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Abstract: A 3–5 µm mid-infrared band is a good window for atmospheric transmission. It has the
advantages of high contrast and strong penetration under high humidity conditions. Therefore, it has
important applications in the fields of laser medicine, laser radar, environmental monitoring, remote
sensing, molecular spectroscopy, industrial processing, space communication and photoelectric
confrontation. In this paper, the application background of mid-infrared laser is summarized. The
ways to realize mid-infrared laser output are described by optical parametric oscillation, mid-infrared
solid-state laser doped with different active ions and fiber laser doped with different rare earth ions.
The advantages and disadvantages of various mid-infrared lasers are briefly described. The technical
approaches, schemes and research status of mid-infrared lasers are introduced.

Keywords: mid-infrared; optical parametric oscillator (OPO); solid-state lasers; fiber lasers

1. Introduction

Laser has been an important invention in the history of human science since the
20th century, following atomic energy, semiconductors and computers, known as “the
fastest knife”, “the most accurate ruler” and “the brightest light”. Laser has been widely
used and recognized in production and science because of its incomparable advantages
over ordinary light sources. After 60 years of research and development, laser-related
technologies, products and services have spread all over the world, forming a rich and huge
laser industry. It is widely used in material processing, communication, optical storage,
medical and beauty technologies, research and military developments, instruments and
sensors, entertainment display, additive manufacturing and other areas of the national
economy. In particular, high-performance 3–5 µm mid-infrared laser in the atmospheric
window has important application value and prospect in laser imaging, chemical remote
sensing, the medical field, environmental protection and civil and military fields [1].

At present, the technical ways to realize the mid-infrared laser output at a 3–5 µm
band mainly include indirect conversion and direct generation. The indirect conversion is
mainly based on the nonlinear frequency conversion crystal to generate mid-infrared laser
by using an optical parametric oscillator, and the direct generation of stimulated radiation
mainly includes quantum lasers, chemical lasers, gas lasers, solid-state lasers and fiber
lasers [2]. The characteristic analysis of various ways to realize mid-infrared laser output is
shown in Table 1.
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Table 1. Comparative analysis of research approaches for realizing mid-Infrared 3–5 µm band.

Method Technology Classification Advantage Disadvantage

Indirect
conversion

Optical Parametric
Oscillator

LiNbO3, PPLN, MgO:
PPLN, KTP, KTA,

ZnGeP2, AgGaSe2,
AgGaS2

high energy and
efficiency and excellent
spectral characteristics

system stability and beam
quality should be improved

Quantum Cascade
Laser InAs, AlSb wider transmission

bandwidth
low output power and poor

beam quality

Chemical laser HF, COIL good beam quality high prices, toxic products

Gas laser CO, CO2
high power and long

service life
high temperature explosive,
large volume and high cost

solid-state laser Fe: ZnSe, Cr: ZnSe
absorption bandwidth,
wide tuning range and

good beam quality
limited by temperature

Directly produced

Fiber Laser Er3+: ZBLAN, Ho3+:
ZBLAN, Dy3+: ZBLAN

small transmission loss
and stable property narrow tuning range

As shown in the table, in view of the characteristics of the simple structure, small
size, easy application and so on, this paper focuses on the introduction on the research of
an optical parametric oscillator, excessive metal doped solid-state lasers and a fiber laser
whose gain medium is soft glass.

2. Mid-Infrared Optical Parametric Oscillation Laser (OPO)

The optical parametric oscillation laser (OPO) is one of the main ways to realize a
mid-infrared laser output of 3–5 µm and is composed of nonlinear crystal, a pump source
and a resonant cavity, as shown in Figure 1. It can reach an output band that cannot be
realized by traditional lasers and has many advantages, such as a wide tuning range, simple
structure, high output power, narrow linewidth, etc. [3]. With the emergence of various
nonlinear crystals, the optical parametric oscillator has achieved important breakthroughs
and opened new application prospects, which has once again become a research hot
spot of scholars in the world. According to the different nonlinear crystal materials, the
mid-infrared laser based on optical parametric oscillation is classified as follows.
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Figure 1. Schematic diagram of optical parametric oscillator.

2.1. LiNbO3, PPLN, MgO-Doped PPLN Optical Parametric Oscillator

The optical parametric oscillators of lithium niobate crystals can be divided into pure
lithium niobate (LiNiO3), periodically poled lithium niobate (PPLN) and periodically po-
larized lithium niobate doped with MgO (MgO-doped PPLN) optical parametric oscillators
based on different crystals. The specific evolution process is shown in Figure 2. In order
to improve the damage threshold and stability of the crystal, PPLN is used instead of the
traditional LiNiO3 crystal. While in order to further improve the damage threshold of the
PPLN crystal, MgO-doped PPLN crystal was born.
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Figure 2. Evolution process of LiNiO3 crystal.

From Figure 2, we can see that LiNbO3, PPLN and MgO-doped PPLN all have their
own advantages and disadvantages. The technology of periodically polarized crystals
has been gradually developed and perfected with the increasing research of scholars. The
research statuses of LiNiO3, PPLN and MgO-doped PPLN optical parametric oscillation
lasers are shown in Table 2.

Table 2. Research and development status.

