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Abstract: Through the increasing use of unmanned aerial vehicles as remote sensing tools, shadows
become evident in aerial imaging; this fact, alongside the higher spatial resolution obtained by
high-resolution mounted cameras, presents a challenging issue when performing different image
processing tasks related to urban areas monitoring. Accordingly, the state-of-the-art reported works
can correct the shadow regions, but the heterogeneity between the corrected shadow and non-shadow
areas is still evident and especially noticeable in concrete and asphalt regions. The present work
introduces a local color transfer methodology to shadow removal which is based on the CIE L*a*b
(Lightness, a and b) color space that considers chromatic differences in urban regions, and it is
followed by a color tuning using the HSV color space. The quantitative comparison was executed by
using the shadow standard deviation index (SSDI), where the proposed work provided low values
that improve up to 19 units regarding other tested methods. The qualitative comparison was visually
realized and proved that the proposed method enhances the color correspondence without losing
texture information. Quantitative and qualitative results validate the results of color correction and
texture preservation accuracy of the proposed method against other published methodologies.

Keywords: image shadow removal; color correction; shadow elimination; unmanned aerial vehicle;
aerial imaging; remote sensing

1. Introduction

A shadow is a phenomenon that is presented when a light source is totally or partially
obstructed by an object [1]; according to the shadow location, they can be classified into cast
shadow (the part that is cast on the ground or other objects by high objects) and self-shadow
(the part of the object that is not illuminated) [2]. With the increasing development of
remote sensing technology, the shadow effect becomes more noticeable in aerial imaging,
which, together with the higher spatial resolution, brings new challenges to the image
preprocessing step. Specifically, unmanned aerial vehicles (UAVs) have been increasingly
used over the last few years; recently, this technology has taken place in the areas of object
detection [3–5], agriculture [6–8], and urban zones analysis [9–11]. Within the applications
focused on urban areas, the presence of cast shadows and self-shadows in aerial images
might also cause shape distortion in objects and loss of color information [12] since urban
surface features are rather complex with a great variety of shadows resulting from occlusion
caused by buildings, bridges, and trees [13]. It is also known that in color aerial images,
color characteristics are valid descriptors that simplify identifying characteristics of visual
interpretation applications [14]; this fact enhances the need for new methodologies for
shadow removal that can retrieve color and texture information from aerial images.

Shadow removal methodologies pursue obtaining shadow-free images since it can
facilitate improving the performance of tasks, such as object recognition, object track-
ing, and information enhancement [15]; due to the previously stated, several shadow
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removal methods have been developed. Such methods are conducted by using close-shot
images [16–18], video surveillance [19–21], and aerial images [22–24]. Numerous methods
attending to shadow removal in outdoor scenes have been developed. One of the leading
strategies applied when performing shadow removal in outdoor scenes is illumination
correction [25–27]. Highlighted examples in published works are methods that execute
shadow removal in UAV aerial images using retinex theory [28] as the basis of computing
the illumination correction, wherein the work published by Guo et al. [29] computes an
improved luminance image and executes an illumination correction based upon the color
transfer formula. Other recently published methodology bases itself on the use of the image
matting process. The research published by Amin et al. [30] proposes a relighting method
that does not rely on user interaction and maximizes the natural appearance of the output
relighted images. Although the results are acceptable, the number of erosion-dilation itera-
tions is empirically justified for the tested dataset, mainly consisting of close camera shots.
Illumination correction methods usually depict a high consistency in color restoration and
shadow boundaries. However, these methods usually maintain the chromatic features of
shadowed regions, leading to color differences, especially in urban aerial scenes. As an
alternative method when performing the shadow removal, color transfer [31] is presented.
The local color transfer methods use spatial similarity to set up a relationship between pixel
features of the single image shadows and non-shadows to restore the shadowed regions,
in which such relationship predominantly consists of a statistical correlation [32,33] that
can be performed using different color spaces or a single-color feature.

