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Abstract: Canonical correlation analysis (CCA) has been used for the steady-state visual evoked
potential (SSVEP) based brain-computer interface (BCI) for a long time. However, the reference signal
of CCA is relatively simple and lacks subject-specific information. Moreover, over-fitting may occur
when a short time window (TW) length was used in CCA. In this article, an optimized L1-regularized
multiway canonical correlation analysis (L1-MCCA) is combined with a support vector machine
(SVM) to overcome the aforementioned shortcomings in CCA. The correlation coefficients obtained
by L1-MCCA were transferred into a particle-swarm-optimization (PSO)-optimized support vector
machine (SVM) classifier to improve the classification accuracy. The performance of the proposed
method was evaluated and compared with the traditional CCA and power spectral density (PSD)
methods. The results showed that the accuracy of the L1-MCCA-PSO-SVM was 96.36% and 98.18%
respectively when the TW lengths were 2 s and 6 s. This accuracy is higher than that of the traditional
CCA and PSD methods.

Keywords: steady-state visual evoked potential (SSVEP); brain-computer interface (BCI); l1-regularized
multiway canonical correlation analysis (L1-MCCA); support vector machine (SVM); particle swarm
optimization (PSO)

1. Introduction

Brain-computer interface (BCI) aims to create new communication pathways without
depending on the brain’s normal output pathways of peripheral nerves and muscles [1].
The BCI technology has rapidly become a popular direction in the field of neuroscience
and neurorehabilitation research since it was proposed by Vidal [2] in the early 1970s.
The BCI technology has been utilized in a variety of applications, such as medical [3,4],
military [5,6], and daily life [7] scenarios. Over the past few years, researchers have
developed BCI systems based on various neuroimaging techniques [8–10]. Among them,
electroencephalography (EEG)-based BCI is the most popular method owing to its unique
advantages, such as non-invasiveness, cost-effectiveness, portability, and high temporal
resolution.

At present, the most commonly utilized BCI paradigms based on EEG mainly include
steady-state visual evoked potential (SSVEP) [11–13], P300 [14,15], motor imagery [16,17],
etc. Among them, SSVEP based BCI has the advantages of simple preparation, high
classification accuracy, high signal-to-noise ratio, short response time, and fewer training
requirements [18]. SSVEP is an oscillating neural response caused by external stimuli
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flashing at 5~30 Hz [19]. The neural responses acquired by EEG have peak frequencies
that are the fundamental and harmonic frequencies of the flicker frequency. Therefore, the
user’s target can be identified by matching the characteristics of the acquired EEG signals
to the command-related particular flicker frequency.

The power spectral density (PSD) method was one of the earliest methods applied
to SSVEP. Since SSVEP itself carries the frequency characteristics of visual stimuli, the
frequency components corresponding to the stimulation frequency can be used as the
characteristic values [20,21]. However, the PSD approach has some drawbacks, such as
sensitivity to noise, low signal-to-noise ratio, and requirement of a relatively long time
window (TW) if higher accuracy is needed [22,23]. To overcome these problems, several
techniques have been proposed in the past few years. Canonical correlation analysis (CCA)
proposed by Lin et al. [24], analyzes SSVEP signals by studying the linear relationship
between two sets of multidimensional vectors. CCA combined with multiway EEG data
improves the signal-to-noise ratio. It has been found that CCA could achieve a higher
classification accuracy than the PSD with a shorter TW [25,26]. In recent years, the studies
based on CCA have provided valuable information in the field of BCI research. However,
the reference signal of CCA is only composed of standard sine and cosine signals. It lacks
subject-specific information about the neural responses of the brain [27,28].

To further improve the performance of BCI systems, multiway canonical correlation
analysis (MCCA) based on tensor analysis was proposed. Specifically, MCCA constructs
an EEG tensor from the multiway EEG signals recorded by multiple experiments and
alternately learns the projection vector used for reference signal optimization from the
channel array of the EEG tensor and the test channel array. Based on tensor analysis [29]
and sparse regularization, Zhang Yu et al. [30] have proposed the L1-regularized mul-
tiway canonical correlation analysis (L1-MCCA). L1 regularization [31–33] was used to
further strengthen MCCA’s test channel array optimization so that L1-MCCA has the
best projection vector effect when learning reference signal optimization. During the data
training process, the L1-MCCA has the stronger ability to learn projection vectors and
prevent signal overfitting. SVM is suitable for small-sample classification problems, has
no limitation on data dimension, and has good generalization ability and robustness, and
can learn multiple relations [34,35]. Inputting the correlation coefficient matrix obtained by
L1-MCCA into SVM for classification may achieve better performance. The advantages
of the two methods can be combined to further improve the classification accuracy of the
BCI system. Furthermore, the particle swarm algorithm was used to optimize the c and g
parameters of SVM to achieve higher accuracy.

In this study, a means that combining L1-MCCA with particle swarm optimization
(PSO) [36–38] optimized SVM was proposed to improve the accuracy of SSVEP based
BCI. SSVEP data of 15 participants were recorded to investigate the reliability and the
performances of the L1-MCCA-PSO-SVM method. This study is expected to provide useful
insights in improving the classification accuracy of the SSVEP based BCI.2.

