data is two CORDIS files, namely cordis-h2020projects.csv
and cordis-h2020projectDeliverables.csv. The first file contains the following information for
each project: Record Control Number (RCN), the project ID (grant agreement number),
acronym, status, start and end date, and its objective and total cost; additionally, it contains
information about the following: funding scheme and programme, topic, EC contribution,
call ID, coordinator, and participants (with their countries). The second file contains
information about the deliverables, including a public URL to access the full content of
each of them.

The remainder of this paper is organized as follows. Section 2 introduces related work
aiming to give the reader some basic information about the components of the proposed
approach. Section 3 presents in detail the proposed pipeline towards meaningfully rep-
resenting and analyzing the Horizon 2020 data; a set of representative queries is used
to demonstrate the corresponding data visualization features. Finally, Section 4 presents
preliminary evaluation results and sketches future work directions.
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2. Background

The approach described in this paper builds on tools and methods traditionally met
in the fields of knowledge graphs, unsupervised keyphrase extraction (KE), and named
entity recognition (NER).

2.1. Knowledge Graphs

In recent years, we have witnessed an increasing popularization of knowledge graphs,
which are used for a variety of tasks ranging from semantic parsing to question answering.
Knowledge graph databases include Freebase [1] and DBPedia [2], which focus on data
and facts extracted from online public datasets and Wikipedia, respectively.

Despite their popularity, there is no universal definition for knowledge graphs. The
authors in [3] gathered multiple definitions appearing in the literature and clarified a set of
terminology issues that stem from these different definitions. For the purpose of this paper,
we adopted the knowledge graph definition given in [4]; according to it, a knowledge
graph (i) mainly describes real world entities and their interrelations, organized in a graph;
(ii) defines possible classes and relations of entities in a schema; (iii) allows for potentially
interrelating arbitrary entities with each other, and (iv) covers various topical domains.

2.2. Keyphrase Extraction

YAKE! [5] is a statistical unsupervised KE approach. It splits a document into distinct
terms, where for each term t a score S(t) is calculated. S(t) is computed using five term
related metrics: Trel (term relatedness to context, which measures the number of distinct
terms that appear on the left and right side of t.), Tpos (the positional of t, which assigns a
higher score to terms appearing closer to the beginning of the document.), Tcase (casing
aspect of t, which favours uppercase and terms having their first letter capitalized, minus
those located at the starting point of a sentence.), TFnorm (term frequency normalization),
Trel (term relatedness to context, which computes the number of different terms that occur
on the left and right side of the term), and Tdifsent (which measures the number of times t
appears in different sentences). Formally S(t) is defined as:

S(t) =
Trel ∗ Tpos

Tcase +
TFnorm

Trel
+

Tdi f sent
Trel

(1)

After the calculation of each score for every term, n-grams of candidate keyphrases
(ck) are formed. For each ck, a score S(ck) is computed. The lower the value of this score,
the higher the quality of the ck is.

S(ck) =
∏ t ∈ ck S(t)

TF(ck) ∗ (1 + ∑ t ∈ ck S(t))
(2)

TextRank [6] is one of the most notable graph-based KE approaches. For each term in
the document, it assigns part-of-speech (POS) tags, as to only include nouns and adjectives
for its list of candidate keyphrases. For the document, a graph is initialized. Each ck is
represented as a node in the graph. Edges are formed between terms that co-occur in a
sliding window of N. If the edges are undirected and unweighted, the TextRank score S(vi)
for each node vi is calculated by the following formula:

S(vi) = (1− d) + d× ∑ vj ∈ Γ(vi)
1∣∣Γ(vj)

∣∣ S(vj) (3)

where d is the damping factor, usually set to 0.85 as indicated in [7] and Γ(vj) is the set
of neighbouring nodes of vj. When formula (3) converges, the nodes are sorted in a
descending order of their calculated scores, and the top-n ck are returned.