Recently in the deep learning field, convolutional neural network (CNN) architec-
tures have been used to enhance the results of these methods [34]. Furthermore, a deep
learning-related approach that uses generative adversarial networks (GANs) is used by In-
uoue et al. [35] to perform the shadow detection and removal process, where they proposed
a SynShadow model, a large-scale dataset of shadow/shadow-free/matte image triplets,
and the pipeline to synthesize the diverse and realistic triplets. An adversarial neural
network (ANN) based solution has been recently proposed by Tang et al. [36]. The authors
targeted obtaining a shadow detection and removal procedure by taking care of the image
color consistency at the mask silhouette region. This problem is tackled using the multi-
scale and global feature (MSGF) and the direction feature (DF) algorithms, resulting in an
improvement in the balance error rate (BER) index for shadow detection and the root mean
square error (RMSE) index for shadow removal when compared to ground-truth images
for the image shadow triplets dataset (ISTD) and Stony Brook University (SBU) public
datasets. ANN solutions require a comprehensive dataset of training images, sometimes
produced by a manual image transform process that could require experts’ time. For a
shadow removal ANN, shadow mask creation could be performed manually or in an
automated fashion with a specific algorithm. For the case of GAN-based solutions, such as
the one published by Ding et al. [37], the training process is described as a semi-supervised
task, which does not rely as heavily on supervised data to set its model parameters; this
solution uses a multi-step coarse-to-fine-grained shadow removal deep learning image
generation process. However, solutions based on the deep learning processing scheme
require a large amount of computing power for the training process, as the number of
generations, the training dataset image count, and the input data size is substantially large.
In addition to the aforementioned, pre-established image input and output sizes exist for
the ANN models, requiring a resizing at both ends for effectively computing the shadow
detection and removal processes.

Since complex scenarios could involve a heterogeneous mix of materials and textures,
algorithms need to adapt themselves for any case. The study presented by Fan et al. [38]
tries to solve this issue by two key steps: the first step is devoted to a filtering process where
the textures are taken away, while the second and last step effectively incorporates depth
cue data to the preprocessed input. This method shows an advantage for its second step,
as no extra information or specific purpose hardware, such as a LiDAR capture device, is re-
quired, reducing the implementation cost and enabling the ability to handle more scenarios.
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Aerial imaging-related works are some of the emerging issues in the shadow removal task,
in which the methods often base their work on illumination feature correction [14] and local
color transfer [39]. Notwithstanding, the applications in UAV imaging still lack accurate
results in color-corrected and texture-preserving shadows; this is mainly noticeable in
the case of urban scenes that often contain several heterogeneous regions. Additionally,
the capturing of aerial images take place at outdoor scenes, where two light sources mainly
illuminate the environment: a light source (the sun) and a diffuse source (the sky) with
different spectral power distributions; the skylight has components in the wavelengths
from 450 to 495 nm of the visible spectrum [40]. Shadows are perceived when the direct
illumination of the sun is blocked, and a region is only illuminated by the light of the sky;
all regions covered by shadows appear to be more bluish. This phenomenon is especially
noticeable in regions that present low saturated colors when illuminated by sunlight (con-
crete and asphalt); images captured with standard cameras also tend to capture images in
which the bluish regions are visually and numerically discerned [41].