2. Materials and Methods
2.1. Subjects and Study Design

Fifteen healthy subjects (nine males and six females, aged 22–34 years) were recruited
for this study. All the subjects were right-handed and had a normal or corrected-to-normal
vision. They were in good health and had no history of epilepsy, neurological disorder,
or other psychiatric disorders. Written informed consent was obtained. Each subject was
given 100 Chinese Yuan. The experimental paradigms in this study were approved by the
ethics committee of the Beijing Information Science and Technology University and the
Institute of Automation, Chinese Academy of Sciences.

The experiment was conducted in a dark, acoustically shielded room. During the
experiment, the subjects were required to sit comfortably and stay about 60 cm away from
a computer monitor (resolution 1920 × 1080 pixels, screen size 27 inches). In this study,
the visual stimuli were black and white checkerboard reversal designs with nine different
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frequencies: 6.8 Hz, 12.5 Hz, 12 Hz, 9.7 Hz, 11.1 Hz, 8.4 Hz, 10 Hz, 8 Hz, and 14.7 Hz,
resulting in nine different conditions. The nine stimuli were arranged at disparate locations,
as shown in Figure 1a. During the experiment, the subjects were required to focus on the
target stimulus to induce the SSVEP signal. The entire experimental protocol consisted of
an initial baseline period (60 s) followed by 135 sessions (comprised of 15 sessions for each
of nine conditions). Each session consisted of a 3-s preparation period and a 6-s stimulation
period. During the stimulation period, the participants were required to look at the target
stimulation to evoke SSVEP. The nine different target stimulation conditions were reversed
separately and randomly. The experimental paradigm is illustrated in Figure 1a. During
the experiment, to maintain a high level of attention and minimize fatigue, the subjects
were allowed a 2-min break after each session. Before the formal experiment, each subject
was allowed to practice until they were familiar with the experimental requirements.
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Figure 1. Experimental configuration of the SSVEP experiment, including (a) experimental protocol,
and (b) channel configuration for data acquisition.

2.2. EEG Recording and Data Analysis

The SSVEP signals were recorded using the Brain Vision system (Brain Products
Ltd., Munich, Germany) with 64 channels at a sampling rate of 5000 Hz. The electrodes
arrangement was according to the international EEG system with 64 channels. The reference
and ground electrodes were FCz and AFz, respectively. Six channels (O1, O2, Oz, PO3, PO4,
and POz) were used to acquire the SSVEP signals. An electrooculographic (EOG) electrode
was placed over the outer canthus of the right eye for blink-artifacts correction. The
impedances of the electrodes were maintained below 10 kΩ. The layout of the electrodes is
shown in Figure 1b.

The EEGLAB toolbox and MATLAB 2019a platform (MathWorks Inc., Natick, MA,
USA) was used to analyze the EEG data. First, the data were down-sampled to 1000 Hz
and band-filtered between 0.5 and 49 Hz. Then the electrooculogram artifacts were rejected
using independent component analysis (ICA). After that, the data was segmented into 6 s
time length epochs (from the start to the end of the stimulation was selected). In addition,
considering the DC offset after segmentation, baseline correction was required. Among
the 15 participants, two participants’ data were discarded due to big motion artifacts.
Another one was unable to concentrate due to drowsiness and did not complete the entire
experiment. The subsequent data processing was conducted using the data of the remaining
12 participants.

2.3. Algorithms

Canonical correlation analysis (CCA) is a multivariable statistical method [24], which
can be used to investigate the underlying correlation for two sets of data. CCA has been
utilized for analyzing the SSVEP signal by studying the linear relationship between two
sets of multidimensional vectors, so as to find a pair of linear transformations and to
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maximize the correlation of the linear combination. Specifically, given the two sets of
multi-dimensional vectors X and Y, CCA aims to figure out the weight vectors w and
v, and to maximize the correlation coefficient between x = XTw and y = YTv. The
correlation coefficient between each reference signal Yn and the signal X is calculated using
the following equations:

ρ = maxw,v
E
[
x̃ỹT]√

E[x̃x̃T ]E[ỹỹT ]
= maxw,v

wTXYTv√
wTXXTwvTYYTv

. (1)

When the CCA was applied to the SSVEP based BCI [24], the signal X indicates the
acquired EEG data, and Y represents the reference signal at n-th stimulation frequency fn.
Y which is composed of several sine and cosine signals [39]:

Y = Yn =


sin(2π fnt)
cos(2π fnt)
...
sin(2πN fnt)
cos(2πN fnt)

, t =
1
FS

,
2
FS

, . . . ,
K
FS

, (2)

where fn represents the nth stimulation frequency, N is the number of the harmonics used
for CCA, K represents the signal length, and FS represents the sampling rate.

The SSVEP target frequency (the stimulus frequency which the subject focused on) is
determined by the following formula:

ftest = argmax f nρn, n = 1, 2, . . . , S, (3)

where S represents the total number of the used stimulation frequencies.
Since the reference signal in the standard CCA method is only generated by a series of

sine and cosine signals, it does not take into account the influence of individual-specific
and inter-trail differences. Therefore, the classification accuracy of the CCA may not be
good enough. A multiway extension of CCA (MCCA), which introduces the concept of
tensor analysis, has been proposed to improve classification accuracy by optimizing the
reference signals.