SingleRank [8] is a similar approach to TextRank, being different in three key aspects [7].
First, the weighted version of TextRank uses the same pre-defined weight for each edge,
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whereas SingleRank uses the number of times the connected terms co-occurred together in
the sliding window of N terms. Second, SingleRank considers both highest ranking and
lowest ranking terms in the ck forming process, while TextRank only employs the former.
This has the effect of a ck being ranked as a sum of the ranking of all terms in it. The
resulting score is then used in descending order to obtain the top-N highest scored cks.
Third, SingleRank uses a larger window size (e.g., 10), in contrast to a smaller window sizes
employed by TextRank (with 2 being the minimum one).

The mathematical formulation of the weighted SingleRank score WS(vi) is nearly the
same as the weighted TextRank score. The two major differences are: (i) the weight of an
edge between two nodes vi and vj is set to the number of cooccurrences cij; (ii) instead of
dividing the weight of an edge by

∣∣Γ(vj)
∣∣, it is instead divided by ∑ vk ∈ Γ(vj)

cjk which is
the sum of the number of co-occurrences between vj and each of its neighboring nodes
Γ
(
vj
)
. The weighted SingleRank score WS(vi) is calculated as:

WS(vi) = (1− d) + d×∑ vj∈Γ(vi)

cij

∑vk∈Γ(vj)
cjk

WS(vj) (4)

As stated in [9], graph-based approaches such as TextRank and SingleRank are per-
forming well in terms of extracting important keyphrases for short descriptive texts, such
as descriptions of projects, which is rather useful for the context of examining H2020
projects. In a few cases, we manually observed that the statistical approach of YAKE! is also
producing some interesting keyphrases, despite being a statistical approach, which relies
on co-occurrence of terms found in longer texts, in order to produce accurate keyphrases.

Recent literature reviews [10,11] have deeply analyzed the pros and cons of the afore-
mentioned approaches, while also including several other state-of-the-art unsupervised
keyphrase methods that apart from statistical or graph-based measures rely on external
knowledge bases (e.g., Wikipedia) to extract topics or even utilize word embedding vectors.

2.3. Named Entity Recognition

Named Entity Recognition (NER) is a fundamental subtask of NLP. By definition, it
enables the extraction of phrases called ‘entities’ from unstructured textual data, which
are detected and classified into specific pre-determined categories (e.g., ‘Person’, ‘Location’,
‘Organization’, etc.). Many NLP libraries have been developed so far to address this subtask.
A few notable examples include: GATE [12], NLTK [13], spaCy (https://spacy.io (accessed
on 27 November 2021)), StanfordNLP [14], Flair [15] and Stanza [16]. In terms of em-
ployed approaches, the libraries in question vary from rule-based (GATE, NLTK), statistical
neural network based (spaCy), to deep learning based ones (Stanza, Flair, spaCy-v3-trf).
Rule-based approaches, rely on carefully hand-crafted grammar-based rules, and a lot of
work done by human linguistic experts, whereas statistical ones require large numbers of
manually annotated data [17].

The authors in [18] compare notable NLP frameworks from each approach, excluding
the deep learning ones. In their experiments, it is shown that for the subtask of NER,
StanfordNLP achieves the best performance in terms of F1 score, whereas spaCy-v2 has
the second best performance. After this study was published, the Stanford NLP Research
group released Stanza, and the authors of spaCy released the third version of their software;
both libraries came with better pretrained models to the best of our knowledge, compared
to their predecessors.

The authors in [16] evaluated deep learning approaches (Stanza, Flair) that achieve
higher accuracies than existing methods; however, those suffer from severely increased
execution runtime, compared to the pretrained convolutional neural network approach of
spaCy-v3. These results are also confirmed by the authors of spaCy in their benchmarks
(https://spacy.io/usage/facts-figures#benchmarks (accessed on 27 November 2021)). Re-
cently, the creators of spaCy introduced a new pretrained transformer English model
(en_core_web_trf ), which reaches the state-of-the-art accuracy of deep learning approaches.

https://spacy.io
https://spacy.io/usage/facts-figures#benchmarks
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From the aforementioned two studies, we observed that there is an execution runtime ver-
sus accuracy of results trade-off, which influences the choice between different NLP libraries.