In this work, we present a novel method for shadow removal based on the charac-
teristics of the CIE L*a*b (luminance, a, and b) color space and the HSV (Hue, Saturation,
and Value) color space. The proposed work aims to correct the chromatic discrepancies
found in concrete and asphalt areas in UAV-captured images under light and shadow
conditions. This method consists of a proposed local color transfer algorithm that executes
the color correction separating the colors’ statistics according to chromatic features into an
image, uses a dilation process to the shadow mask, and a final color tuning that enhances
the local color transfer results. The present proposal offers a shadow removal tool that
improves the results presented in local color transfer algorithms when UAV-captured
images are used. Moreover, this work considers both cast shadows and self-shadows.
The proposed final color tuning step reduces the discontinuity found in similar regions that
are found under shadows. In addition, this method presents an algorithm with a relatively
low computational load that, at the same time, is suitable for implementing in a parallel
computational model, owing to the independence of its functions. This new methodology
was tested over aerial urban RGB (Red, Green, and Blue) images captured using a standard
drone device. The study cases considered were captured at urban scenes containing mainly
asphalt and concrete regions; such urban scenes are covered by shadow at different ratios
in order to test the proposed color correction method. Likewise, the proposed work was
also compared against algorithms in the state-of-the-art by visual qualitative analysis and
quantitatively using the shadow standard deviation index (SSDI). The experiments demon-
strated an improvement in color correction results at asphalt and concrete regions, and at
the same time, accurately preserved texture information. In the following sections, we
present the proposed method development describing the algorithm and method details;
the results section, where the results of the experiments are exposed; the discussion section
follows. Finally, the conclusions are stated.

2. Method Development
2.1. Proposed Methodology

The proposed method considers the previously discussed skylight effect and aims
to improve the color correction in shaded regions by performing a statistical pixel-by-
pixel local color transfer algorithm. The proposed method consists of three main blocks:
input data, which consists of the image capturing process and shadow mask selection as
input data; the color transfer algorithm, in which the proposed color correction method
is executed to obtain an image with color correction at shadowed areas; and lastly, the
color tuning process that executes a final color correction to improve the output image.
The proposed methodology is schematized in Figure 1.
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Figure 1. Proposed methodology.

2.1.1. Input Data

The proposed work uses an RGB UAV-captured image defined as i, and a shadow
image mask M as input data. Urban region shots were taken by a setup consisting of
a UAV device (DJI Phantom 4) with a 12.4 MP camera mounted. At a variable flight height,
capturing altitude was set for each image in order for the shot to contain enough informa-
tion while preserving a good ground resolution. As it has been observed in the scheme
displayed in Figure 2, the scenes captured different shadow regions, where such regions
might contain self-shadows and cast shadows that depend on the light source occlusion.

📸

Vertical shot using UAV Resulting shot
Cast shadow 

Self shadow

Figure 2. Image capturing scheme.

The shadow mask (M) used was computed using the method developed in our
previous work [42].
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2.1.2. Color Transfer Algorithm

The first phase of the proposed algorithm consists of creating a B and LS pixels thresh-
olding. This is accomplished by transforming i into HSV color space for the computation.
The proposed thresholding operation is expressed in Equation (1).

Lb(x, y) =

{
1, if B(x, y) = argmaxx,yS(x, y) < Ls

0, otherwise
(1)

where B represents the blue channel into an RGB image (i), S is the saturation in i, (x, y)
is a position in an image i, and Ls is a constant value to define low saturated regions. Its
range is defined between 0 and 255, and in this work, 25 is selected.

The following process related to Lb is the creation of the corresponding Ks and Ku im-
age masks. An operation that creates a pair of different masks that include only the regions
mentioned above is performed; this operation is expressed in Equation (2).{

Ks = Lb ∩M
Ku = Lb ∩Mc

}
(2)

where Ks and Ku are the shadowed and unshadowed regions masks, respectively, that
conform Lb, M corresponds to the shadow mask of i, and Mc represents the complement
of the shadow mask.

Aiming to reduce the statistical inconsistencies found in shadow and unshadowed
regions into processed images, we propose applying a morphological dilation to M; this
is defined as ψ = δλ5(M), which allows increasing the statistical coincidence between
shadowed and unshadowed regions.

The operations mentioned above allow us to perform a statistical analysis divided
into two groups: local color transfer through ψ and i and color transfer using Lb statistics
through Ks and Ku. The color transfer algorithm is based upon the work proposed by [31],
where its main operation is executed in parallel for the mentioned pairs. Equation (3)
describes the operation for the proposed color transfer algorithm.

