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Abstract: Exercise is good for health, quality of life, and maintenance of human muscles. Dumbbells
are popular indoor exercise equipment with several benefits such as low cost, high flexibility in space
and time, easy operation, and suitability for people of all ages. Facilitated by advances in the Internet
of Things, smart dumbbells that provide automatic counting and motion monitoring functions have
been developed. To perform these tasks, the key process is identification of exercise mode. This
study proposes a method to identify essential muscle groups’ (biceps, triceps, and deltoids) exercise
modes of a dumbbell using an inertial measurement unit to provide three-axis angular velocities and
accelerations. The motion angles were estimated from the axial acceleration and angular velocity.
Phase diagrams and time plots of the axial angle, angular velocity, and acceleration were used
to extract significant features of each exercise. Machine Learning and weighting functions were
developed to combine these features into an identification index value for accurate identification
and classification of the exercise modes. An algorithm was developed to verify the exercise mode
identification. The results show that the proposed method and weighting function can successfully
identify the six exercise modes. The identification algorithm was 99.5% accurate. The exercise mode
identification of the dumbbell is confirmed.

Keywords: exercise identification; motion monitoring; smart dumbbell; machine learning
exercise classification

1. Introduction

Physical exercise is important for the human immune system and can help to reduce a
person’s risk of infection. It may also prevent bacterial infections of the lungs that result
in diseases such as cold, flu, and others [1,2]. Exercise is also one contribution in clinical
implications that could help exercise as a diagnostic tool-non/invasive technique. For
example, human data show that during each exercise bout, transient immune changes
occurred that over time may improve immunosurveillance against pathogens, thereby
reducing upper respiratory tract infection [3,4]. In addition, Ostman has shown that
exercise training enhances the human body, cardiovascular and metabolic outcomes in
people with metabolic syndrome [5]. Some experts also pointed out that high physical
exercise was associated with favorable results for most health-related quality of life scale
scores, including disability, frailty, and exhaustion, in dialysis patients [6]. Dumbbells,
which are popular indoor sports equipment, are widely used for resistance training to
increase the strength of the skeletal muscular system; it improves bone density, enhances
lean mass, and increases metabolism [7,8]. Currently, the conventional dumbbell exercise
equipment has unrecordable training information, and as it involves repetitive steps,
creates a feeling of boredom. Therefore, the device has been unhelpful to people who need
accurate control of exercises and want to manage their health data. Liu et al. developed
an intelligent dumbbell [9] that can monitor fitness activity; however, the device only
obtains the raw acceleration signal from MPU6050 with no filter to denoise unwanted
signals. The human interface machine recorded three-axis acceleration data and provided
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information about the angle to an observer on the Mobile Application (APP). Catching up
with the trend, Xiaomi has successfully developed Smart Dumbbells and commercialized
the market. However, this product only guides people to practice according to the preset
program available in the application.

Smart dumbbells are created by combining a traditional dumbbell and an Inertial
Measurement Unit (IMU) sensor, which consists of gyroscopes and accelerometers, enabling
translational movements and tracking of rotation. This sensor is an improvement in
technology for developing microelectromechanical systems (MEMS) with low power and
cost that can be applied to many smart tracking devices in gloves, tennis or golf. The
initial idea to use an acceleration sensor to track free-weight exercises was proposed by
Chang and Chen [10]. They used the naive Bayes and hidden Markov model methods to
identify nine modes of exercise; yet, their results have a problem with imposing similar
acceleration responses and the effect reaches approximately 90%. Li et al. used the same
acceleration signal to identify and resolve this problem faced by previous research using
a combination of a fifth order Butterworth filter to remove noise [11]. Artificial neural
networks (ANNs), support vector machines (SVMs), statistical dynamic time warping
(SDTW), and improved dynamic time warping (IDTW) methods were applied to compare
their performances. The recognition accuracy of the ANN is not acceptable, but the IDTW
method has a high efficiency of approximately 96%, which is better compared to 77%
for SVMs and 81% for SDTW. In recent years, fusion sensors with artificial intelligence
(AI) have contributed significantly to tracking and classifying modes of exercise [12–14].
However, there are various issues in accurately determining features from raw data of the
fusion sensor: all of these methods require big data and need a lot of computer memory.
So far, the identification accuracy using deep learning was 99.96% [12]; however, no real-
time testing has been conducted in this research study. In addition, the fusion sensor
contains a lot of noise; thus, we need to have an excellent denoising filter. This has resulted
in many studies revolving around filter development. The Kalman filter, complementary
filter, and gradient descent are popular methods for denoising raw data [15–19]; existing
results show that the Kalman filter is better than the others under the condition of a simple
system with no multiple state variables. Many dumbbell workouts focus on different parts
of the body, which can be divided into different primary groups: those vital involving the
biceps, deltoids, and triceps. In this study, we selected six acts for each muscle named
bicep, deltoid, tricep, shoulder, squat, side and lunge actions.