An N-order tensor is expressed as x = (x)i1i2 ...iN
∈ RI1×I2×...×IN , the projection of x

on the vector w is calculated as follows:(
x× nwT

)
i1 ...in−1in+1 ...iN

= ∑ In
in xi1i2 ...iN win . (4)

A three-way tensor x (channel × time × trial) is calculated from the multiway EEG
data and the original reference signal set of multiple trials with specific stimulation frequen-
cies. By analyzing the multidimensional correlation between the three-way tensor EEG
data and the two-dimensional sine-cosine signal to find the optimal correlation reference
signal, MCCA aims to find linear transformations w1, w3 and v to maximize the correlation
between x̃ = x×1 wT

1 ×3 wT
3 and ỹ = vTY. The maximum correlation coefficient between

XTw and YTv is expressed by:

ρ = maxw1,w3,v
E
[
x̃ỹT]√

E[x̃x̃T ]E[ỹỹT ]
. (5)

Then the optimized reference signal z can be calculated based on the optimal linear
transformations w̃1 and w̃3, following the expression:

z = x×1 w̃T
1 ×3 w̃T

3 . (6)
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On one hand, CCA can maximize the correlation between the experimental test data
and the optimized reference signal to achieve classification; on the other hand, CCA can
be used as a feature extraction method. Specifically, the obtained correlation coefficient
calculated by CCA can be sent into the SVM classifier for further classification. The
classification process is shown in Figure 2a. However, in MCCA, the optimized projection
vector for each dimension is learned without regularization, and hence lack of sparsity that
can provide greater interpretability for features. Therefore, the reference signal is further
optimized through L1 regularization. The essence of regularization is to constrain the
parameters to be optimized and prevent over-fitting.

Since the scaling of w and v does not affect the correlation maximization, Equation (2)
can be expressed as wTXXTw = vTYYTv = 1. wTXXTv is then maximized. We expressed
the proposed MCCA as the following least-squares formulation:

w1 , w3, v = argmin
w1 ,w3,v

1
2 ‖ x×1 wT

1 ×3 wT
3 − vTY ‖2

2

s.t. ‖ w1 ‖2=‖ w3 ‖2=‖ v ‖2= 1.
(7)

The optimized equation using L1-regularization is:

w1 , w3, v = argmin
w1 ,w3,v

1
2 ‖ x×1 wT

1 ×3 wT
3 − vTY ‖2

2

+λ1 ‖ w1 ‖1 +λ2 ‖ v ‖1 +λ3 ‖ w3 ‖1
s.t. ‖ w1 ‖2=‖ w3 ‖2=‖ v ‖2= 1,

(8)

where λ1, λ2, and λ3 are the regularization parameters that control the sparsity of w1, v,
and w3 respectively.

L1-MCCA obtains the correlation coefficients corresponding to different reference
signal frequencies by leave-one-out cross-validation. The collected 15 session EEG signals
were split into two parts, 14 of which were used as the training data and the rest was used
as the test data. The classification accuracy was then calculated. This process was repeated
15 times, yielding an average accuracy.

The main purpose of SVM is to find the separation hyperplane linear classifier with
the maximum distance in the feature space. SVM is strong in terms of generalization ability,
easy to apply and suitable for small-sample classification problems and nonlinear features.
To improve the classification accuracy of SSVEP, the PSO algorithm was used to optimize
the penalty parameter c of the SVM classifier and the parameter g of the kernel function [40].
The PSO algorithm first initializes a group of particles in the feasible solution space, each
particle represents the potential optimal solution of the mechanism optimization problem,
that is, the potential optimal solution of parameters c, g. The three indicators of position,
speed and fitness value are used to express the characteristics of the particle, and the fitness
value represents the accuracy rate. When the particle moves in the solution space, the
individual location is updated by tracking the individual extremum Pbest and the group
extremum Gbest.

During each iteration, the particle updates its location and velocity through individual
extreme values and group extreme values based on the relationship expressed by:

Vk+1
id = wVk

id + c1r1

(
Pk

id − Xk
id

)
+ c2r2

(
Pk

gd − Xk
id

)
(9)

and
Xk+1

id = Xk
id + Vk+1

id , (10)

where w is the inertia factor that is a non-negative number used to describe the ability in the
inheritance of the previous speed, c1, c2 are learning factors, respectively, r1, r2 are random
numbers between [0, 1], Vk

id is the velocity vector of the particle after the kth iteration, Pk
id is

the best position of the particle i after k iterations, Xk
id is the position vector of the particle

after k iterations, and Pk
gd is the best position of the group after k iterations.
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Figure 2. Illustration of the SSVEP classification based on MCCA-SVM and L1-MCCA-SVM. (a) MCCA method for reference
signal optimization. The three-way tensor (w1 , w3 and v) and sine-cosine original reference signal (Y) composed of part
of the experimental sequence are optimized to obtain the optimized reference signal (z), and the correlation with the
experimental signal is maximized. The classification method can be divided into MCCA whether to combine with SVM.
(b) L1-MCCA method for reference signal optimization. The L1 regularization based on tensor was introduced to further
enhance the optimization of MCCA test channel array. The correlation between the experimental signal (X) and the
optimized reference signal (z1, z2 . . . zN) was maximized, and finally the correlation coefficient was input to the PSO
optimized SVM.