To(x, y) =


(

po(x, y)− xoψ

) σoψ

σoψc
+ xoψc , if Lb = 0(

po(x, y)− xoKs

) σoKs
σoKu

+ xoKu
, otherwise

(3)

where To is a pixel in channel o of the output image at the position (x, y), po(x, y) is a pixel
in i at channel o, xoψ and xoKs

are the means of the shadowed regions at channel o, xoψc and
xoKu

are the means of the unshadowed regions at channel o, σoψ and σoKs
belong to standard

deviations of the shadowed regions, and σoψc and σoKu
are the standard deviations of the un-

shadowed regions. Finally, o refers to L, a, and b channels from a given CIE L*a*b image
representation. After local color transfer computing, the output image T contains color
correction at the shadowed regions. To visualize the results from the process, Figure 3a
is used to illustrate the input image (i) to be processed by the proposed methodology.
Figure 3b depicts the resulting image T.
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(a) 

(b) 

Figure 3. Input image (a) and the proposed color transfer result (b). Red rectangles focus on concrete
areas and blue in vegetation or grass.

2.1.3. Color Tuning Process

It can be discerned in Figure 3b that the color correction result shows good texture
preservation and color recovery. Nevertheless, certain inconsistencies are still found when
color-corrected regions are observed and compared to unshadowed regions. For instance,
asphalt regions present discrepancies in the color perceived; this is especially noticeable
for a yellowy color in the regions marked in red rectangles. One further noticeable in-
consistency is the color in green areas (marked in blue rectangles); such areas contain
oversaturated colors. Therefore, a final tuning process is proposed to be applied in the cor-
rected regions only. In this case, the HSV color space is used to perform color tuning,
taking the statistical reference values obtained from the color-corrected image in terms of
hue and saturation. This adjustment is executed according to the criterion expressed in
Equation (4).

T′(x, y) =



{
Ht(x, y) = H(x, y)

St(x, y) = S(x,y)+µs
2

}
, if R = max or G = max Ht(x, y) = |H(x,y)−µh |

µh
H(x, y)

St(x, y) = |S(x,y)−µs |
µs

S(x, y)

, otherwise

(4)

where T′ is the tuned image at the position (x, y) in the HSV color space; H and S are
the hue and saturation of T, Ht, and St are the tuned hue and saturation in T′; µh and µs are
the means of hue and saturation in T, respectively. The resulting image T′ is displayed in
Figure 4b. When it is compared to Figure 4a, which corresponds to color transfer algorithm
output T, it can be noticed that after color tuning, the inconsistencies found in asphalt
regions are reduced. It is most noticeable in the regions marked in red rectangles, in which
the color consistency between shadowed and unshadowed regions is improved. In green
areas, it is shown that color saturation is corrected, and the visual consistency increases
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regarding unshadowed vegetation without losing relevant texture information; this is
marked in blue rectangles.

(a) 

(b) 

Figure 4. Color transfer result (a); color tuning result (b). Red rectangles focus on concrete areas and
blue in vegetation or grass.

It can be observed that the results displayed in Figures 3 and 4 still have noticeable
shadow boundaries; this is mainly owing to the complexity that shadows in urban aerial
imaging present, which complicates the shadow mask creation process. However, the color
inconsistency is reduced and improved after final color tuning.

2.2. Quantitative Analysis

Even though some shadow removal datasets are available [29,43,44], they have been
constructed for close-shot images. Currently, there is no dataset related to shadow removal
in urban aerial images, mainly because of the higher cost of image capturing; this com-
plicates the analysis of shadow removal results as no reference point could be taken. For
the quantitative evaluation, in this work, we use the shadow standard deviation index
(SSDI) proposed by [25]. The SSDI computing is carried out for each channel (R, G, and B)
of the output image T, defined by σs−ns, as shown in Equation (5).