Crystal Year Research
Establishment Crystal Parameter Pump Source Mid-Infrared Output

Parameter Reference

LiNbO3

2000

North China
Institute of

Optoelectronic
Technology

10 × 10 × 30 mm3 1.06 µm
Nd: YAG

Output wavelength 3.76 µm
Repetition rate 5 Hz

Average power 35 mW
Optical efficiency 6%

[4]

LiNbO3 2003 Harbin Institute
of Technology No mention 1.06 µm

Nd: YAG

Output wavelength 3.41 µm
Repetition rate 10 Hz

Average power 12 mW
Optical efficiency 4.5%

[5]

2006 Sichuan
University 13 × 13 × 50 mm3 1.064 µm

Nd: YAG

Output wavelength 3.06 µm
Repetition rate 1 Hz

Average power 15 mW
Optical efficiency 10%

[6]

2011 Photonics Center 10 × 20 × 0.5 mm3 1.064 µm
Nd: YVO4

Output wavelength 4.5 µm
Average power 1.1 W

Optical efficiency 7.5%
[7]

PPLN

2012 Tianjin University 24 × 8 × 1 mm3 1.064 µm
Nd: YVO4

Output wavelength 3.66 µm
Average power 1.54 W
Optical efficiency 7%

[8]
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Table 2. Cont.

Crystal Year Research
Establishment Crystal Parameter Pump Source Mid-Infrared Output

Parameter Reference

2015

Huazhong
Institute of

Optoelectronics
Technology

40 × 10 × 1 mm3 1.064 µm
Nd: GdVO4

Output wavelength 3.81 µm
Repetition rate 10 kHz
Average power 5.4 W

Optical efficiency 15.88%

[9]

2019

Barcelona
Institute of
Science and
Technology

42 mm length
1 thick

1.064 µm
Yb3+ fiber

Output wavelength 3.340 µm
Average power 3.5 W

Optical efficiency 9.5%
[10]

MgO
-doped
PPLN

2008 Harbin Institute
of Technology

50 × 8.2 × 1 mm3

5% mol
1.047 µm
Nd: YAG

Output wavelength 3.26 µm
Repetition rate 10 kHz
Average power 0.46 W

Optical efficiency 15.3%

[11]

2008
China Academy
of Engineering

Physics

No mention
5% mol

1.064 µm
Yb3+ fiber

Output wavelength 3.7 µm
Average power 3.2 W
Optical efficiency 18%

[12]

2010 Tsinghua
University

5 × 1 × 30 mm3

No mention
1.064 µm

Nd: YVO4

Output wavelength 3.164 µm
Repetition rate 76.8 kHz

Average power 4.3 W
Optical efficiency 17.1%

[13]

2012 University of
Southampton

50 × 2 × 2 mm3

No mention
1.064 µm
Yb3+ fiber

Output wavelength 3.82 µm
Repetition rate 100 kHz
Average power 5.5 W
Optical efficiency 45%

[14]

2014

Changchun
University of
Science and
Technology

50 × 2 × 2 mm3

5% mol
1.064 µm

Nd: GdVO4

Output wavelength 3.85 µm
Repetition rate 200 kHz
Average power 1.82 W

Optical efficiency 21.3%

[15]

2014 Zhejiang
University

50 × 1 × 10 mm3

5% mol
1.064 µm
Yb3+ fiber

Output wavelength 3.99 µm
Average power 2.1 W

Optical efficiency 5.2%
[16]

MgO
-doped
PPLN

2016 Université
Paris-Saclay

1 length
5% mol

1.55 µm
Yb3+ fiber

Output wavelength 3.07 µm
Repetition rate 125 kHz
Average power 1.25 W

Optical efficiency 17.9%

[17]

2017 Imperial College
London

40 × 10 × 1 mm3

5% mol
1.065 µm
Yb3+ fiber

Output wavelength 3.35 µm
Repetition rate 1 MHz
Average power 6.2 W

Optical efficiency 24.3%

[18]

2018

Changchun
University of
Science and
Technology

1 × 8.6 × 50 mm3

5% mol
1.06 µm

Nd: YVO4

Output wavelength 3.2 µm
Average power 1.72 W
Optical efficiency 7.17%

Output wavelength 3.5 µm
Average power 1.39 W
Optical efficiency 5.4%

Output wavelength 3.8 µm
Average power 1.39 W
Optical efficiency 3.1%

Output wavelength 4.1 µm
Average power 0.72 W

Optical efficiency 1.84%

[19]

2020 Xinjiang Normal
University

40 × 10 × 2 mm3

5% mol
1.064 µm
Nd: YAG

Output wavelength 3.4 µm
Repetition rate 50 Hz

Average power 1.075 W
Optical efficiency 10.2%

[20]

2020 Shandong
University

25 × 3 × 1 mm3

5% mol
1.937 µm
Tm: YAP

Output wavelength 3.87 µm
Repetition rate 6 kHz
Average power 1.2 W

Optical efficiency 19.4%

[21]
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Table 2. Cont.

Crystal Year Research
Establishment Crystal Parameter Pump Source Mid-Infrared Output

Parameter Reference

2021

Changchun
University of
Science and
Technology

30 × 2 × 5 mm3

5% mol
1.064 µm
Yb3+ fiber

Output wavelength 3.8225 µm
Repetition rate 1 MHz
Average power 2.06 W

Optical efficiency 11.38%

[22]

2021 Shandong
University

10 × 1 × 50 mm3

5% mol
1.064 µm
Yb3+ fiber

Output wavelength 3.4 µm
Repetition rate 5 kHz

Average power 3.68 W
Optical efficiency 37%

[23]

It can be seen from the table that the output power, wavelength and conversion
efficiencies of periodically poled crystals have been improved substantially from LiNbO3
to MgO-doped PPLN.

2.2. KTiOPO4 and KTiOAsO4 Optical Parametric Oscillator

KTP crystal and KTA crystal belong to the isologue, the symmetrical structure of
the 2 m point group, which has high hardness and excellent optical properties. They are
nonlinear optical materials widely used in frequency conversions. The descriptions of the
two crystals are shown in Figure 3.
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It can be seen from the Figure 3 that both KTP and KTA have the characteristics of
a high damage threshold. However, compared with KTP crystal, the physicochemical
property of KTA crystal is more stable and overcomes the absorption band of KTP crystal,
which is near 3.4 µm. Both crystals have made prominent contributions to the high
repetition frequency and high-energy mid-infrared output, and the excellent characteristics
of KTP and KTA crystals determine the wide range of their applications. The research
progress of KTP and KTA crystals in the mid-infrared band is shown in Table 3.

