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Abstract: Several ecological data types, especially microbiome count data, are commonly sample-
wise normalized before analysis to correct for sampling bias and other technical artifacts. Recently,
we developed an algorithm for the normalization of ecological count data called ‘scaling with
ranked subsampling (SRS)’, which surpasses the widely adopted ‘rarefying’ (random subsampling
without replacement) in reproducibility and in safeguarding the original community structure.
Here, we describe an implementation of the SRS algorithm in the ‘SRS’ R package and the ‘q2-srs’
QIIME 2 plugin. We also provide accessory functions for dataset exploration to guide the choice of
parameters for SRS.

Keywords: scaling with ranked subsampling (SRS); R package; QIIME 2 plugin; microbial ecology;
microbiome analysis; bioinformatics; normalization

1. Introduction

High-throughput sequencing of taxonomically informative loci of microbial genomes
by amplicon sequencing dramatically improved our understanding of microbial commu-
nities. Microbiome research expanded into all microbial habitats on earth, including the
human intestine (e.g., [1]), soils (e.g., [2]), and deep-sea sediments (e.g., [3]). A range of
bioinformatic tools and platforms as well as reference databases have been developed to
enable the extraction of biological insight from the large amounts of data generated by
multiplexed amplicon sequencing. The number of sequence counts per sample (sequencing
depth) obtained from such sequencing runs can vary by orders of magnitude [4]. Those
variations are technical artifacts caused by unequal pooling of samples prior to multiplexed
sequencing runs and varying sequencing efficiencies. This contributes to biased estimates
of several parameters assessed in microbiome analysis, such as alpha and beta diversity,
and relative abundances of taxa.

Fortunately, variations in sequencing depth can be computationally compensated by
normalization of sequence counts per sample, a step that has become essential in processing
amplicon sequencing data. Traditionally, rarefying was used for this. In 2014, however,
McMurdie and Holmes [4] demonstrated that rarefying is statistically inadmissible for the
normalization of microbiome count data. Although the work of McMurdie and Holmes [4]
received a lot of attention, rarefying is still frequently used in current microbiome studies,
likely due to a lack of suitable alternatives. This motivated us to develop the scaling with
ranked subsampling (SRS) algorithm, which outperforms rarefying for diversity analysis
and relative abundance estimates, as recently shown [5].
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Because unequal sampling depth is a problem inherent not only to microbiome re-
search but to all studies based on ecological count data, we introduced SRS as a tool
for the normalization of ecological count data and successfully applied it to microbiome
analysis [5]. Yet, the implementation of SRS in bioinformatic platforms was missing.

In this work, we introduce an R package (‘SRS’) and a QIIME 2 plugin (‘q2-srs’) for the
normalization of microbiome count data using SRS. Furthermore, we improve the original
SRS algorithm and add features to visualize and evaluate the results. Finally, we provide
an example for microbial ecologists that aim to normalize microbiome count data obtained
by amplicon sequencing.

2. Theory

Ecological surveys and microbiome analysis by amplicon sequencing yield so-called
species count data, which typically populate matrices with species represented by rows
and samples represented by columns. Species are taxa (e.g., genera or binomial names),
nucleotide sequences (ASVs), or sets of sequences grouped by similarity (OTUs). Samples
are specimens of material (e.g., water or soil) or individuals or their parts (e.g., a plant or
a bird intestine) distinguished by space-time attributes or treatments. The matrices are
filled with nonnegative integers, which are designated counts. Analysis of count data is
also used in other research fields such as bibliographic analysis, sociology of crime, and
epidemiology of rare diseases. We suggest that study areas unrelated to ecology may also
benefit from concepts developed for species count data in ecology.