σs−ns =
1
B

B

∑
b=1

√
1
N ∑

i=1
N
(

Fs
b,i − Fns

b

)2
(5)

where b is the current channel of the image, B is the total number of channels at the cor-
rected image, i is the pixel in the shadow regions, and N is the total number of pixels in
the shadow regions. Fs is the corrected shadow region, and Fns is the means of the corre-
sponding unshadowed sample set of the same channel. The SSDI is useful for measuring
the variation of the corrected shadow regions regarding unshadowed regions. A low SSDI
value specifies that the corrected shadow regions are consistent with the unshadowed re-
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gions, and a high SSDI value indicates that the corrected shadow regions are not consistent
with unshadowed regions.

2.3. Study Cases

The submitted method was tested using UAV-captured images. In this case, the men-
tioned images were captured with the previously described UAV device; the resolution of
each picture is approximately 3800 × 2800 pixels. As previously stated, there is no public
shadow removal dataset for remote sensing images; thus, the test images were shot at an
arbitrary capturing height, as specified in the experimental setup. This work’s primary
objective for image acquisition was to include concrete and asphalt regions, which are
commonly found in urban areas. The main criteria for the study cases selection were that
the images depicted urban scenes that contain multiple colors, textures, and a considerable
amount of asphalt and concrete regions. The study cases must contain different cast shadow
and self-shadow coverage at different proportions. Such parameters are helpful to test
the performance of the present method in terms of color correction consistency and texture
preservation results. The study cases used in this work are displayed in Figure 5.

(b) 

(f) (e) (d) 

(c) (a) 

Figure 5. Test images, urban scenes covered by about 40–60% of shadows: study cases 1 (a), 2 (b),
and 3 (c). The second group of urban scenes covered by about 20–25% of shadows: study cases 4 (d),
5 (e), and 6 (f).

As shown in Figure 5, all study cases contain scenes that accomplish the mentioned
criteria, in which each one contains shadows that cover different regions in the urban image.
Specifically, Figure 5a–c contain shadows in a range of 40–60%, which are, in this work,
defined as high shadow (HS) images. This group of images is tested in order to analyze
the color correction results under conditions where shadowed regions cover up a larger
area of the scene. In contrast, Figure 5d–f are about 20–25% covered by shadows; in this
work, they are defined as slight shadow (SS) images. Moreover, in Figure 5d,e, a manual
correction was performed to refine the shadow mask; this is mainly considered for testing
the proposed work over images where the bluish effect in shadows is lighter than in others.
In the case of those scenes, the shadowed regions are small regarding the HS group, which
can present differences regarding the first group of study cases. It is also noticeable that
the darker shadows in concrete and asphalt regions tend to increase the displacement to
blue wavelengths in such regions.

Thus, to compare the present method, we selected two deep learning works: The first
one is presented by Cun et al. [16], which develops a Shadow Matting Generative Adversar-
ial Network (SMGAN) to synthesize realistic shadow mattings from a given shadow mask
and shadow-free image. The second is the method proposed by Inoue et al. [35], using



Appl. Sci. 2021, 11, 11494 9 of 16

a GAN with a proposed SynShadow, a large-scale synthetic shadow/shadow-free/matte
image triplets dataset, and a pipeline to synthesize images. Both methods were imple-
mented as end-to-end shadow detection and removal. In the case of the second group of
works, the methodologies were implemented by using the same shadow masks computed
and used for our proposal. The methods tested were a shadow removal algorithm proposed
by Luo et al. [25], which is based on an illumination correction algorithm, and the work
published by Murali and Govindan. [33], a local color transfer method that uses the CIE
L*a*b color space.

3. Results

The shadow removal results obtained for each tested method for HS images are
displayed in Figure 6, where, for the sake of brevity, Cun et al.’s method is referenced
as SMGAN, Inoue et al.’s method is referenced as SynShadow, Luo et al.’s method is
referenced as Illumination Correction, and Murali and Govindan’s method is referenced as
Color transfer.