In this study, a means combining L1-MCCA with PSO-optimized SVM was proposed
to improve the classification accuracy. The experimental data was divided into a training
set and a test set in a ratio of 7:3. PSO was used to optimize the parameters of SVM. The
number of iterations was set to 200, the penalty parameter c and the kernel parameter
g are selected as optimization variables, and the best accuracy rate is used as the fitness
function. The optimized c and g parameters were transferred to SVM for training, and the
test obtains the optimal accuracy rate. RBF function was used as the kernel function of
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SVM. In order to further reduce the calculation errors and to improve the accuracy, the
calculation was repeated ten times, and then the averaged data was obtained as the final
accuracy. In addition, to testify the reliability and the performance of the proposed method,
it was compared with the traditional CCA and PSD methods.

2.4. Statistical Analysis

In this study, all data are indicated as mean ± standard error unless mentioned
separately. The paired t-test was used to characterize the differences between different
conditions. Differences were accepted as significant when p < 0.05.

3. Results

The individual classification accuracies of the 12 subjects within different TWs for
CCA and L1-MCCA are shown in Figure 3. This figure shows that when the TW increased,
the accuracies of the CCA and the L1-MCCA methods both improved. Additionally, the
accuracies of the L1-MCCA were higher than those of the CCA.
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The correlation coefficients corresponding to diverse reference signal frequencies
derived from the CCA and L1-MCCA for a typical subject (S1) are shown in Figure 4.
The classification performance was evaluated by comparing the correlation coefficient
values of the two methods under different reference frequencies. Compared with CCA,
L1-MCCA obtains the correlation coefficients corresponding to different reference signal
frequencies (6.8, 12.5, 12, 9.7, 11.1, 8.4, 10, 8, and 14.7 Hz) through leave-one-out cross-
validation. It can be seen from Figure 4 that the correlation coefficient between the target
frequency and the corresponding reference signal is much higher than those corresponding
to other frequencies using both methods. At each frequency, the greater the difference
between the highest value and the other values, the more distinct the classification effect.
The comparison of the two techniques shows that L1-MCCA has a better effect, and the
classification accuracy based on L1-MCCA is predicted to be higher than that of CCA.
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To test the feasibility and evaluate the performance of the method proposed in this
study, disparate techniques were compared quantitatively in terms of classification accuracy.
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The comparison results of the classification accuracies of dissimilar methods with different
TWs are shown in Figure 5.
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As shown in Figure 5, from the perspective of each method alone, the longer the TW,
the more experimental information obtained, and the higher the corresponding classifica-
tion accuracy. For the PSD method, the accuracy of 1 s TW was 37.58% and was increased
to 39.70% after optimization. The accuracy of 2 s TW was significantly improved to 70.91%
(p < 0.05), and further improved to 73.03% after optimization. When the TW was longer
than 3 s, the classification accuracies were maintained stably, and the optimized ways were
bigger than those of the unoptimized method.

For the CCA method, the optimization effect PSO-SVM was significantly larger than
the PSD method. Specifically, the accuracy of 1 s TW was significantly improved from
31.91% to 52.42% (p < 0.05) after optimization. The accuracy of 2 s TW was significantly
increased to 77.28% (p < 0.05) and 94.85% after optimization (p < 0.05). In addition, for
the TWs that are longer than 3 s, the classification accuracies of the PSO-SVM optimized
method were significantly larger than the unoptimized CCA method. Specifically, the
accuracies were improved from 88.15% to 96.67% (3 s TW, p < 0.05), from 88.58% to 95.76%
(4 s TW, p < 0.05), from 87.41% to 95.96% (5 s TW, p < 0.05), and from 87.72% to 96.36% (6 s
TW, p < 0.05), respectively.

For the L1-MCCA method, the optimization effect PSO-SVM was more distinct. The
accuracy rate was significantly improved from 40.62% to 65.76% (p < 0.05) for 1 s TW. The
accuracy of 2 s TW was significantly (p < 0.05) improved to 80.62% before optimization.
After optimization, it was further significantly increased to 96.36% (p < 0.05). After that,
the classification accuracies for the TW longer than 3 s were stable, but the accuracies after
PSO-SVM optimization were significantly higher than before. Specifically, the accuracies
were increased from 91.36% to 96.97% (3 s TW, p = 0.056, close to significant degree), from
93.40% to 98.18% (4 s TW, p < 0.05), from 92.10% to 97.58% (5 s TW, p < 0.05), and from
94.63% to 98.18% (6 s TW, p < 0.05), respectively.

As shown in Figure 5, the classification accuracies of the L1-MCCA related methods
were higher than those of the CCA-related and PSD-related methods. More importantly, the
PSO-SVM optimization can further improve the classification accuracy of PSD, CCA and
L1-MCCA technologies, indicating that the combination method of them with classifiers is
very effective. The PSO-SVM optimization provides new ideas for the classification of BCI
systems based on SSVEP.
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4. Discussion

In the past few years, several studies have been proposed for improving the classifi-
cation performance of the SSVEP-based BCI. SSVEP analysis method has been gradually
shifted from one-way optimization to collaborative multiway optimization. Moreover,
discriminant analysis of regularized tensors has begun to appear and was applied to clas-
sifiers to prevent overfitting. In this study, an approach that combines L1-MCCA with
PSO-optimized SVM was proposed.