2.4. Analyzing CORDIS and Other Textual Datasets

We have identified a few recent works in the literature that adopt alternative ap-
proaches to analyze the CORDIS dataset. In the work described in [19], authors apply
graph social networks analysis using various measures to discover insights about coun-
tries/organizations that have acquired funding from the European Commission for projects
related to green energy and sustainable technologies. Although their approach showcases
interesting graph measures and results, it does not utilize any NLP techniques to retrieve
information about the topics of these projects, as is the case in the approach described in
this paper; this information would, for instance, provide insights about latest research
trends and potential collaborators.

By also using CORDIS data, the work presented in [20] builds on a known statistical
keyphrase extraction algorithm for candidate keyphrases, along with sentence similar-
ity word embeddings, to provide a list of insights and challenges upon the user input.
However, this approach does not allow one to find similar organizations or deliverables
or persons to collaborate by considering a list of topics specified by the user. On the
contrary, the approach proposed in this paper builds on a semantically rich knowledge
graph, which meaningfully models all the connections between data, and enables users to
pose such questions.

The Corpus Viewer System [21] adopts an approach that is very similar to the work
described in this paper; it utilizes various NLP practices to construct a knowledge graph
of projects funded by the European Commission and their associated topics. Nonethe-
less, there are some major differences: (i) their approach relies on topic modelling, where
each topic consists of a single term, whereas our approach utilizes keyphrase extrac-
tion to capture more context through extracting keyphrases consisting of multiple terms;
(ii) their approach is not fully unsupervised, since it relies on pre-supplied taxonomies as
training data, in order to perform text classification among the documents found in the
dataset; (iii) apart from graph visualizations, their tool offers geographical visualizations
for some pre-defined questions, which rely on aggregating statistical results from the
CORDIS dataset.

The work described in [22] proposes a document summarization and visualization
framework based on both statistical and semantic analysis of textual and visual contents,
aiming to highlight relevant terms in a document using some features (such as font size,
color, etc.) showing the importance of a term compared to other ones. This framework
builds on the combination of textual and visual features, which are stored in the Neo4j
graph database, to improve the user knowledge acquisition by means of a synthesized
visualization. This work demonstrates that with the help of semantic analysis and the
combination of textual and visual features it is possible to improve the user knowledge
acquisition by means of a synthesized visualization. However, compared to our approach,
it does not build a knowledge graph to enable the user performing diverse types of queries
and visualizing their results.

OLGAVIS (On-Line Graph Analysis and Visualization for Bibliographic Information
Network) [23] is an approach for visualizing connections in research bibliography. It builds
a research collaboration knowledge graph where publications, venues, authors, and their
affiliations are modelled using the Neo4j graph database. This approach also analyzes the
data using various graph queries, and then forwards these results into the visualization
layer. This layer allows users to ask questions about the data, and then filter or group
or aggregate results. Compared to our approach, OLGAVIS provides more sophisticated
visualization functionalities; however, it does not utilize any text mining method to extract
topics related to the various entities of the knowledge graph.

Finally, Metaphactory [24] is an enterprise knowledge graph platform, which enables
users to build and visualize knowledge graphs from multiple sources. These sources
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include various databases, analytics platforms, and open standards (e.g., RDF, SPARQL
etc.) To store the knowledge graph, it utilizes a graph database. This platform offers
multiple views of the knowledge graphs, as well as diverse graph filtering functionalities.
Compared to our approach, Metaphactory provides a richer and easier customizable user
interface; however, as is the case with OLGAVIS, it does not utilize any text mining method
to extract topics related to the various entities of the knowledge graph.

Table 1 summarizes and provides a comparative assessment of the key characteristics
of the aforementioned works against the one described in this paper.

Table 1. Overview of key characteristics of various approaches.