Numerous institutions for KTP and KTA crystals research have been reported. They
have a wide variety of pump sources, and the operation modes are various. According to
the latest research, they have achieved high-power and high-quality laser output.
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Table 3. Research and development status.

Crystal Year Research
Establishment

Crystal
Parameter Pump Source Mid-Infrared Output

Parameter References

2003 Harbin Institute
of Technology 7 × 7 × 25 mm3 1.06 µm

Nd: YAG

Output wavelength 3.29 µm
Average power 2 mW
Repetition rate 1 Hz
Optical efficiency 5%

[5]

2016
The Czech

Academy of
Sciences

16.5 mm length
1 mm thickness

0.976 µm
Yb3+ fiber

Output wavelength 3.225 µm
Repetition rate 100 MHz [24]

2018
Humboldt-

Universität zu
Berlin

2 mm thickness
1.028 µm

Yb:
KGd(WO4)2

Output wavelength 3.13 µm
Average power 780 mW
Repetition rate 100 kHz
Optical efficiency 12%

[25]

KTP

2021
Chinese

Academy of
Sciences

2 × 4 × 4 mm3 1.03 µm
Yb:KGW

Output wavelength 3.17 µm
Average power 1.03 W
Repetition rate 15 MHz
Optical efficiency 14.7%

[26]

KTA

2010
Chinese

Academy of
Sciences

5 × 5 × 25 mm3 1.064 µm
Nd: YAG

Output wavelength 3.467 µm
Average power 84 mW
Repetition rate 100 Hz
Optical efficiency 14%

[27]

2011
Norla Institute

of Technical
Physics

7 × 7 × 20 mm3 1.064 µm
Nd: YAG

Output wavelength 3.475 µm
Average power 2.125 W

Repetition rate 25 Hz
Optical efficiency 14.3%

[28]

2013 Whenzhou
University 5 × 5 × 20 mm3 0.808 µm

Nd: YLF

Output wavelength 3.440 µm
Average power 0.335 W
Optical efficiency 5.6%

[29]

2013 Tsinghua
University

10 × 10 ×
20 mm3

1.06 µm
Nd: YAG

Output wavelength 3.75 µm
Average power 600 mW

Repetition rate 10 Hz
Optical efficiency 7.54%

[30]

KTA 2016

Shanghai
Institute of

Optics and Fine
Mechanics, the

Chinese
Academy of

Sciences

3 × 2.5 ×
2 mm3

0.8 µm
Ti: sapphire

Output wavelength 3.27 µm
Average power 82 mW
Repetition rate 1 kHz

Optical efficiency 14.6%

[31]

2018
Chinese

Academy of
Sciences

2 mm length 1.03 µm
Yb: KGW

Output wavelength 3.05 µm
Average power 1.31 W

Repetition rate 151 MHz
Optical efficiency 18.7%

[32]

2020

U.S. Army
Combat

Capabilities
Development

Command

6 × 6 × 20 mm3 1.06 µm
Nd: YAG

Output wavelength 3.5 µm
Average power 0.242 W

Repetition rate 20 Hz
Optical efficiency 35.5%

[33]

2021 Shandong
University

10 × 10 ×
33 mm3

1.064 µm
Nd: YAG

Output wavelength 3.47 µm
Average power 6.4 W
Repetition rate 100 Hz

Optical efficiency 43.6%

[34]

2.3. AgGaSe2 and AgGaS2 Optical Parametric Oscillator

AgGaSe2 and AgGaS2 are semiconductor chalcopyrite symmetry crystals. Both crys-
tals are transparent in infrared, and they have been used for a long time in the mid-infrared
band. The descriptions of two crystals are shown in Figure 4.
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For AgGaSe2 and AgGaS2 crystals, the biggest defect is that the damage interpretation
value is generally low, which cannot meet the needs of high repetition rates and maximum
energy output.

In the early stage, the research on AgGaSe2 and AgGaS2 crystals was also extensive;
the research and development status are shown in Table 4.

Table 4. Research and development status.

Crystal Year Research
Establishment

Crystal
Parameter Pump Source Mid-Infrared Output

Parameter References

AgGaSe2

2000 The University
of Burdwan 9 mm thickness 2 µm

CO2 laser

Output wavelength 3.5 µm
Average power 6 mW
Repetition rate 1 Hz

Optical efficiency 2.4%

[35]

AgGaSe2 2009

Changchun
Institute of
Optics, Fine

Mechanics and
Physics

18 × 18 ×
52 mm3

9.3 µm
TEACO2 laser

Output wavelength 4.65 µm
Average power 3.9 W
Repetition rate 100 Hz
Optical efficiency 56%

[36]

2013

Huazhong
University of
Science and
Technology

5 × 5 × 13 mm3 9.6 µm
CO2 laser

Output wavelength 3.2 µm
Average power 4 kW
Repetition rate 1 Hz

Optical efficiency 0.14%

[37]

1984 Stanford
University

2 × 1 ×
0.5 mm3

1.064 µm
Nd: yttrium

Output wavelength 4 µm
Average power 5 mW
Repetition rate 10 Hz
Optical efficiency 16%

[38]

1997 DSO National
Laboratories

2 × 0.7 ×
0.7 mm3

1.064 µm
Nd: YAG

Output wavelength 4.2 µm
Repetition rate 10 Hz
Optical efficiency 10%

[39]

1999
American
Institute of

Physics

20 × 7 ×
10 mm3

1.06 µm
Nd: YAG

Output wavelength 3.9 µm
Average power 4 mW
Repetition rate 10 Hz
Optical efficiency 22%

[40]
AgGaS2

2006 Jilin University 10 × 7 ×
20 mm3

1.06 µm
Nd: YAG

Output wavelength 4 µm
Average power 12 mW
Repetition rate 20 Hz

Optical efficiency 3.5%

[41]

It can be seen from the existing reports that the output efficiency based on these two
crystals to realize mid-infrared laser is low, and the maximum energy that can be obtained



Appl. Sci. 2021, 11, 11451 8 of 22

is also relatively small. This may be the reason why there are almost no literature reports
about realizing mid-infrared laser output based on these two nonlinear crystals in the
pas decade.