The performance of L1-MCCA was compared quantitatively with CCA and PSD before
and after PSO-SVM optimization. Note that the classification accuracies of the L1-MCCA
related methods with varied TWs were consistently higher than the CCA-related and PSD-
related methods. Our results are in agreement with previous research [30,41,42]. It has been
reported that the L1-MCCA method can improve the classification accuracy of SSVEP-based
BCI by optimizing the reference signal. As shown in Figure 4, the correlation coefficients
corresponding to the disparate stimulation frequencies for both L1-MCCA and CCA
were calculated. The results showed that compared with CCA, L1-MCCA improves the
correlation coefficient of the target frequency and reduces the correlation coefficient of other
non-target frequencies, indicating the effectiveness of L1-MCCA in SSVEP classification.
The key to achieving a better classification performance is to separate the target frequency
from other non-target frequencies more accurately. The greater differences in the correlation
coefficients between the two, the better the classification performance. The results showed
that the combination of multiway analysis and regularization allowed L1-MCCA to present
better performance than that of the traditional CCA method.

The length of the TW has a significant influence on the classification accuracy of
SSVEP-based BCI. As shown in Figures 3 and 4, the classification accuracies were gradually
increased as the length of the TW increased. In this study, nine visual stimulations with
different frequencies were used to produce the SSVEP data. The accuracy of the CCA of
the 4 s TW was 88.58%. Islam et al. [43] reported that under the CCA-based method, the
average accuracy of 10 subjects with 4 s TW for 12 stimuli reached about 93%, which was
higher than the accuracy of this study. Chen et al. [44] reported that under the four stimuli,
the CCA-based method had reached 62% accuracy with a 4 s TW for nine subjects. The
effect of TW on the classification of the current study is in agreement with these previous
studies. The longer the TW, the more experimental information obtained, and the higher
the classification accuracy. The reasons why the classification accuracies of different studies
are different from each other can be ascribed into several factors, such as the differences in
experimental design, individual, data processing method, and individual difference, etc.

Different from the traditional CCA which uses the standard sine and cosine waves as
reference signals, the L1-MCCA method optimizes reference signals with subject-specific
information to obtain a better performance. The results of the current study are in line with
the study proposed by Zhang Yu et al. [30]. The average accuracy of L1-MCCA obtained
by 10 subjects with 4 s TW, which is about 91%, was higher than that of MCCA and CCA,
showing the effectiveness of L1-MCCA in SSVEP-based BCI. In this study, due to the
unique advantages of PSO, such as fast convergence speed and simple calculation, the
SVM classifier which is optimized by PSO combined with L1-MCCA was used, aiming at
the further improvement of the classification accuracy. To test the feasibility and evaluate
the performance of the proposed algorithm, quantitative comparisons were conducted for
inconsistent methods in terms of classification accuracy. As shown in Figure 5, at the same
TW, the accuracy of the L1-MCCA was higher than that of the CCA and PSD. Note that
the optimized classification accuracies of L1-MCCA, CCA and PSD are consistently higher
than those without optimization. The findings indicate that L1-MCCA is better than CCA
and PSD in the classification of SSVEP signals. In addition, the combination of L1-MCCA
with SVM classifier significantly improved the accuracy of BCI classification. In further
exploratory studies, we will try different classifiers or optimization algorithms, aiming to
provide useful insights for the accuracy of BCI classification based on SSVEP.
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At present, there has been some research in other directions based on the L1-MCCA
algorithm. A document proposes a sparse Bayesian learning L1-MCCA (SBMCCA), which
improves the computational efficiency based on a certain classification accuracy [42]. In
addition, Zhao Jing et al. [45] proposed a new decision selector (DMS) that integrates
classification decision combinations based on CCA’s different frequency methods (includ-
ing seven types of CCA, MsetCCA, L1-MCCA, et al.) into SSVEP. The results show that
DMS-ECCA&TRCA obtained the best classification accuracy rate which reaches 98.3%. It
shows that the combination of multiple techniques is also a research direction.

One of the limitations in this study is the relatively small sample size and category of
stimuli. In further studies, larger sample sizes and stimulus categories will be conducted
to further confirm the current findings. The second limitation is that filtering short interval
BCI scenarios will lead to edge effects and may affect the accuracy of decoding. In a further
exploratory study, advanced data processing methods will be utilized to overcome this
issue. An additional limitation is that different stimulations were presented separately
and randomly rather than simultaneously, which was not exactly the same as the real BCI.
Although there are certain limitations, this study still provides some insights into the field
of BCI. In a further exploratory study, we are not going to stop at this stage but will adopt
advanced technologies and data processing methods to make the L1-MCCA based SVM
method more applicable clinically.

5. Conclusions

In this study, the combination of L1-MCCA and PSO optimized SVM was proposed
to improve the classification accuracy of the SSVEP-based BCI. Using the combination
method, the concept of tensor to construct multiway EEG signals and sine and cosine
signals to seek maximization is introduced. The combination uses L1 regularization
to have a stronger learning ability when training data. The optimized reference signal
is classified using the original CCA. Its essence is to optimize the reference signal and
introduce some experimental information. The results show that the proposed L1-MCCA-
PSO-SVM method further increased the classification accuracy of SSVEP-based BCI when
compared with the traditional CCA and PSD ways. The proposed method has reached
96.36% accuracy under the 2 s TW and has reached 98.18% accuracy under the 6 s TW. In a
further study, advanced methodologies and technologies will be used to further improve
the performance and to promote the applications of SSVEP-based BCI.