The purpose of normalization is to convert a species count matrix into a normalized
matrix, which has an equal dimension and is filled with integers such that the sum of counts
of all species in each sample equals a pre-defined value, which we designate Cmin, and the
structure of the normalized matrix approximates the structure of the original matrix. The
criteria for the approximation may differ but a key principle is that relative frequencies
of counts of the normalized matrix are as close as possible to the relative frequencies of
counts in the original matrix. A relative frequency is obtained by dividing the count for a
particular species in a particular sample by the sum of counts for all species in that sample.
Different implementations of the criterion of matching relative frequencies are conceivable.
The simplest option is to construct a normalization matrix minimizing the sum of absolute
values of pairwise differences between the relative frequencies. This approach, however,
ignores the effect of sampling error on the accuracy of relative frequencies. In the first
approximation, the coefficient of variation of a count is proportional to the inverse of the
square root of the count. Therefore, frequencies may be weighted by the inverse square root
of counts. Depending on the purpose of the study, for instance, regarding the importance
of rare species, other weighing may be more adequate.

Regardless of the criterion used to minimize the differences among sets of relative
frequencies of species, which are colloquially referred to as “population structure”, the
task is an optimization problem under integer constraint, which is a special kind of integer
programming problem. Let assume sampling data for J species in K samples with counts
collected in a J × K matrix. Let C(j,k) denote the count of species j in sample k and F(j,k) the
relative frequency of species j in sample k:

F(j,k) =
C(j,k)

∑J
i=1 C(i,k)

.

Let C(j,k)norm denote the normalized count of species j in sample k. The constraint of
equal total species count per sample implies

J

∑
i=1

C(i,1)norm =
J

∑
i=1

C(i,2)norm = . . . =
J

∑
i=1

C(i,K)norm = Cmin.
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Conversion of C(j,k) into C(j,k)norm satisfying this constraint and leading to frequencies
derived from the normalized matrix

F(j,k)norm =
C(j,k)norm

∑J
i=1 C(i,k)norm

as close as possible to the original frequencies F(j,k) is the purpose of normalization. The
normalized matrix minimizes the sum of differences between original frequencies and
frequencies derived from the normalized counts, while frequencies may be weighted by
factor r and the differences may be raised to power s:

J

∑
i=1

r
∣∣∣F(i,k) − F(i,k)norm

∣∣∣s.
As a weighting factor, 1 can be used for equal weights or

√
C(i,k) to compensate for

differences in the sampling error. As a power s, 1 can be used for absolute differences or 2 in
line with the least-square concept. Weighing or raising the difference to a power, however,
rarely affects the results, as shown by the following example. Let C(k) be a column vector
of species counts for sample k and CT

(k) its transposition into a row vector:

CT
(k) = (2, 4, 30, 600, 0, 27, 231).

The total species count in sample k is 894. After normalization to Cmin = 100, the same
normalized counts are obtained for all combinations of optimization parameters:

r ∈
{

1,
√

C(i,k)

}
, s ∈ {1, 2} : CT

(k) = (0, 1, 3, 67, 0, 3, 26).

The normalization was conducted by comparing 7-tuples of nonnegative integers
such that each term varied from zero to

C(j,k)
100
894

+ 5 (1)

while the sum of terms was Cmin. Exhaustive enumeration of this kind is not feasible for
real-world data. In 2014, Cont and Heidari suggested an algorithm solving this optimiza-
tion problem with the complexity O(n log n), n being the number of species, but their
preprint has not been subjected to a peer review yet [6]. The SRS algorithm [5], which has
the complexity of O(n), generated the same results in this example.

SRS is an empirical algorithm that does not rely on comparison of relative frequencies
of raw and normalized counts. On real as well as simulated count data, SRS was, however,
shown to perform substantially better than normalization by rarefying [5].

3. Method
3.1. Principle of SRS

The SRS algorithm performs scaling followed by ranked subsampling.

1. Scaling: feature counts (such as OTUs (operational taxonomic units), ASVs (amplicon
sequence variants), or clades) are scaled sample-wise so that the sum of the scaled
counts (Cscaled) for each sample is equal to the desired number of counts (Cmin).

2. Ranked subsampling: the scaling step produces fractional values that must be con-
verted into counts (integers). To do this, the Cscaled for each feature is split into the floor
(Cint) and fractional part (Cfrac) of Cscaled. Because Cmin = ΣCscaled = ΣCint + ΣCfrac,
it follows that Cmin ≥ ΣCint. Therefore, ∆C Cfrac values (where ∆C = Cmin − ΣCint)
must be converted into additional counts (integers) so that Cmin can be reached. To
do so, Cfrac values are ranked. Next, from the highest to the lowest rank, a count for
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each feature is added until ∆C counts have been added. After this step, all samples
will have been normalized to Cmin counts.