2.4. ZnGeP2 Optical Parametric Oscillator

ZnGeP2 crystal is the most important nonlinear crystal in optical parametric oscillator
technology. The description of it is shown in Figure 5.
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For the ZnGeP2 crystal, its good physical and chemical properties, high thermal
conductivity and damage threshold have achieved its advantages when operating in a
high-power environment. Therefore, it is the best nonlinear crystal for a high-power,
3~5 µm mid-infrared OPO.

The ZnGeP2 crystal has been deeply studied by many scholars because of its excellent
characteristics. The research development is shown in Table 5.

According to the literature, the best results of mid-infrared laser output based on ZGP
crystal are an average output power of 103 W at a frequency of 10 kHz. The optical efficien-
cies are 78% and 44.2% with an output wavelength of 4.6 µm and 4.57 µm, respectively.

As mentioned above, several optical parametric oscillators for mid-infrared (3–5 µm)
output are discussed. The properties parameters of mid-infrared nonlinear optical crystals
are shown in Table 6.

The nonlinear crystals mentioned above have transmittance in the mid-infrared of
3–5 µm, which are currently widely studied in the world. Compared with LiNiO3 and
PPLN, MgO-doped PPLN crystal owns a larger damage threshold, and now it has become
a research hotspot. However, the thermal conductivity of KTP, AgGaSe2 and AgGaS2 are
relatively small, which will induce serious thermal effect under high-power operation and
even cause the damage of crystals. Therefore, the output and applications of high-power
mid-infrared in the future are limited. The thermal conductivity is smallest, and the damage
threshold is the highest of ZGP crystal, which may be the reason why the output power is
largest among these nonlinear crystals. It has a compact laser structure, the advantages
of a wide tuning range of output wavelength and so on. Therefore, it can be said that the
realization of mid-infrared laser output based on ZGP crystal is mainstream through an
indirect way.
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Table 5. Research and development status.

Year Research
Establishment

ZGP Crystal
Parameter Pump Source Mid-Infrared Output

Parameter References

2010
Norwegian

Defence Research
Establishment

8.5 × 6 × 8 mm3 2.1 µm
Ho: YAG

Output wavelength 4.5 µm
Average power 22 W

Repetition rate 45 kHz
Optical efficiency 58%

[42]

2011
China Academy of

Engineering
Physics

8 × 6 × 18 mm3 2.1 µm
KTP OPO

Output wavelength 4.32 µm
Average power 5.7 W
Repetition rate 8 kHz

Optical efficiency 46.6%

[43]

2013
Australian
National

University
No mention 2.09 µm

Ho: YAG

Output wavelength 3.5 µm
Average power 10.6 W
Repetition rate 35 kHz
Optical efficiency 69%

[44]

2014 University of
Central Florida 5 × 4 × 12 mm3 1.98 µm

Tm: fiber

Output wavelength 3.7 µm
Average power 2.8 W
Repetition rate 4 kHz
Optical efficiency 8%

[45]

2014 Harbin Institute of
Technology 6 × 6 × 23 mm3 2.1 µm

Ho: YAG

Output wavelength 4.5 µm
Average power 41.2 W
Repetition rate 20 kHz

Optical efficiency 38.5%

[46]

2015

Huabei
Photoelectric
Technology

Research Institute

5 × 5 mm2 end
face

2.05 µm
Ho: YLF

Output wavelength 3.75 µm
Average power 26.9 W
Repetition rate 5 kHz
Optical efficiency 50%

[47]

2016
French-German

Research Institute
of Saint-Louis

14 × 12 × 6 mm3 2.05 µm
Ho: YLF

Output wavelength 4.6 µm
Average power 0.12 W

Repetition rate 1 Hz
Optical efficiency 78%

[48]

2017 Chinese Academy
of Sciences 6 × 6 × 15 mm3 2.09 µm

Ho: YAG

Output wavelength 4.6 µm
Average power 95 mW

Repetition rate 5 Hz
Optical efficiency 75.7%

[49]

2018 Harbin Institute of
Technology 30 mm length 2.05 µm

Ho: GdVO4

Output wavelength 4.39 µm
Average power 2.05 W
Repetition rate 5 kHz

Optical efficiency 74.6%

[50]

2019 Harbin Institute of
Technology 6 × 6 × 20 mm3 2.09 µm

Ho: YAG

Output wavelength 4.57 µm
Average power 103 W
Repetition rate 10 kHz

Optical efficiency 44.2%

[51]

2019

Changchun
University of
Science and
Technology

5 × 5 × 16 mm3 2.09 µm
Ho: YAG

Output wavelength 4.5 µm
Average power 5.97 W
Repetition rate 6 kHz

Optical efficiency 44.1%

[52]

2021
French-German

Research Institute
of Saint-Louis

6 × 6 × 20 mm3 2.09 µm
Ho:LLF MOPA

Output wavelength 3–5 µm
Average power 38 W

Repetition rate 10 kHz
Optical efficiency 46.6%

[53]

2021 Shandong
University 6 × 6 × 25 mm3 2.1 µm

Ho:YAG

Output wavelength 4.3 µm
Average power 10.62 W
Repetition rate 15 kHz

Optical efficiency 37.9%

[54]
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Table 6. Properties of mid-infrared nonlinear crystals mentioned above.