It is evident that when shadow removal is performed in tested HS images, the results
are hindered due to the high amount of land covered by such shadows. Likewise, it
is noticeable that self-shadows typically found in trees and shrubs present a difficulty
for color recovering. In Figure 6a–c, the results obtained in the Illumination correction
method are displayed. It can be observed that the illumination correction algorithm
loses color recovery accuracy when shadows cover asphalt and concrete; this can be seen
as a bluish color in such regions. This fact makes shadow boundaries evident despite
the boundary correction proposed in the tested work. Additionally, it is noticeable in
the marked regions that green areas lose color accuracy and texture information. In
Figure 6d–f, the results provided by the SMGAN method are depicted. It can be appreciated
that this method keeps the texture features in the corrected regions but lacks an accurate
color correction and narrows the image resolution to reduce the computational load.
Figure 6g–i depicts the results for the color transfer method. It is shown that despite using
a color transfer method based on the CIE L*a*b color space, the concrete and asphalt
regions tend to keep the blue-like color or acquire a tone similar to other dominant regions
in the unshadowed regions. The condition mentioned above is especially noticeable in
Figure 6i in the region marked with a yellow rectangle, where the corrected shadows in
asphalt become green-like. Additionally, in the grass regions highlighted with arrows, it can
be noticed that such regions look blurred. In the case of Figure 6j–l, it can be observed that
the SynShadow method shows visually accurate results that enhance the contour smoothing
compared to traditional methods, but the corrected regions are still evident due to the
chromatic differences found mainly in the asphalt areas, as signaled in the yellow rectangle.
Lastly, corrected green areas are over lighted. Finally, Figure 6m–o depict the results of
the proposed method. Although boundaries are still noticeable, it is discerned that the color
in asphalt areas maintains an accurate visual consistency regarding the unshadowed one
as marked in the yellow rectangles. In addition, it can be noticed that the grass areas
highlighted keep texture information. As seen in Figure 6, HS images intricate the shadow
removal task due to the limited information contained in unshadowed regions. In spite
of this, the proposed method shows visual consistency for color and texture in grass and
asphalt regions. The following set of results for SS images is shown in Figure 7.
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(b) 

(f) (e) (d) 

(c) (a) 

(i) (h) (g) 

(o) (n) (m) 

(l) (k) (j) 

Figure 6. Illumination correction results for study cases 1 (a), 2 (b), and 3 (c); SMGAN method
results for study cases 1 (d), 2 (e), and 3 (f); color transfer results for study cases 1 (g), 2 (h), and 3 (i);
SynShadow method results for study cases 1 (j), 2 (k), and 3 (l); the roposed method results for study
cases 1 (m), 2 (n), and 3 (o).
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(b) 

(f) (e) (d) 

(c) (a) 

(i) (h) (g) 

(o) (n) (m) 

(l) (k) (j) 

Figure 7. Illumination correction results for study cases 4 (a), 5 (b), and 6 (c); SMGAN method
results for study cases 4 (d), 5 (e), and 6 (f); color transfer results for study cases 4 (g), 5 (h), and 6
(i); SynShadow method results for study cases 4 (j), 5 (k), and 6 (l); the proposed method results for
study cases 4 (m), 5 (n), and 6 (o).

As shown in Figure 7a–c, the illumination correction algorithm tends to depict blue-
like colors in asphalt and concrete. In Figure 7d–f, the SMGAN method modifies the unshad-
owed areas, which represents a complete alteration of the image information. The results
displayed in Figure 7g–i show that color correction in concrete and asphalt regions also
tend to keep the blue-like color or acquire a tone similar to the other statistical dominant
regions. Figure 7j–l shows that shadow removal results present an accurate color corre-
spondency, wherein corrected regions can be observed with slight over-illumination; this is
especially noticeable in the regions signaled with a yellow rectangle. Regarding Figure 7j–l,
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the results of the proposed method are depicted. It is noticeable that the color in the asphalt
and concrete areas is recovered with visual accuracy, but in some corrected regions, it is ob-
served that it is dark regarding unshadowed contiguous regions. Summarizing the results
displayed in Figure 7, it is evident in the regions marked in a yellow rectangle that color
consistency is improved in the proposed method, in which shadow boundaries are not as
evident as the other traditional tested methods. Furthermore, it is quite remarkable that
corrected self-shadows on the vegetation highlighted present an improvement in texture
preservation. Likewise, it can be appreciated that self-shadows are also corrected. As
seen in Figures 6 and 7, the proposed method delivers accurate visual results, in which
color correction and texture preservation are the principal issues attended to in this work.
In order to complement the quantitative analysis, visual analysis for the results obtained
was realized. In Figure 8, the comparison on specific zones is realized.