3. Special cases: (i) when Cfrac values involved in picking ∆C counts share the same rank
across features, the counts are added for features based on the respective Cint ranks;
(ii) when both Cfrac and its respective Cint values involved in picking ∆C counts
share the same ranks across features, the counts are assigned randomly (without
replacement). The specification of the seed that initializes the random process enables
reproducible results.

3.2. ‘SRS’ R Package
3.2.1. SRS-Function

The SRS algorithm was implemented as the SRS-function in the ‘SRS’ R package
(https://CRAN.R-project.org/package=SRS (accessed on 1 November 2021)). As an ex-
tension of the original SRS algorithm published by Beule and Karlovsky [5], SRS as imple-
mented in version 0.2.2 of the package enables reproducible results in case SRS uses random
subsampling without replacement by specifying the seed that initializes the random process
(set.seed). The default settings of the SRS-function (as of version 0.2.2) are:

SRS(data, Cmin, set_seed = TRUE, seed = 1)

where data is the input data (e.g., an OTU table), with samples distributed column-wise,
Cmin is the number of counts to which all samples will be normalized (Cmin), set_seed
enables the use of the set.seed-function, and seed specifies the seed used by set.seed to
initialize the random process.

3.2.2. SRScurve-Function

In analogy to rarefaction curves, the SRScurve-function of the ‘SRS’ R package plots
the number of observed unique features (observed richness) against the number of sampled
counts utilizing the SRS-function (SRS curves). In addition to observed richness, different
alpha diversity metrics (Shannon, Simpson, and inverse Simpson indices as implemented
in the diversity-function of the ‘vegan’ R package [7]) can be selected to generate SRS curves.
Furthermore, SRScurve allows a direct comparison to averaged repeated rarefying. The
default settings of the SRScurve-function (as of version 0.2.2) are:

SRScurve(data, metric = “richness”, step = 50, sample = 0,
max.sample.size = 0, rarefy.comparison = FALSE,
rarefy.repeats = 10, rarefy.comparison.legend = FALSE,
xlab = “sample size”, ylab = “richness”, label = FALSE,
col, lty, . . . )

where data is the input data (e.g., an OTU table), metric selects the alpha diversity metric to be
plotted (“richness” = observed richness; “shannon” = Shannon index; “simpson” = Simpson
index; “invsimpson” = inverse Simpson index), step specifies the step size at which the
alpha diversity metric are sampled, sample specifies the cutoff-level to visualize trade-offs
between cutoff-level and alpha diversity, max.sample.size specifies the maximum sample
size to which SRS curves are drawn (the default does not limit the maximum sample size),
rarefy.comparison enables comparison of SRS curves to rarefying, rarefy.repeats specifies the
number of repeats used for rarefying, rarefy.comparison.legend, xlab, ylab, label, col, lty, and
. . . are graphical parameters.

https://CRAN.R-project.org/package=SRS


Appl. Sci. 2021, 11, 11473 5 of 8

3.2.3. SRS.shiny.app-Function

The SRS.shiny.app-function of the ‘SRS’ R package launches a Shiny app for SRS in
the default web browser to determine Cmin. The app utilizes the SRScurve-function and
enables the selection of four diversity metrics (see metric in SRScurve) that will be returned
at different Cmin. The selection of Cmin is interactive through a slider or an interconnected
numeric text field. In response to the selected Cmin, the app returns

1. a rug plot that shows the distribution of the number of counts per sample and displays
discarded samples as well as summary statistics (including a list of discarded samples
and descriptive statistics of the global feature richness and selected alpha diversity
metric of the input dataset) in response to the selected Cmin (Figure 1A),

2. a plot of SRS curves (SRScurve-function) that respond to the selected step size (step)
and maximum sample size (max.sample.size) (Figure 1B), and

3. an interactive table with sample names and the number of counts per sample as well
as the initial diversity (non-normalized), retained diversity (normalized), %retained
diversity (normalized), and %discarded diversity (normalized) of the selected alpha
diversity metric in response to the selected Cmin (Figure 1C).