Crystal Crystal System Point Group Nonlinear
Coefficient/pm·V−1

Transparency
Range/µm

Thermal
Conductivity/W·m−1·K−1

Damage
Threshold/GW·cm2

LiNiO3 trigonal system 3 m d22 = 2.1
d31 = 4.3 d33 = 27.2 0.35–4.5 5.6 0.2

PPLN trigonal system 3 m d33 = 27.2 0.33–5.5 5 0.3
MgO: PPLN trigonal system 3 m d13 = 14.8 0.36–5 4.4 0.6

KTP orthorhombic
system 2 m d15 = 1.9

d24 = 3.64 d33 = 16.9 0.35–4.5 0.4 1.5

KTA orthorhombic
system 2 m d15 = 4.2 d24 = 2.8

d33 = 16.2 0.4–5 20 1.0

AgGaSe2 tetragonal system 42 m d36 = 39.5 0.73–18 1 0.04
AgGaS2 tetragonal system 42 m d36 = 13.4 0.53–13 1.5 0.04

ZGP tetragonal system 42 m deff = 75 0.74–12 35 30

3. Mid-Infrared Fe: ZnSe and Cr: ZnSe Solid-State Lasers

Taking transition metal doped II~VI chalcogenides crystallized group sulfide crystals
as gain media is an important means to realize mid-infrared laser. The two typical laser
materials are Fe: ZnSe and Cr: ZnSe crystals. Characteristics descriptions of Fe: ZnSe and
Cr: ZnSe crystals are shown in Figure 6.
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Fe: ZnSe is a four-energy level structure. When Fe2+ is doped into ZnSe, Zn2+ in the
center of tetrahedron will be replaced. The ground state energy level 5D of the outermost
electron 3d6 splits into duplex degenerate states 5E and triple-degenerate states 5T2 under
the action of a crystal field [55]. Then the one-step orbital spin coupling splits the 5T2 state
into three energy bands and the second-order orbital spin coupling splits the 5E state into
five energy levels. The energy level diagram is shown as Figure 7.
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Cr: ZnSe is a four-energy level structure. Under the action of a pump light, Cr2+ in the
ground state of 5T2 transits to the vibrational levels of excited state 5E, and because there is
no other energy level above the 5E excited state level, therefore, there is almost no excited
state absorption process for Cr2+ [56]. The energy level diagram is shown as Figure 8.
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Figure 8. Diagram of Cr: ZnSe energy level.

The absorption peak of Fe: ZnSe crystal is near 3 µm at room temperature. Addition-
ally, the emission peak is near 4.3 µm. Take note that the absorption characteristics of Fe:
ZnSe crystal varies greatly with temperature, as shown in Figure 9. The absorption cross
sections of Fe: ZnSe crystal are greatly at 14 K. Additionally, the absorption cross section
will become lower while, at the same time, the absorption range will become wider at
300 K. From the emission spectrum of Fe: ZnSe, the material emission spectrum range is
3–5 µm [1].
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Cr: ZnSe has a relatively wide absorption band, at 1.5–2 µm; as shown in Figure 10,
the absorption peak is around 1.75 µm. The emission spectroscopy is 2–3 µm, and the
emission peak is about 2.45 µm [56]. It can be seen from Figure 10 that it is not a good
choice to use the Cr: ZnSe crystal to achieve a laser output above 3 µm, because, although
the crystal has emission at 3 µm, its gain is relatively low.
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Spectroscopic and material properties of the Cr: ZnSe and Fe: ZnSe crystals are shown
in Table 7.

Table 7. Parameters of Cr: ZnSe and Fe: ZnSe crystals.

Crystal Cr:ZnSe Fe:ZnSe

Symmetry of crystal Cubic system Cubic system
Size (mm3) 40 × 40 × 50 40 × 40 × 50

Launch range (µm) 1.9–3.3 3.4–5.2
Gain bandwidth (nm) 500 500

Peak absorption cross section (×10−20 cm2) 87 97
Peak absorption wavelength (µm) 1.78 3 (300 K)

Peak emission cross section (×10−20 cm2) 90 140
Peak emission wavelength (µm) 2.45 4.140

Emission bandwidth (nm) 0.9 1.1
Fluorescence lifetime (300 k, µs) 8 0.37

It can be seen from Table 7 that the absorption cross section and emission cross section
of Fe2+: ZnSe are larger than that of Cr2+: ZnSe. While the Cr: ZnSe crystal exhibits
excellent room temperature fluorescence properties, both of them have a wide tuning range
and high quantum efficiency, which have attracted more and more attention in the field of
mid-infrared wave band research. The research and development status of Cr: ZnSe and
Fe: ZnSe lasers are shown in Table 8.

Compared with Cr: ZnSe laser, the single energy or the average power is higher for the
Fe: ZnSe laser. However, for the Fe: ZnSe crystal, the temperature is the key factor affecting
its fluorescence lifetime. High-power Fe: ZnSe laser can be realized at low temperatures.
As temperature rises, the fluorescence lifetime of Fe: ZnSe crystal decreases, which makes
it difficult to achieve a high-power, mid-infrared laser. Future research can focus on the
external cooling method of the laser to ensure that it maintains good mid-infrared laser
output performance at room temperature.
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Table 8. Research and development status.