The aim of this study is to create a new smart dumbbell that can monitor and identify
the user’s state as well as manage the accuracy of the dumbbell movement. We improved
the identification quality of Support Vector Machine (SVM) in the Machine Learning
method and proposed a new algorithm to recognize the modes of exercises with high
efficiency. The proposed new algorithm could keep tracking and classifying the movement
of the dumbbell in order to correctly and effectively train certain muscles in real time.

2. The Mode Training and Identification of Data

The dumbbell that is used is called a hex dumbbell, as shown in Figure 1. We attached
the IMU sensor to one side. There are many IMU products that output 6-axis or 9-axis
sensor data. The device is designed by incorporating an accelerometer and a gyroscope
(6DoF) in the first case; alternatively, another accelerometer, gyroscope, and magnetometer
(9DoF) are integrated on a printed circuit board.
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In this study, we use a 9DoF Razor IMU on the dumbbell, which includes the sensors
and control process unit onboard. Different parts of the muscles are used while exercising;
however, the person training with the dumbbell focuses on biceps, deltoids, and triceps.
Six types of actions with dumbbell exercises were selected and classified into two categories,
namely simple and complex actions. In terms of simple actions, the dumbbell bicep curl
was selected to develop the bicep muscle in the biceps’ mode. It is an action in which
humans turn their palm up while simultaneously bringing the dumbbell to align with their
shoulders. The second mode is the deltoids mode, in which the elbow is slightly bent, and
this position is maintained in order to raise the arm until it is parallel to the floor [20,21].
The third method is the triceps mode. On the other hand, complex mode actions include
the dumbbell shoulder modes that enable the improvement of the supraspinatus, teres
major and infraspinatus muscles. The fifth one is squat and press mode, which will develop
quadriceps, biceps and deltoids muscle. The final one is side lunge mode. Figure 2 presents
the simple versions of the three modes and positions of the active muscles for these modes.
Figure 3 shows the three complex modes of exercise that are used in our research.
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The data of the IMU from the person who was performing the exercise with the
dumbbell was collected. Figure 4 shows the range of mode motions with dumbbells
performed by the angle (Roll, Pitch, Yaw of IMU). It is easy to identify modes through
the different range of angle distributions. In the research, the threshold range of motion
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(ROM) and SVM in Machine Learning is focused to identify actions. The range of motions
which are used determines the range of parameters the IMU uses to define the action mode.
Furthermore, the data could be used for the training model in which the label is the action
mode. The vector variables is the signal from the IMU.
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3. Methodology
3.1. Estimation of Sensor Fusion

The raw data from the output of the IMU contain many errors; therefore, we used the
Kalman filter to reduce the noise. It includes two steps to process the data, i.e., prediction
and update [22–24]. The equations of the algorithm are summarized as follows:

Prediction:

Predicted state estimate x̂−k = Fx̂+k−1+Buk−1
Predicted error covariance P−k = FP+

k−1FT + Q

Update:

Updated state estimate x̂+k = x̂−k +Kk ỹ
Updated error covariance P+

k = (1− Kk H)P−k

where F is the transition matrix of state, B is control-input matrix, uk−1 is the control vector,
P is called state error covariance, Kk is the Kalman gain, ỹ is the measurement residual.
These equations are used to create the filter after denoising in order to obtain the output
angle. During model testing, the accuracy of the Kalman filter was used as an encoder to
verify the results. We obtained a root mean square (RMS) value of 3.5998. The estimated
angle using a Kalman filter is shown in Figure 5.
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3.2. Determination of the Exercise Cycle

From Figure 6, we observe certain features of the biceps’ mode. The signal can be
divided into five steps.
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Figure 6. Signal from the IMU sensor working on two cycles.