Author Contributions: Conceptualization, Y.G. and J.S.; methodology, Y.G. and J.S.; software, Y.G.
and H.L.; validation, Y.G. and J.C.; formal analysis, Y.G., J.S., W.L. and S.W.; investigation, Y.G.;
resources, Y.Z.; data curation, Y.G.; writing—original draft preparation, Y.G.; writing—review and
editing, Y.G. and J.S.; visualization, Y.G.; supervision, J.S. and H.L.; project administration, J.S., Y.Z.
and Q.H.; funding acquisition, J.S. and Y.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Beijing, China (Grant No.
4214080), the National Natural Science Foundation of China (Grant No. 81871398), and the Beijing
Municipal Education Commission Science and Technology Program (Grant Nos. KM202011232008
and KM201911232019).

Institutional Review Board Statement: The experimental paradigms in this study were approved by
the ethics committee of the Beijing Information Science and Technology University and the Institute
of Automation, Chinese Academy of Sciences.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patient(s) to publish this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 11453 12 of 13

References
1. Zhao, Q.; Zhang, L.; Cichocki, A. EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chin. Sci. Bull.

2009, 54, 78–87. [CrossRef]
2. Vidal, J.J. Real-time detection of brain events in EEG. Proc. IEEE 1977, 65, 633–641. [CrossRef]
3. Shu, X.; Chen, S.; Meng, J.; Yao, L.; Sheng, X.; Jia, J.; Farina, D.; Zhu, X. Tactile Stimulation Improves Sensorimotor Rhythm-based

BCI Performance in Stroke Patients. IEEE Trans. Biomed. Eng. 2018, 66, 1987–1995. [CrossRef] [PubMed]
4. Jia, D.; Dai, H.; Takashima, Y.; Nishio, T.; Hirobayashi, K.; Hasegawa, M.; Hirobayashi, S.; Misawa, T. EEG processing in Internet of

Medical Things using non-harmonic analysis: Application and Evolution for SSVEP responses. IEEE Access 2019, 7, 11318–11327.
[CrossRef]

5. Munyon, C.N. Neuroethics of Non-primary Brain Computer Interface: Focus on Potential Military Applications. Front. Neurosci.
2018. [CrossRef]

6. Ko, L.-W.; Chang, Y.; Wu, P.-L.; Tzou, H.-A.; Chen, S.-F.; Tang, S.-C.; Yeh, C.-L.; Chen, Y.-J. Development of a Smart Helmet for
Strategical BCI Applications. Sensors 2019, 19, 1867. [CrossRef]

7. Tavares, N.G.; Gad, R.S. Steady-State Visual Evoked Potential-Based Real-Time BCI for Smart Appliance Control. Cogn. Inform.
Soft Comput. 2019, 768, 795–805.

8. Kerous, B.; Skola, F.; Liarokapis, F. EEG-based BCI and video games: A progress report. Virtual Real. 2018, 22, 119–135. [CrossRef]
9. Pan, J.; Xie, Q.; Huang, H.; He, Y.; Sun, Y.; Yu, R.; Li, Y. Emotion-Related Consciousness Detection in Patients With Disorders of

Consciousness Through an EEG-Based BCI System. Front. Hum. Neurosci. 2018, 12, 198–209. [CrossRef]
10. Borgheai, S.B.; Mclinden, J.; Zisk, A.H.; Hosni, S.I.; Deligani, R.J.; Abtahi, M.; Mankodiya, K.; Shahriari, Y. Enhancing Communi-

cation for People in Late-Stage ALS Using an fNIRS-Based BCI System. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1198–1207.
[CrossRef]

11. Wu, Z.; Lai, Y.; Xia, Y.; Wu, D.; Yao, D. Stimulator selection in SSVEP-based BCI. Med. Eng. Phys. 2008, 30, 1079–1088. [CrossRef]
12. Zerafa, R.; Camilleri, T.; Falzon, O.; Camilleri, K.P. To train or not to train? A survey on training of feature extraction methods for

SSVEP-based BCIs. J. Neural Eng. 2018, 15, 051001.1–051001.24. [CrossRef] [PubMed]
13. Brogin, J.A.F.; Faber, J.; Bueno, D.D. Enhanced use practices in SSVEP-based BCIs using an analytical approach of canonical

correlation analysis. Biomed. Signal Process. Control 2020, 55, 101644.1–101644.13.
14. Twomey, D.M.; Murphy, P.R.; Kelly, S.P.; O’Connell, R.G. The classic P300 encodes a build-to-threshold decision variable. Eur. J.

Neurosci. 2015, 42, 1636–1643. [CrossRef]
15. Rathi, N.; Singla, R.; Tiwari, S. A novel approach for designing authentication system using a picture based P300 speller. Cogn.

Neurodynamics 2021, 15, 805–824. [CrossRef] [PubMed]
16. Feng, J.; Yin, E.; Jin, J.; Saab, R.; Daly, I.; Wang, X.; Hu, D.; Cichocki, A. Towards correlation-based time window selection method

for motor imagery BCIs. Neural Netw. 2018, 102, 87–95. [CrossRef]
17. Zhang, Y.; Nam, C.S.; Zhou, G.; Jin, J.; Wang, X.; Cichocki, A. Temporally Constrained Sparse Group Spatial Patterns for Motor

Imagery BCI. IEEE Trans. Cybern. 2018, 49, 3322–3332. [CrossRef] [PubMed]
18. Chen, Y.; Yang, C.; Ye, X.; Chen, X.; Wang, Y.; Gao, X. Implementing a calibration-free SSVEP-based BCI system with 160 targets. J.