Crystal Year Research
Establishment

Crystal
Parameter Pump Source Mid-Infrared Output

Parameter References

Fe:ZnSe

2011
University of
Alabama at
Birmingham

8 × 8 × 3 mm3

2 × 1019 cm−3
2.8 µm

Er, Cr: YSGG

Temperature 300 k (0.38 µs)
Output wavelength 4.3 µm

Average power 0.3 mW
Optical efficiency 16%

Temperature 236 k (0.274 µs)
Output wavelength 4.37 µm

Average power 24.12 mW
Optical efficiency 19%

[57]

2012
Air Force
Research

Laboratory

2 × 6 × 8 mm3

9 × 1018 cm−3
2.94 µm
Er: YAG

Temperature 300 k (0.37 µs)
Output wavelength 4.14 µm

Average power 840 mW
Optical efficiency 39%

[58]

2013
Russian

Academy of
Sciences

8 × 8 × 8 mm3

2.6 × 1018 cm−3
2.9 µm

Er: YAG

Temperature 245 k (1.7 µs)
Output wavelength 4.5 µm

Average power 2.1 W
Optical efficiency 23%

Temperature 275 k (0.715 µs)
Temperature 292 k (0.36 µs)

[59]

2015 Heriot-Watt
University

1.82 × 4.76 ×
6.94 mm3

8.8 × 1018 cm−3

2.94 µm
Er: YAG

Temperature 77 K (0.57 µs)
Output wavelength 4.122 µm

Average power 76 mW
Optical efficiency 11%

[60]

2015 University of
Alabama 2 mm thickness 2.94 µm

Er: YAG

Temperature 300 K (0.37 µs)
Output wavelength 4.1 µm

Average power 35 mW
Optical efficiency 35%

[61]

Fe:ZnSe 2017

All-Russian
Research

Institute of
Experimental

Physics

120 × 64 ×
4 mm3

(7–9) × 1018

cm−3

2.6 µm
HF

Temperature 300 k (0.36 µs)
Output wavelength 4.3 µm

Average power 20 W
[62]

2018
Russian

Academy of
Sciences

25 × 25 ×
16.7 mm3

1.1 × 1018 cm−3

2.94 µm
Er: YAG

Temperature 80 k (60 µs)
Temperature 220 k (8 µs)
Temperature 250 k (3 µs)

Temperature 300 k (0.37 µs)
Output wavelength 4.3 µm

Average power 7.5 W
Optical efficiency 30%

[63]

2019
Russian

Academy of
Sciences

12 Diameter ×
17 thickness

mm3

1.8 × 1018 cm−3

2.94 µm
Er: YAG

Temperature 5–18 ◦C
(0.68–0.39 µs)

Output wavelength 4.7 µm
Average power 3.14 W

Optical efficiency 17.5%

[64]

2019 Harbin Institute
of Technology

4 × 4 × 10 mm3

5 × 1018 cm−3
2.958 µm

Ho, Pr: LLF

Temperature 77 k (0.57 µs)
Output wavelength 3.957 µm

Average power 0.0164 mW
Optical efficiency 22.9%

[65]

2019 Harbin Institute
of Technology

4 × 10 ×
10 mm3

5 × 1018 cm−3

2.93 µm
Cr, Er: YAG

Temperature 77 k (0.57 µs)
Output wavelength 4.037 µm

Average power 197.6 mW
Optical efficiency 13.7%

Temperature 300 k (0.37 µs)
Output wavelength 4.509 µm

Average power 3.5 mW
Optical efficiency 0.27%

[66]

2020 Osaka
University

8 length
3.5 × 1018 cm−3

2.8 µm
Er: ZBLAN

Temperature 77 k (57 µs)
Output wavelength 4 µm
Average power 880 mW
Optical efficiency 44.2%

[67]
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Table 8. Cont.

Crystal Year Research
Establishment

Crystal
Parameter Pump Source Mid-Infrared Output

Parameter References

2020
Lomonosov

Moscow State
University

8 length
3.5 × 1018 cm−3

2.8 µm
Er: ZBLAN

Temperature 170 k
Output wavelength 4.4 µm

Average power 415 mW
Optical efficiency 5.92%

[68]

2020

Changchun
Institute of
Optics, Fine

Mechanics and
Physics

28 mm
diameter

4 mm thickness
2 × 1018 cm−3

2.6 µm
HF

Temperature 300 k (0.37 µs)
Output wavelength 3.1 µm

Average power 21.7 W
Optical efficiency 32.6%

[69]

2021
University of
Alabama at
Birmingham

2–3 mm length
1.5 × 1019 cm−3

2.94 µm
Er: YAG

Temperature 120 k (57 µs)
Temperature 300 k (0.37 µs)
Output wavelength 4.1 µm

Average power 180 mW
Optical efficiency 25%

[70]

2006 Koç University 2 mm thickness
5.7 × 1018 cm−3

1.57 µm
KTP OPO

Temperature 300 k (5 µs)
Output wavelength 3.1 µm

Average power 145 mW
Optical efficiency 8%

[71]

2007
University of
Alabama at
Birmingham

4 × 8 × 1 mm3

No mention
1.55 nm

Er3+ fiber
Output wavelength 3 µm
Average power 150 mW [72]

2010

Norwegian
University of
Science and
Technology

2.3 thickness
mm

5 × 1018 cm−3

1.607 µm
Er3+ fiber

Output wavelength 3.3 µm
Average power 600 mW [73]

Cr: ZnSe

2021
Tokyo

University of
Science

5 length mm
8 × 10−18 cm−3

2.01 µm
Tm:YAG

Output wavelength 3.2 µm
Average power 49.8 mW
Optical efficiency 22.5%

[74]

4. Mid-Infrared Fiber Lasers

Optical fiber has many advantages in numerous fields. This paper mainly discusses
the mid-infrared fiber laser with soft glass [fluoride (Er3+, Ho3+, Dy3+), chalcogenide,
telluride] as the gain medium. The description is shown in Figure 11.
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4 μm due to the reduction of high-energy states caused by multi-phonon transitions. In 
the context of the chalcogenide glass fiber lasers, the ions that have received the most 
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The most-used material for fluoride optical fiber is a multi-component fluoride glass
called “ZBLAN”; the mid-infrared fiber laser operating at 3–5 µm band has a similar
outer electron arrangement for gain ions. Energy level transitions between configurations
produce abundant emission lines; the gain fiber mainly includes Er3+, Ho3+, Dy3+, and its
energy level diagram [75] is shown in Figure 12.
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The chalcogenide glass has excellent mid-infrared transmission, thermal and mechan-
ical properties. Compared with fluoride glass fiber, its phonon energy is lower, which
makes up for the defect that ZBLAN is hindered to work at wavelengths exceeding 4 µm
due to the reduction of high-energy states caused by multi-phonon transitions. In the
context of the chalcogenide glass fiber lasers, the ions that have received the most attention
are praseodymium and terbium. The energy level diagram [76] is shown in Figure 13.
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For the glass fibers of fluoride, chalcogenide and tellurite, their physical and chemical
properties are different, as shown in Table 9.