(a) 

(d) (c) (b) (e) 

(i) (g) (j) (h) 

(f) 

(k) 

Figure 8. Input image for study case 1 (a), close view of the grass area for illumination correction (b),
SMGAN method (c), color transfer method (d), SynShadow method (e), and the proposed work (f).
A close view of asphalt color-corrected region for illumination correction (g), SMGAN method (h),
color transfer method (i), SynShadow method (j), and the proposed work (k).

The analyzed zones are delimited with blue and red squares as depicted in Figure 8,
in which the qualitative criteria to evaluate the shadow removal results are color correc-
tion and texture preservation. As observed in Figure 8b–g, the Illumination correction
method provides results in which color and texture information are not visually consistent
regarding unshadowed regions with similar land cover, and the texture information in
green areas are blurred. In Figure 8c–h, a resolution loss due to the SMGAN method is
noticeable. The end-to-end process also shows a poor shadow detection step in the study
case analyzed. In the case of Figure 8d–i, it is evident that the texture information is
accurately preserved. However, color information is visually inconsistent regarding un-
shadowed regions with the same land cover; specifically, Figure 8d shows over-saturated
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colors with acceptable texture preservation, and the asphalt in Figure 8i displays bluish
colors in the corrected regions. The SynShadow method results shown in Figure 8e–j
depicts an over-illuminated correction in green areas (see Figure 8e), and the corrected
asphalt regions show color inconsistency in the shadow boundaries, as shown in Figure 8e.
Additionally, the image resolution is evidently reduced in the provided results. Figure 8f–k
shows the results obtained with our proposed method; the color correspondence provided
in the corrected asphalt regions (see Figure 8k) is improved compared to the other tested
methods. Although shadow boundaries are still visible, the difference in terms of color
between unshadowed and corrected regions is reduced regarding the rest of the methods.
Moreover, as it is noticed in Figure 8f, green areas present an accurate texture and color
when compared with the rest of works. It was seen in Figure 8 that the proposed work
shows visually accurate results during qualitative analysis than the tested methods.

As mentioned above, the quantitative analysis was executed by using SSDI, and
Table 1 displays the results obtained in each study case for all methods compared.

Table 1. Results comparison of SSDI results.

Test Proposed
Work

Illumination
Correction [25]

Color
Transfer [33]

SMGAN
[16]

SynShadow
[35]

1 17.239 36.963 28.198 33.780 19.610
2 20.953 22.396 20.579 31.980 17.155
3 11.895 21.160 15.798 17.139 12.26
4 13.145 19.458 22.242 13.971 13.81
5 14.779 20.483 20.809 13.212 16.300
6 12.900 23.484 21.866 18.852 13.288

AVG 15.152 21.991 21.582 21.489 15.404

Table 1 presents the SSDI results computed for the methods tested. In the specific
case of study case 1, the proposed work presents an improvement of up to 19 units
compared to the Illumination correction method. Nonetheless, in test 2, it is discerned that
the SynShadow method presents a lower SSDI value. In the average results, it is observed
near values between Illumination correction, color transfer, and SMGAN methods, and in
the case of the SynShadow method and our proposed method, the average results are
numerically near, where our proposal is lower by about 0.25. According to qualitative and
quantitative analysis, it was demonstrated that the proposed work provides accurate color
correction and texture preservation results, improving the other tested methods. The results
validated the proposed method as an alternative solution to automatically perform shadow
removal tasks in urban aerial images without resizing the input image.