Approach Graph
Database

Knowledge
Graph

Text Mining
Method

Word
Embeddings

Fully
Unsupervised

Data
Visualization

[19] - - - - � �
[20] - - Keyphrase Extraction � - -
[21] - � Topic Modelling - - �
[22] � - Topic Modelling - - �
[23] � � - - � �
[24] � � - - � �

The proposed
approach � � Keyphrase Extraction - � �

3. The Proposed Approach

This section describes in detail the proposed approach towards representing and
analyzing the Horizon 2020 data. The novelty of our work lies in the utilization and
orchestration of keyphrase extraction and named entity recognition models, together with
meaningful graph analytics on top of a highly performant graph database, to inform
the process of preparation of research proposals for funding acquisition. The proposed
approach enables users to ask complex questions about the organizations, projects, deliv-
erables, topics, and people involved in already funded research projects, as well as about
the way that all these entities are meaningfully interconnected. This is an advantage over
previous approaches that merely analyze projects or organizations via a list of topics or via
a statistical distribution of funds or projects over countries or research topics.

As mentioned in prominent works (e.g., [25–27]), there are multiple reasons to opt
for a graph database over a relational database (e.g., SQL). The two basic ones are that:
(i) joins are expensive, and therefore, reasoning about a graph’s paths becomes very
costly; (ii) global properties are no easy to compute with classical queries based on logical
methods [25]. In addition, graph databases allow our graph model to be stored natively.
Other analytic tools such as Apache Spark store graph representations in a relational schema
by converting the graph model into tables connected by multiple foreign keys. After this
complex graph representation is built, these tools employ multiple JOIN statements, which
lead to memory bottlenecks and poor performance. On the contrary, graph databases, and
in our case Neo4j, provide a scalable solution that allows multiple hops across billions
of nodes and edges with increased performance. Furthermore, thanks to the flexible
schema nature of graph databases, we can store heterogeneous node types containing
different types of data, thus unifying diverse data sources into a common model. Finally,
graph databases permit us to easily adapt the model if and whenever needed, without the
additional re-modelling required in traditional approaches.

As illustrated in Figure 1, we propose a pipeline approach comprising four basic tasks,
namely (i) data collection (Section 3.2), (ii) unsupervised keyphrase extraction and person
extraction (Section 3.3), (iii) knowledge graph construction (Section 3.4), and (iv) graph
data analysis and visualization (Section 3.5). It is noted here that our overall approach is
presented in pseudocode form in Appendix A, Algorithm A1.
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3.1. Technical Information

This subsection contains information about the software and hardware specifications
that were utilized in the work described in this paper. Regarding our hardware specifica-
tions, we utilized a PC with an Intel Core i9 CPU (20 threads), and a base and max clock
speed of 3.70 Ghz and 5.00 Ghz, respectively. In terms of RAM, we used 2 dual in-line
memory modules, each having a size of 32 GB.

For the implementation of the proposed approach, we used the Python programming
language and the Neo4j database to store our knowledge graph. We also used the following
keyphrase extraction libraries: YAKE! (https://github.com/LIAAD/yake (accessed on
27 November 2021)), TextRank (https://github.com/DerwenAI/pytextrank (accessed on
27 November 2021)) and SingleRank (https://github.com/boudinfl/pke (accessed on 27
November 2021)). To create sublists of overlapping keyphrases obtained from the above ap-
proaches, we used the get_close_matches() method of the difflib built-in python library
(https://docs.python.org/3/library/difflib.html#difflib.get_close_matches (accessed on
27 November 2021). For the implementation of the suffix tree, which is used to extract the
longest common substring from each list of overlapping keyphrases, we used the suffix-
trees library (https://pypi.org/project/suffix-trees/ (accessed on 27 November 2021)). For
the NER task of extracting authors from text, we used spaCy v3 (https://spacy.io/ (ac-
cessed on 27 November 2021)) with a large pre-trained English model titled en_core_web_lg
(https://spacy.io/models/en#en_core_web_lg (accessed on 27 November 2021)).