Table 9. Physicochemical properties of various soft glass fibers.

Properties Fluoride Chalcogenide Tellurite

The lowest loss (dB/m) 0.45 × 10−3 0.023 0.02
Max. phonon energy (cm−1) 560 300–450 700

Transparency (µm) 0.4–6 1–16 0.5–5
Nonlinear refractive index

(×10−20 m2/W) 2–3 300–500 59

Melting point (◦C) 265 250 500
Durability poor good good

Toxicity high high safe
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Compared with chalcogenides, the fluoride glass has lower loss but higher phonon
energy, and its transparency range is far inferior to chalcogenide’s. However, compared
with tellurite glass, the fluoride glass and chalcogenide glass are more toxic. Three kinds of
glass optical fibers are the best choice for mid-infrared transmission. Their low optical loss
and high-power damage threshold make many applications possible.

The fiber lasers with different gain media have unique advantages and characteristics.
The developments are shown in Table 10.

Table 10. Research and development status.

Medium Fiber Matrix Year Research
Establishment

Crystal
Parameter Pump Source Mid-Infrared Output

Parameter References

Fluoride

Er: ZBLAN

2014 The University
of Adelaide

18 mm length
1 %mol

1.973 µm
fiber laser

Output wavelength 3.5 µm
Average power 260 mW
Optical efficiency 16%

[77]

2016
Chinese

Academy of
Sciences

0.9 mm length
6% mol

0.975 µm
LD pump

beam

Output wavelength 3 µm
Average power 1.01 W

Repetition rate 146.3 kHz
Optical efficiency 17.8%

[78]

2018
Shanghai Jiao

Tong
University

2.8 mm length
1% mol

1.973 µm
Tm3+ fiber

Output wavelength 3.489 µm
Average power 40 mW

Repetition rate 28.91 MHz
Optical efficiency 18%

[79]

Er: ZBLAN 2019 Université
Laval

2.5 mm length
7% mol

976 + 1976 nm
LD pump

beam

Output wavelength 3.42 µm
Average power 3.4 W

Optical efficiency 38.6%
[80]

2020

University of
Electronic

Science and
Technology of

China

3.2 mm length
1.5% mol

976 + 1981 nm
LD pump

beam

Output wavelength 3.45 µm
Average power 264.5 mW
Optical efficiency 7.18%

[81]

2021 Shenzhen
University

1.8 mm length
1% mol

976 + 1973 nm
LD pump

beam

Output wavelength 3.46 µm
Average power 63 mW

Repetition rate 58.71 MHz
Optical efficiency 15.6%

[82]

Ho: ZBLAN

2011 University of
Sydney

10 mm length
1.2% mol

1.15 µm
LD pump

beam

Output wavelength 3.002 µm
Average power 77 mW
Optical efficiency 12.4%

[83]

Fluoride Ho: ZBLAN 2012

University of
Electronic

Science and
Technology of

China

12 mm length
1.2% mol

1.15 µm
LD pump

beam

Output wavelength 3.005 µm
Average power 175 mW
Repetition rate 75 kHz

[84]

2013 University of
Arizona

2.5 mm length
3% mol

1.15 µm
Roman laser

Output wavelength 3 µm
Average power 100 mW
Repetition rate 100 kHz
Optical efficiency 12.3%

[85]

Ho:InF3

2018 Université
Laval

2.3 mm length
10% mol

888 nm
LD pump

beam

Output wavelength 3.92 µm
Average power 197 mW
Optical efficiency 9.77%

[86]

Ho:InF3 2021

University of
Electronic

Science and
Technology of

China

0.23 mm length
10% mol

888 + 974 nm
LD pump

beam

Output wavelength 3.92 µm
Average power 1.3 W

Optical efficiency 21.6%
[87]

Dy: ZBLAN

2016 Macquarie
University

0.92 mm length
2000 ppm

2.8 µm
Er: ZBLAN

Output wavelength 3.04 µm
Average power 80 mW
Optical efficiency 51%

[88]

2016 Macquarie
University

0.14 mm length
2000 ppm

2.8 µm
Er: ZBLAN

Output wavelength 3.26 µm
Average power 120 mW
Optical efficiency 37%

[88]

Dy: ZBLAN 2018 Macquarie
University

0.6 mm length
2000 ppm

1.7 µm
Raman laser

Output wavelength 3.4 µm
Average power 170 mW
Optical efficiency 21%

[89]

2019 Université
Laval

2.2 mm length
2000 ppm

2.83 µm
Er: ZBLAN

Output wavelength 3.24 µm
Average power 10.1 W
Optical efficiency 58%

[90]
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Table 10. Cont.