First, Section I denotes the period at the beginning of the exercise with no movement.
Section II denotes the period during which one cycle (or repetition) of exercise is performed
in the biceps’ mode. Third, Section III denotes the short time of rest before execution of the
next repetition in Section IV. Finally, Section V denotes the completion of the exercise. The
dumbbell is not moved at the beginning (I) and the end (III, V) of the exercise, and only
the gravitational force acts on the sensor (mostly on the Y-axis (a-Y)). We can also see the
corresponding angular velocity profiles (ω-X, ω-Y,ω-Z). The movement contains a steady
rotation around the Z-axis (yaw (ψ)).

Then, we can detect the cycle of exercise, which is the duration of movement to finish
one repetition using the gyroscope sensor and the angle between the forearm and the upper
arm. As all actions of the mode using dumbbells require time to stop the movement to
transform the direction, it is a period of time to make the signal from the gyroscope sensor
reach zero. In addition, we need to combine the angle (yaw angle in biceps’ mode) to verify
that it is the end of the cycle. Based on this phenomenon, we detect the start and endpoints
of single repetitions, as shown in Figure 6. In contrast, a previous study described in [4],
only used accelerometer sensors and captured a cycle of the time series based on raw
acceleration signals. In the proposed method, it is difficult to maintain a constant value for
the stopped period of time when the position of the human that performs each exercise
mode is different. Furthermore, the proposed method is robust and stable in all modes,
resulting in faster and more memory-efficient execution.

3.3. Range of Motion Response for Exercise Modes

In this section, we discuss the different exercises from the results of the IMU sensor,
which serves as a method to create an algorithm to detect the mode of use. We could look
at the data resulting from the IMU sensor of the six-mode exercise when humans perform
it. From the properties of the accelerometer and gyroscope, we focus on movement from
different modes with regard to acceleration and gyroscope behavior in different axes and
values. Further, we created criteria to evaluate the ability of each mode to be correct. These
are maximum (max), minimum (min), and in the range of nine variables as well as six from
two signals from the IMU, which are acceleration and gyroscope (ω-X,ω-Y,ω-Z) of the X,
Y, and Z-axes. The rest is the angle of the X, Y, and Z-axes, which are called sequentially
roll (φ), pitch (θ), and yaw (ψ).
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Figure 7 presents the distribution values of the gyroscope in each region corresponding
to the criteria of the exercise modes. For example, if we calculate the maximum gyroscope
of X axes (GX) in one cycle of the biceps’ mode, it will be located in the region of −1.35 to
1.34 degrees/s. Similarly, in the other modes, the location of the maximum gyroscope of
each mode is different.
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Figure 7. Distribution of gyroscope parameters for six modes (1 = Bicep, 2 = Deltoid, 3 = Tricep,
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In Figure 8, we can clearly see the difference of each mode through the distribution of
acceleration that can help identify the method of exercise.
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4. Algorithm Design
4.1. The General Mathematics for Identification of Modes Action

The features of each mode in the distribution value of the IMU signal are shown in
Figures 4, 7 and 8, above. We define the rules to identify the mode. Each rule has a point in
evaluating these modes and it is expressed in the following equations:

Gi =
9

∑
j=1

xij.k (5)

where i is the number of the mode, xij is the criterion j (parameter of IMU sensor) of the
mode i and k are the point of criterion j.

xij =

{
1 i f xij ∈ [ai; bi]
0 i f xij /∈ [ai; bi]

During the training exercise, the criteria xij ∈ {0, 1}, which depends on the value of
xij, belongs to the range of motion [ai;bi] as true or false. It returns to zero if the value
does not belong to a specified region, and vice versa. Subsequently, Gi is calculated using
Equation (5). If Gi has a value of the highest, the mode will be selected based on the i index.
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The algorithm program on LabVIEW was used to demonstrate the accuracy of each model.
It is worth noting that the values of the criteria determination were calculated in a cycle.