3.2. Data Collection

We retrieve the required data from the CORDIS repository (https://data.europa.
eu/euodp/en/data/dataset/cordisH2020projects (accessed on 27 November 2021)). We
mainly use two .csv files, which contain information about the accepted (funded) projects
and their deliverables (the cordis-h2020projects.csv and cordis-h2020projectDeliverables.csv

https://github.com/LIAAD/yake
https://github.com/DerwenAI/pytextrank
https://github.com/boudinfl/pke
https://docs.python.org/3/library/difflib.html#difflib.get_close_matches
https://pypi.org/project/suffix-trees/
https://spacy.io/
https://spacy.io/models/en#en_core_web_lg
https://data.europa.eu/euodp/en/data/dataset/cordisH2020projects
https://data.europa.eu/euodp/en/data/dataset/cordisH2020projects
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files). These files are also used to generate some additional .csv files pertaining to our
analysis, which contain keyphrases for the respective projects and deliverables. The
second file contains URLs for the publicly available deliverables, which are large .pdf files
containing mostly text. We automated the process of downloading these .pdf files, which
are then converted to .txt files.

The text conversion process was successful for 87,067 out of 89,644 deliverables, mainly
due to the existence of corrupted files. We considered only the first five pages of each .pdf
file, by assuming that the information being sought about the authors of each deliverable
can be found there (it is noted that this information is not included in the original .csv files
considered). This assumption is justified by an extensive manual inspection of the format
adopted by diverse projects in the context of Horizon 2020. After the five pages of each
deliverable are extracted and saved in a .txt file, we use NER to extract the authors of the
deliverables. The accuracy score of the NER task of the spaCy v3 model is 85.5% (as stated
in https://spacy.io/usage/facts-figures#benchmarks (accessed on 27 November 2021)).
Finally, from the unstructured text fields (e.g., fields about the description of a project or
deliverable), we extract important keyphrases using a hybrid unsupervised keyphrase
approach, described in the next section.

3.3. Unsupervised Learning

We propose a hybrid unsupervised approach called HybridRank, which combines
several well-established unsupervised keyphrase extraction approaches, a list of auxil-
iary keyphrases given by human experts, and a suffix tree to reduce the duplication of
keyphrases in the final list. We then utilize spaCy’s NER component using the large pre-
trained English model to produce a .csv that contains the names of the authors of a certain
deliverable.

Taking into account the particularities of previous keyphrase extraction approaches
(outlined in Section 2.2), we propose a hybrid one that takes the union of the list of
keyphrases produced by individual approaches, and returns an enriched list of keyphrases.
To the best of our knowledge, no other works in the literature combine the lists of
keyphrases produced by different approaches, in a meaningful way. Specifically, in the con-
text of this work, we developed a keyphrase extraction approach that produces keyphrases
in an unsupervised manner; we combine the top-10 keyphrases from each individual
keyphrase extraction approach into a single list of keyphrases, which produces a maximum
of top-30 keyphrases (in some cases, there were partial duplicates).

Consider an example of a document which mostly refers to the topic of Machine
Learning. The final list could contain the following keyphrases: ‘advanced machine learning
approaches’, ‘machine learning approaches’, and ‘machine learning methods’. Out of the similar
keyphrases, our goal is to extract the common longest substring, which in this case would
be ‘machine learning’. This is done in an attempt to summarize similar keywords in a single
one, thus reducing the resulting keyphrase list.

From the list of keywords, we generate sub-lists of overlapping keyphrases, by utiliz-
ing the Gestalt pattern matching algorithm [28]. After the sublists are produced, we extract
the longest common substring representation with the use of the homonym method of a
suffix tree. As illustrated in Figure 2, a suffix tree can extract a common string representa-
tion from k strings inserted in the tree in Θ(n) time, where n is the number of nodes in the
tree [29].

https://spacy.io/usage/facts-figures#benchmarks
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Figure 2. An example of a suffix tree.