Medium Fiber Matrix Year Research
Establishment

Crystal
Parameter Pump Source Mid-Infrared Output

Parameter References

2020 Université
Laval

1.75 mm length
2000 ppm

2.825 µm
Er: ZBLAN

Output wavelength 3.24 µm
Average power 1.43 W
Repetition rate 120 kHz
Optical efficiency 22%

[91]

Dy:InF3 2021

University of
Electronic

Science and
Technology of

China

1.25 mm length
0.1% mol

1.1 µm
Yb3 +:fiber

laser

Output wavelength 4.3 µm
Average power 107 mW
Optical efficiency 3.75%

[92]

Chalcogenide

As2S3 2014 Université
Laval

2.8 mm length
98% reflectivity

3.005 µm
Er: ZBLAN

Output wavelength 3.77 µm
Average power 112 mW
Optical efficiency 8.3%

[93]

As2Se3 2019 Ningbo
University

1.05–1.23 mm
length

97.8–98%
reflectivity

3.92 µm
Ho3+:InF3

Output wavelength 4.327 µm
Average power 0.269 mW
Optical efficiency 17.9%

[94]

Dy3+:
GGSS

2019
Chinese

Academy of
Sciences

120 mm length
Dy3+:0.3 wt%

125:60:11
/125:66:11.5

core/cladding

1.7 µm
Tm3+:fiber

laser

Output wavelength
4.21 µm

Impurity absorption
peaks 2.4 dB/m

σe × τmea 2.62 × 10−23 cm2

Lifetime 4.61 ms

[95]

Chalcogenide Tb3+:
GGS

2020
Russian

Academy of
Sciences

12 mm
diameter

56 mm length
2 × 1019 cm−3

2.93 µm
Er:YAG laser

Output wavelength
4.9–5.5 µm

σe(λ) = 5 × 10–21 cm2

Average power 25 mW
Lifetime 10 ms

[96]

Ce3+:
GSGS

2021
Russian

Academy of
Sciences

12 mm
diameter

24 mm length
3 × 1019 cm−3

4.08 µm
Fe:ZnSe laser

Output wavelength
5 µm

Energy output 0.5 mJ
Impurity absorption

6 × 10−3 cm−1

Lifetime 3.7 ms

[97]

Ce3+:
GSGS

2021
University of

Duisburg-
Essen

12 mm
diameter

24 mm length
3 × 1019 cm−3

4.1 µm
Fe:ZnSe laser

Output wavelength
5.2 µm

Energy output 35 mJ
Optical efficiency 21%

[98]

Ce3+:
GAGS

2021 University of
Nottingham

9 µm diameter
64 mm length

500 ppmw

4.15 µm
quantum

cascade laser

Output wavelength
4.63 µm

Impurity absorption
peaks 2.16 dB/m−1

Lifetime 3.6 ms

[99]

Pr3+:
GGS

2021

Institute of
Chemistry of
High-Purity
Substances

12 mm
diameter 5 mm

length
1 × 1020 cm−3

1.54 µm
Er:glass laser

Output wavelength
5.5 µm

Average power 20 mW
Lifetime 3 ms

[100]

Tellurite TBZN

2015 University of
Arizona

1 mm length
10–20%

reflectivity

2.8 µm
Er: ZBLAN

Output wavelength 3.16 µm
Average power 7.42 W

Optical efficiency 7.55%
[94]

2017
Hefei

University of
Technology

0.3 mm length
90% reflectivity

2 µm
fiber laser

Output wavelength 3.64 µm
Average power 45.2 W

Optical efficiency 45.2%
[101]

Tellurite TBZN 2018

National
University of

Defense
Technology

5.5 mm length
45% reflectivity

2 µm
Tm3+:fiber

laser

Output wavelength 3.61 µm
Average power 16 W

Optical efficiency 45.2%
[102]

2021

University of
Electronic

Science and
Technology of

China

0.2 mm length
69% reflectivity

1.96 µm
Tm3+:fiber

laser

Output wavelength 5 µm
Average power 52.44 mW

Optical efficiency 19%
[103]

From the current research progress, the soft glass fiber (fluoride, chalcogenide and
telluride) has low loss in the mid-infrared band. The manufacturing process is relatively
mature. Therefore, achieving mid-infrared laser with fiber has been extensively studied
by scholars. Among the soft glass fibers, the manufacturing process of ZBLAN fiber
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is relatively mature. However, the realization of mid-infrared laser output with high
conversion efficiency and the output energy still needs further development; due to the
limited manufacturing process of InF3 and the telluride, there are still difficulties in general
commercial use; chalcogenide glass has excellent transmission performance in the mid-
infrared band due to its low material dispersion, so it has an indispensable application
value at 3–5 µm. For the future, it is necessary to optimize the gain fiber, to increase the
pump power and to achieve a higher power mid-infrared laser output.

5. Conclusions

In the past 20 years, based on the progress of new laser materials, optical technology
and the traction of application requirements in many fields, the research of mid-infrared
laser has made many breakthroughs and rapid progress. In order to improve the perfor-
mance of mid-infrared lasers, it is urgent to study and improve the physical and chemical
properties of the gain medium for achieving mid-infrared laser output and develop tech-
nologies to improve the performance of mid-infrared lasers. In general, the paper briefly
introduces the development of mid-infrared optical parametric oscillators, direct-pumped
mid-infrared solid-state lasers and direct lasing mid-infrared fiber lasers. Looking forward to
the future, the main development trends mainly include: (1) output power increases; in the
future, we can continue to improve mid-infrared laser technology and soft glass pretreatment
and find new gain media to continuously increase the output power of 3–5 µm mid-infrared
laser and (2) lift the conversion efficiency furthermore; with the low-loss beam-coupling
technology development and the successful development of lower loss optical fiber, based
on the improvement of passive InF3 fiber and chalcogenide purification technology, it can be
expected that there is still room for improvement in conversion efficiency.

We can expect that, in the near future, with the continuous improvement of various
technologies, the high-power, large-energy mid-infrared laser of 3–5 µm will move from
experimental research to practical applications which will play a unique role in scientific
research and production.
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