Neural Eng. 2021, 18, 046094. [CrossRef] [PubMed]
19. Ikeda, A.; Washizawa, Y. Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural

Networks. Sensors 2021, 21, 5309. [CrossRef] [PubMed]
20. Iscan, Z.; Dokur, Z.; Demiralp, T. Classification of electroencephalogram signals with combined time and frequency features.

Expert Syst. Appl. 2011, 38, 10499–10505. [CrossRef]
21. Gupta, A.; Agrawal, R.K.; Kirar, J.S.; Andreu-Perez, J.; Ding, W.-P.; Lin, C.-T.; Prasad, M. On the Utility of Power Spectral

Techniques with Feature Selection Techniques for Effective Mental Task Classification in Noninvasive BCI. IEEE Trans. Syst. Man
Cybern. Syst. 2019, 51, 3080–3092. [CrossRef]

22. Farooq, M.; Dehzangi, O. High accuracy wearable SSVEP detection using feature profiling and dimensionality reduction.
In Proceedings of the IEEE International Conference on Wearable & Implantable Body Sensor Networks, Eindhoven, The
Netherlands, 9–12 May 2017; pp. 161–164.

23. Alchalabi, B.; Faubert, J.; Labbé, D.R. A multi-modal modified feedback self-paced BCI to control the gait of an avatar. J. Neural
Eng. 2021, 18, 51–60. [CrossRef] [PubMed]

24. Lin, Z.; Zhang, C.; Wu, W.; Gao, X. Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs. IEEE
Trans. Biomed. Eng. 2007, 54, 1172–1176. [CrossRef] [PubMed]

25. Hakvoort, G.; Reuderink, B.; Obbink, M. Comparison of PSDA and CCA detection methods in a SSVEP-based BCI-system. Cent.
Telemat. Inf. Technol. Univ. Twente 2011, 78, 183–192.

26. Wang, R.; Wen, W.; Iramina, K.; Ge, S. The combination of CCA and PSDA detection methods in a SSVEP-BCI system. In
Proceedings of the Intelligent Control & Automation, Shenyang, China, 29 June–4 July 2014; pp. 2424–2427.

27. Jiao, Y.; Zhang, Y.; Wang, Y.; Wang, B.; Jin, J.; Wang, X. A Novel Multilayer Correlation Maximization Model for Improving
CCA-Based Frequency Recognition in SSVEP Brain–Computer Interface. Int. J. Neural Syst. 2017, 28, 1750039. [CrossRef]

28. Shao, X.; Lin, M. Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification. Cogn.
Neurodynamics 2020, 14, 689–696. [CrossRef] [PubMed]

http://doi.org/10.1007/s11434-008-0547-3
http://doi.org/10.1109/PROC.1977.10542
http://doi.org/10.1109/TBME.2018.2882075
http://www.ncbi.nlm.nih.gov/pubmed/30452349
http://doi.org/10.1109/ACCESS.2019.2892188
http://doi.org/10.3389/fnins.2018.00696
http://doi.org/10.3390/s19081867
http://doi.org/10.1007/s10055-017-0328-x
http://doi.org/10.3389/fnhum.2018.00198
http://doi.org/10.1109/TNSRE.2020.2980772
http://doi.org/10.1016/j.medengphy.2008.01.004
http://doi.org/10.1088/1741-2552/aaca6e
http://www.ncbi.nlm.nih.gov/pubmed/29869996
http://doi.org/10.1111/ejn.12936
http://doi.org/10.1007/s11571-021-09664-3
http://www.ncbi.nlm.nih.gov/pubmed/34603543
http://doi.org/10.1016/j.neunet.2018.02.011
http://doi.org/10.1109/TCYB.2018.2841847
http://www.ncbi.nlm.nih.gov/pubmed/29994667
http://doi.org/10.1088/1741-2552/ac0bfa
http://www.ncbi.nlm.nih.gov/pubmed/34134091
http://doi.org/10.3390/s21165309
http://www.ncbi.nlm.nih.gov/pubmed/34450751
http://doi.org/10.1016/j.eswa.2011.02.110
http://doi.org/10.1109/TSMC.2019.2917599
http://doi.org/10.1088/1741-2552/abee51
http://www.ncbi.nlm.nih.gov/pubmed/33711832
http://doi.org/10.1109/TBME.2006.889197
http://www.ncbi.nlm.nih.gov/pubmed/17549911
http://doi.org/10.1142/S0129065717500393
http://doi.org/10.1007/s11571-020-09620-7
http://www.ncbi.nlm.nih.gov/pubmed/33014181


Appl. Sci. 2021, 11, 11453 13 of 13

29. Kinney-Lang, E.; Spyrou, L.; Ebied, A.; Chin, R.F.; Escudero, J. Tensor-driven extraction of developmental features from varying
paediatric EEG datasets. J. Neural Eng. 2017, 15, 046024. [CrossRef]

30. Zhang, Y.; Zhou, G.; Jin, J.; Wang, M.; Wang, X.; Cichocki, A. L1-Regularized Multiway Canonical Correlation Analysis for
SSVEP-Based BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 887–896. [CrossRef]

31. Medeiros, M.C.; Mendes, E.F. l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations. SSRN
Electron. J. 2016, 191, 255–271.