Our overall approach is fully unsupervised; however, there are some problems with it.
Specifically, some keywords are not extracted properly, or at-all, thus we came up with the
idea of using an auxiliary list of keyphrases that are extracted as-is from the text. This list
of keyphrases is manually supplied each time (upon the interest of the user) via a .txt file,
which is written by human experts before the execution.

3.4. Knowledge Graph Construction

From the entities described in the previously mentioned .csv files, we devise the
schema of our knowledge graph, which is shown in Figure 3. There are various types of
nodes, such as ‘Project’, ‘Deliverable’, ‘Person’, ‘Organization’ and ‘Keyphrase’. Each ‘Organi-
zation’ coordinates or participates in a certain ‘Project’ as extracted from the ‘coordinators’
and ‘participants’ fields of the .csv. Each ‘Project’ and ‘Deliverable’ node include a ‘Keyphrase’
node, which is going to be used to group similar nodes. Finally, a ‘Deliverable’ belongs to
a ‘Project’ node, and a ‘Person’ node writes a ‘Deliverable’. This allows us to associate the
deliverables with the projects and the authors involved.
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Figure 3. Schema of the knowledge graph.

These connections were extracted by the .csv files of the original dataset; in the case of
authors writing a certain deliverable, they were extracted through text mining approaches
from 87,067 deliverables. In terms of features, the nodes of our knowledge graph contain
the features appearing in the .csv (their type, funding scheme, etc.). The only exception
to this is the ‘Keyphrase’ node, which only contains the keyphrase itself as a label. Each
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keyphrase is modelled as a node, in order to facilitate the comparison of other nodes that
are directly or indirectly linked to it.

3.5. Graph Data Analysis and Visualization

This section demonstrates features related to the analysis and visualization of our
graph data through the following three representative queries:

• Q1: What are the topics of interest for each of the top-n organizations that have coordinated
(or participated in) the most projects of H2020?

• Q2: For a given list of topics, which deliverables were produced by the top-n organizations
that have coordinated (or participated in) the most projects of H2020 were related to pilot
applications?

• Q3: Which people have been working on a given list of topics? Have they been working on
additional ones?

To answer such questions in the Neo4j graph database, we employ the Cypher graph
query language, due to its expressiveness and native support. The cypher queries that
we implemented can be found in Appendix B. To visualize these queries, we can use the
Neo4j Browser tool, due to its ease of use and nice visualization features; it is noted that the
graph database can also be accessed programmatically, using a driver plugin from multiple
programming languages (https://neo4j.com/developer/language-guides/ (accessed on
27 November 2021)). For large queries that return thousands of nodes and edges, we have
also implemented a custom visualization tool, building on top of the neovis.js (accessed
on 27 November 2021) graph visualization library, which has been also included in our
GitHub repository (https://github.com/NC0DER/CORDISKG (accessed on 27 November
2021)). This tool bypasses common memory limitations imposed by the Neo4j Browser tool
and has been used in the instances shown in Figures 4–6.
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Q1 is a common query raised when an organization is about to shape a project proposal
and identify potential partners (especially, “big players”) to collaborate with. It is noted
that the results of a graph query can either be a subgraph of the original graph or a table of
aggregated results formed from the matched graph path. Figure 4 illustrates an instance
of the subgraph returned by queries of Q1 type, visually representing the topics that the
top organization (i.e., the one that has coordinated or participated in the most projects) has
been working on, together with the associated projects. It is noted that, due to the very
large number of projects this organization has been working on, the graph of Figure 4 is
just a small part of the one returned by Q1.