4. Discussion

As proven in the previous section, the shadow removal task executed over images
containing urban aerial scenes still presents a challenging task. According to the experi-
ments executed, the Illumination correction method presented noticeable bluish colors in
corrected zones that include asphalt and concrete; this is especially visible in Figure 6a–c.
This result is mainly caused by the lack of chromatic correction in the shadowed regions
that include elements that present low saturated colors when illuminated by sunlight
and are bluish when illuminated by a skylight. In the case of the Color transfer method,
the chromatic correction is executed. However, as it is mainly observed in Figures 6i and 7i,
the corrected shadows display a slight green color; this is caused during the color transfer
process. The unshadowed low saturated regions are classified with the rest of the unshad-
owed colors contained in the image, which causes an ambiguous classification, leading
to color transfer results with corrected regions that show a slight color tone similar to
the dominant region (green color in the experiments performed).
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It can be seen in Figures 6d–f and 7d–f that the SMGAN method presents variated
results, in which it is noticed that in the case of Figure 6f, the corrected regions show accu-
rate color and texture results, but such results are not extended to the rest of the images.
Additionally, in Figure 7d–e, it is observed that the method modifies the colors in the entire
image. Lastly, the SynShadow method results are depicted in Figures 6j–l and 7j–l; it is
evident that the SynShadow method performs acceptable boundary smoothing. Never-
theless, the color correction results are still visually perceptible; also, shadowed green
areas correction tends to provide over-illuminated pixels, which can be mainly observed
in Figure 6j,l, and detailed in Figure 8. Deep learning methods present an innovative and
functional methodology that is able to execute such tasks as an end-to-end process; it can be
discerned in that deep learning-based methods provide results that enhance the boundaries
smoothing when it is visually compared to traditional methods. Nevertheless, the results
can vary depending on the training process and the method development, and the compu-
tational load implies an image resizing that can lead to data loss. In addition, although the
shadow boundaries smoothing is executed, the color correction results provided still keep
visual evidence of the corrected regions.

The results of this study’s experiments are shown in Figures 6m–o and 7m–o. It was
demonstrated through them that executing the color classification grouping for the regions
that contain concrete and asphalt enhances the color correction results and avoids the sta-
tistical misclassification of such regions. It was also demonstrated that the dilation applied
to the shadow mask improves the statistical relation between shadowed and unshadowed
regions; this can be appreciated in improved texture preservation, especially in green
areas, as detailed in Figure 8. The relatively low computational load allows this method
to be executed over high-resolution images. Nonetheless, the boundaries smoothing is
still deficient in most of the study cases tested; this opens the opportunity of improving
the present results working in boundaries processing. The present work presents an alter-
native tool that can be suitable to any shadow detection algorithm to process the automatic
or semi-automatic process end-to-end.

5. Conclusions

In the proposed work, a methodology for cast shadows and self-shadows removal was
presented. The proposed approach offers a tool based on color transfer for color correction
in shadowed regions in urban aerial scenes captured with UAV. The presented work was
tested under different urban scenes containing roads, concrete sidewalks, and green areas,
where scenes presented different percentages of shadows were transformed into scenes that
presented different darkness levels, and texture features were also considered. During the
qualitative analysis, the advantages that this work shows over the other tested methods
were demonstrated. Despite preserving shadow boundaries, the color consistency and tex-
ture preservation provided visually accurate results; this is mainly noticeable in vegetation,
road, and sidewalk textures, which were successfully conserved. Likewise, according to
the SSDI results, the proposed method provided far better results than the other tested
methods in all the study cases in this work, which proves its accuracy. The qualitative and
quantitative results validate this work as a valuable and affordable tool in aerial urban
areas shadow removal tasks. Additionally, this methodology is helpful as a preprocess-
ing step to execute remote sensing, pattern recognition, and image segmentation tasks.
Further works under this topic would focus on enhancing the quality of shadow removal
results in terms of shadow boundaries since it still involves a challenging task. Likewise,
in future works, photogrammetric processing of the corrected images will be executed for
specific applications.
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