32. Li, W.; Osher, S.; Gangbo, W. A fast algorithm for Earth Mover’s Distance based on optimal transport and L1 type Regularization.
UCLA Comput. Appl. Math. Rep. 2016, 7, 16–66.

33. Shi, Q.; Lu, H.; Cheung, Y.M. Rank-One Matrix Completion with Automatic Rank Estimation via L1-Norm Regularization. IEEE
Trans. Neural Netw. Learn. Syst. 2017, 29, 4744–4757. [CrossRef]

34. Hortal, E.; Ubeda, A.; Ianez, E.; Planelles, D.; Azorin, J.M. Online classification of two mental tasks using a SVM-based BCI
system. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA,
6–8 November 2013.

35. Oikonomou, V.P.; Liaros, G.; Nikolopoulos, S.; Kompatsiaris, I. Sparse Bayesian Learning for Multiclass Classification with
application to SSVEP- BCI. In Proceedings of the International IEEE/EMBS Conference on Neural Engineering, Graz, Austria, 15
August 2017.

36. Ranaee, V.; Ebrahimzadeh, A.; Ghaderi, R. Application of the PSO-SVM model for recognition of control chart patterns. Isa Trans.
2010, 49, 577–586. [CrossRef] [PubMed]

37. Lin, C.T.; Hsieh, T.Y.; Liu, Y.T.; Wu, S.L.; Lin, Y.Y. A Novel Mechanism to Fuse Various Sub-Aspect Brain-Computer Interface (BCI)
Systems with PSO for Motor Imagery Task. In Proceedings of the IEEE International Conference on Systems, Hong Kong, China,
14 January 2016.

38. Qi, Y.; Ding, F.; Xu, F.; Yang, J. Channel and Feature Selection for a Motor Imagery-Based BCI System Using Multilevel Particle
Swarm Optimization. Comput. Intell. Neurosci. 2020, 11, 1–11. [CrossRef]

39. Liu, Q.; Jiao, Y.; Miao, Y.; Zuo, C.; Wang, X.; Cichocki, A.; Jin, J. Efficient representations of EEG signals for SSVEP frequency
recognition based on deep multiset CCA. Neurocomputing 2020, 378, 36–44. [CrossRef]

40. Zhou, Q.; Liu, J.; Liu, L.; Huang, D.; Deng, L.; Jiang, Q. Optimization of penalty coefficient and kernel function coefficient for
ventilation system fault diagnosis based on SVM. China Work. Saf. Sci. Technol. 2019, 15, 45–51.

41. Neghabi, M.; Marateb, H.R.; Mahnam, A. A Comprehensive Comparison between Steady-State Visual Evoked Potentials
Frequency Estimation Methods in Brain-Computer Interface with The Minimum Number of EEG Channels. Basic Clin. Neurosci.
2018, 10, 245. [CrossRef] [PubMed]

42. Zhang, Y.; Zhou, G.; Jin, J.; Zhang, Y.; Wang, X.; Cichocki, A. Sparse Bayesian multiway canonical correlation analysis for EEG
pattern recognition. Neurocomputing 2016, 225, 103–110. [CrossRef]

43. Islam, M.R.; Molla, M.K.I.; Nakanishi, M.; Tanaka, T. Unsupervised frequency-recognition method of SSVEPs using a filter bank
implementation of binary subband CCA. J. Neural Eng. 2017, 14, 026007. [CrossRef] [PubMed]

44. Chen, Y.F.; Atal, K.; Xie, S.Q.; Liu, Q. A new multivariate empirical mode decomposition method for improving the performance
of SSVEP-based brain computer interface. J. Neural Eng. 2017, 14, 046028. [CrossRef]

45. Zhao, J.; Zhang, W.; Wang, J.H.; Li, W.; Lei, C.; Chen, G.; Liang, Z.; Li, X. Decision-Making Selector (DMS) for Integrating
CCA-Based Methods to Improve Performance of SSVEP-Based BCIs. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1128–1137.
[CrossRef] [PubMed]

http://doi.org/10.1088/1741-2552/aac664
http://doi.org/10.1109/TNSRE.2013.2279680
http://doi.org/10.1109/TNNLS.2017.2766160
http://doi.org/10.1016/j.isatra.2010.06.005
http://www.ncbi.nlm.nih.gov/pubmed/20663504
http://doi.org/10.1155/2020/8890477
http://doi.org/10.1016/j.neucom.2019.10.049
http://doi.org/10.32598/bcn.9.10.200
http://www.ncbi.nlm.nih.gov/pubmed/31462979
http://doi.org/10.1016/j.neucom.2016.11.008
http://doi.org/10.1088/1741-2552/aa5847
http://www.ncbi.nlm.nih.gov/pubmed/28071599
http://doi.org/10.1088/1741-2552/aa6a23
http://doi.org/10.1109/TNSRE.2020.2983275
http://www.ncbi.nlm.nih.gov/pubmed/32217479

	Introduction 
	Materials and Methods 
	Subjects and Study Design 
	EEG Recording and Data Analysis 
	Algorithms 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