Q2 attempts to reveal information about the type of deliverables that were produced
by organizations, which have participated in projects elaborating a certain list of topics.
Particularly, Q2 focuses on deliverables reporting on the implementation (or evaluation) of
a project’s pilot applications (use cases). Figure 5 illustrates an instance of the subgraph
returned by queries of Q2 type, visually representing the projects that one of the top
organizations has been working on, together with the associated deliverables. As shown,
whenever the user hovers over a node, detailed information about its properties and values
appears. As above, due to space limitations, only a small part of the graph returned by Q2
is shown in this instance.
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Finally, Q3 is also a frequently asked question during the preparation of a research
proposal, raised when one wants to identify colleagues with particular skills and com-
petences that cover the needs of a call. Figure 6 illustrates an instance of the subgraph
returned by queries of Q3 type, visually representing the deliverables that a person has
been working on, together with the associated projects and topics. Once again, we have
imposed a limitation on the number of nodes to be returned by the specific query.

4. Conclusions

Adopting a knowledge graph-based approach, the work described in this paper builds
on prominent ML and NLP tools and methods to analyse the H2020 dataset appearing in
the CORDIS repository. As described in detail in the previous section, the main contribution
of this work lies in the proper utilization and orchestration of keyphrase extraction and
named entity recognition models, together with meaningful graph analytics on top of an
efficient graph database. The proposed approach enables users to ask complex questions
about the interconnection of various entities related to previously funded research projects.
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We argue that the proposed approach can reveal hidden knowledge, trigger insights,
and accordingly extract evidence to aid organisations in the highly complex and knowledge-
intense task of the formulation of future research project proposals and related consortia.
As elaborated in detail in [25], the proposed approach builds on the dual character of
graphs, i.e., on one hand, providing a simple, flexible, and extensible data structure, and
on the other, being one of the most deep-rooted form of representing human knowledge.
In addition, the proposed approach contributes to an important line of research that has to
do with the interplay of graph analytics and machine learning, or computing statistics over
graphs [26].

Nowadays, the proposed approach can be very useful for organisations that are getting
prepared to submit their proposals to the recently launched calls of the Horizon Europe
funding programme. It has already undergone a preliminary assessment and validation
round, with the aid of five experienced practitioners in project proposals’ building (from
three different European organisations). The feedback collected was highly positive in
terms of usefulness and ease-of-use. In any case, a future work direction concerns a carefully
planned assessment, also aiming to capture additional queries of major importance. A
second work direction concerns the elaboration of a deep learning approach, which would
maximize the accuracy of the proposed approach’s NER subtask and require less amount of
post-processing effort by human experts. In this direction, we plan to assess and eventually
integrate in our approach word embeddings-based clustering techniques that incorporate
the textual content with latent feature vector representations of words appearing in the text
to improve the quality of topic detection [30]. Aiming to augment the visualization of the
generated results, a third work direction concerns the development of alternative views,
such as the hierarchical tree-based view elaborated in [31] and the combined table-tree view
of aggregated graph features described in [32]. Finally, a fourth work direction concerns
the potential incorporation of approaches that aim to decrease the number of necessary
queries and consequently lower the search time in the context under consideration [33].
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Appendix A

Algorithm A1. Pseudocode of the Proposed Approach

Input: CORDIS H2020 Data
Output: Knowledge graph (Neo4j), Visualized Graph Data (Figures)

// Section 3.2: Data collection step.
pdfs← download_pdfs_from(CORDIS H2020 Data)
save_pdfs_to_txts(pdfs, convert_pdfs_to_raw_text← True, max_num_of_pages← 5,
output_dir← ‘deliverables’)

people← extract_people_using_NER_from(‘deliverables’, entity_type← ‘Person’)

// Section 3.3: Unsupervised learning step.
for row in CORDIS H2020 Data do
text← row.description
results← []

// Extract keyphrases from each method and auxiliary keyphrases.
keyphrases← extract_keyphrases_from(
methods← [‘YAKE’, ‘TextRank’, ‘SingleRank’],
parameters← [text, top_n← 10],
use_expert_ auxilliary_keyphrases← True)

// For each keyphrase get a list of overlapping keyphrases.
for keyphrase in keyphrases do
overlapping← get_close_matches(keyphrases, ‘gestalt_pattern_matching’)