The default Cmin of the app is the lowest total number of counts per sample in the
input data (no samples are discarded by default), which can be restored within the app
using the reset Cmin-button. The default maximum sample size equals the default setting of
Cmin and can be restored using the reset max. sample size-button. The default step size for
SRS curves is 1000. The default setting of the SRS.shiny.app-function (as of version 0.2.2) is:

SRS.shiny.app(data)

where data is the input data (e.g., an OTU table).
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Figure 1. User interface of the Shiny app for SRS (SRS.shiny.app-function of the ‘SRS’ R package
version 0.2.2). (A) Rug plot showing the distribution of the number of counts per sample, discarded
samples, and summary statistics; (B) plot showing SRS curves; (C) interactive table with sample
names, the number of counts per sample, and summary statistics for the diversity metric.

3.3. ‘q2-srs’ QIIME 2 Plugin

The ‘q2-srs’ QIIME 2 plugin (https://library.qiime2.org/plugins/q2-srs (accessed
on 1 November 2021)) allows straightforward SRS algorithm incorporation into QIIME 2
pipelines. Because its implementation wraps up the ‘SRS’ R package, its functionalities are
analogous to those presented in the previous section.

Specifically, ‘q2-srs’ features the QIIME 2 actions SRS and SRScurve, which mirror the
‘SRS’ R package SRS-function and SRScurve-function, respectively, with the same behaviour
and default parameters as presented in the previous section. The command-line interface
commands for the use of the SRS- and SRScurve-functions within QIIME 2 environment
are, respectively, qiime srs SRS and qiime srs SRScurve. Finally, despite the ‘q2-srs’ QIIME 2
plugin not having a SRS.shiny.app-function counterpart, an online version of the SRS Shiny
app (https://vitorheidrich.shinyapps.io/srsshinyapp/ (accessed on 1 November 2021)) is
provided for ‘q2-srs’ users.

4. Results and Discussion

In both the R package as well as the QIIME 2 plugin, we modified the original SRS
algorithm by specifying a seed that initializes the random process (set.seed) in cases where
the SRS uses random subsampling without replacement of the lowest Cfrac. The random
step in SRS is rare and negligible for complex microbiome data, as noted previously [5].

https://library.qiime2.org/plugins/q2-srs
https://vitorheidrich.shinyapps.io/srsshinyapp/
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This rather minor modification, however, ensures the reproducibility of SRS, which is
essential for microbiome analysis [8].

As an example of microbiome count data normalization using SRS, we utilized a
bacterial 16S rRNA gene amplicon sequencing dataset comprising 494 samples derived
from an ongoing oral microbiome study. The dataset was processed in QIIME 2 [9]. Af-
ter anonymization of samples and ASVs, an ASV table comprising a random subset of
100 samples was analyzed. The visualization of SRS curves revealed that the observed
ASVs did not decay steadily with decreasing number of reads (Figure 2A). This is due
to the way the ranked fractional values (Cfrac) are chosen: depending on the scaling fac-
tor, an ASV with an integer value (Cint) of zero may or may not be chosen by ranked
subsampling due to its Cfrac, causing a reproducible zigzag behaviour in the observed
number of species. The magnitude of the zigzag observed in SRS curves depends on
the data structure (balance between rare and abundant ASVs). Despite the zigzag be-
haviour, the observed ASV richness was frequently observed to be higher after SRS as
compared to rarefying (Figure 2B). Therefore, we recommend the use of the SRS Shiny app
(SRS.shiny.app-function) prior to SRS for the determination of Cmin for users working in the
R environment. QIIME 2 users are also encouraged to utilize .qza files in the SRS Shiny
app (https://vitorheidrich.shinyapps.io/srsshinyapp/ (accessed on 1 November 2021)).
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Since its implementation in accessible platforms, SRS has been used to normalize
several microbiome datasets obtained from different environments such as animal guts [10],
soils [11], oceans [12], and laboratory cultures [13]. McMurdie and Holmes [4] clearly
demonstrated that rarefying should not be used to normalize microbiome count data;
thus, we suggest that future studies should compare SRS to commonly used normalization
techniques other than rarefying.
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