// If there are overlapping keyphrases,
// then extract the longest common substring using the lcs() method.
if overlapping.length() > 1 do
tree← Suffix_Tree.initialize_from_set({overlapping} ∪ {keyphrase})
results.append(tree.lcs())

// Section 3.4. Knowledge Graph Construction step.
database← create_neo4j_database_instance(username, password)
create_project_subgraph(database)
create_deliverables_subgraph(database)
create_keyphrase_subgraph(database)
create_people_subgraph(database)

// Section 3.5. Graph Data Analysis and Visualization step.
visualize_subgraph_data_from_cypher(queries, output_path← ‘figures’)

Appendix B

This appendix lists the Cypher queries that correspond to the questions Q1, Q2, and
Q3 mentioned in Section 3.5. In the queries below, top_n (organizations, people etc.) is set to
100, top_m (topics) is set to 25, the number of deliverables is set to 10, and profile is supplied
by the user as a list of topics (e.g., [‘sustainability, ‘carbon emissions’, ‘green technologies’]).
We used a profile of 86 topics related to e-government, banking, sustainable technologies,
and cryptocurrency.
Q1: What are the topics of interest for each of the top-n organizations that have coordinated (or
participated in) the most projects of H2020?

MATCH (o:Organization)-[:participates_in|coordinates]->(p:Project)
WITH o.name AS Organization, COUNT(p) AS Amount
ORDER BY Amount DESC LIMIT 100
WITH COLLECT(Organization) AS orgs
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UNWIND orgs AS org
MATCH (o:Organization {name: org})-[:participates_in|coordinates]->(p:Project)-[:includes]-
(k:Keyphrase)
WHERE NOT k.name IN [‘report’, ‘deliverable’, ‘task’, ‘project’, ‘document’, ‘available’,
‘terms’]

WITH o.name AS Organization, k.name AS Topic, COUNT(k) AS NumberOfTopics
ORDER BY NumberOfTopics DESC

RETURN Organization, COLLECT([Topic, NumberOfTopics])[..25]

Performance: Execution time: 1279 ms, Memory used: 253.69 MB, Database hits: 5,373,808.
For hardware specifications see Section 3.1.

Q2: For a given list of topics, which deliverables were produced by the top-n organizations that have
coordinated (or participated in) the most projects of H2020 were related to pilot applications?

UNWIND profile AS search_term
MATCH (o:Organization)-[:participates_in|coordinates]->(p:Project)-[:includes]->(k:Keyphrase)

WHERE k.name CONTAINS(search_term)
WITH o.name AS Organization, COUNT(p) AS ProjectCount
ORDER BY ProjectCount DESC LIMIT 100

UNWIND [‘use case’, ‘pilot’, ‘application’] AS del_type
MATCH (o:Organization {name: Organization})-[:participates_in|coordinates]->(p:Project)<-
[:belongs]-(d:Deliverable)-[:includes]->(k:Keyphrase)
WHERE d.title CONTAINS (del_type)
RETURN o.name AS Organization, COLLECT(DISTINCT d.title)[..10]

Performance: Execution time: 5919 ms, Memory used: 5.35 MB, Database hits: 10,529,877.
For hardware specifications see Section 3.1.

Q3: Which people have been working on a given list of topics? Have they been working on additional
ones?

UNWIND profile AS search_term
MATCH (a:Person)-[:writes]->(d:Deliverable)-[:belongs]->(:Project)-[:includes]->(k:Keyphrase)
WHERE k.name CONTAINS(search_term) AND NOT k.name IN [‘report’, ‘deliverable’,
‘task’, ‘project’, ‘document’, ‘available’, ‘terms’]

WITH a.name AS Person, k.name AS Topic, COUNT(k) AS NumberOfTopics
ORDER BY NumberOfTopics DESC

RETURN Person, COLLECT([Topic, NumberOfTopics])[..25] LIMIT 100

Performance: Execution time: 7575 ms, Memory used: 423.29 MB, Database hits: 12,069,554.
For hardware specifications see Section 3.1.
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