4.2. Support Vector Machine for Classification of Modes Action

SVM aims to solve the problem of the optimal separating hyperplane between label
classes by the margin criterion. Assuming that (1) training vector xi ∈ Rd, i = 1, 2, 3 . . . , l
exported from the parameter of IMU sensor, which is the triad of acceleration, gyro and
angle rotation (Roll, Pitch, Yaw); (2) label vector yi ∈ {1, . . . , k} is the number of the action
mode or class of xi. The mth SVM is trained with the positive labels including the negative
labels in the mth class. It is important to note that the purpose of the presence of the
parameters ξ is to adjust errors of classification. The problem is solved based on the cost
function [25,26]:

min
wm, bm, ξm

1
2 (w

m)Twm + C
l

∑
i=1

ξm
i

(wm)Tφ(xi) + bm ≥ 1− ξm
i , i f yi = m

(wm)Tφ(xi) + bm ≤ −1 + ξm
i , i f yi 6= m

ξm
i ≥ 0 , i = 1, . . . ., l,

(6)

where the vector xi is mapped to a higher dimensional space by the function φ and C is the
penalty parameter. In addition, w is the vector of hyperplane coefficients, while b is the
bias term. After function (6) is solved, the value for the decision function will be obtained.
The vector x belongs to the class that has the largest value of the decision function.

x ∈ class ≡ argmaxm=1,...,k(wm)Tφ(xi) + bm (7)

There are many kinds of kernel function φ (for example, radial basis function (rbf),
linear function, polynomial function kernel, and linear Support Vector Classifier (SVC))
that will affect the accuracy of the model [27,28]. Figure 9 shows the decision boundary of
four methods, in which various colors are designed with the aim to match each action and
present its trajectory. As shown in the figure, the data is nonlinearly separable; therefore,
it can be concluded that the RBF function or polynomial kernel is a good method to classify
the label. The data transformation from non-linearly separable into linearly separable can
be observed from this figure as well. The RBF function is applied for classifying modes of
action in our research.
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5. Results and Discussion

A human interface machine was created using LabVIEW to verify our algorithm.
Figure 10 shows the parameters during the exercise. These are the repetition, set, power,
and percentage completion of the task. We processed personal training with a dumbbell.
Each person took a dumbbell, and the initial conditions of the dumbbell were the same.
After performing the exercise for 15 times, the person rested.
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Tables 1 and 2 demonstrate the matrix fusion results of the two methods. The ROM
method reached 100%, exactly, for the simple actions’ mode but complex action was lower
than 90%. The SVM method was highly efficient with six actions, the results were smallest
at 97% accuracy. When a person uses a dumbbell to perform an action, the properties of
the IMU could help to recognize the action by changing the axes. Moreover, the action of
humans was movement and rotation. The limit angle rotation (Roll, Pitch, Yaw) of each
action mode could make the map see different ranges. However, there are huge movements
in each action, which makes it difficult for the method threshold range of motion to find
the feature of the parameter by threshold number. For the Support Vector Machine, the
kernel function RBF is considered to be the best method to recognize the complex action
mode. The large number of calculations in SVM leads to real-time difficulty responding
to high-frequency movements of the simple mode. On the contrary, it is favorable for the
complex mode because the cycle time of the mode is long enough for the calculation.

Table 1. The matrix fusion of the range of motion threshold method.

USING Range of
Motion Threshold

Biceps Deltoid Triceps Shoulder Squat Side
Lunge

1 2 3 4 5 6
Biceps 1 100% 28%
Deltoid 2 100% 18% 1.6% 25%
Triceps 3 100% 1.8% 1.4%

Shoulder 4 80.2%
Squat 5 70.4%

Side lunge 6 73.6%
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Table 2. The matrix fusion of Support vector machine method.

USING Support
Vector Machine

Biceps Deltoid Triceps Shoulder Squat Side
Lunge

1 2 3 4 5 6
Biceps 1 100%
Deltoid 2 98%
Triceps 3 100%

Shoulder 4 99% 3%
Squat 5 100%

Side lunge 6 2% 1% 97%

6. Conclusions

In this paper, two methods of classification were used to identify the modes of dumb-
bell exercise in real time. Working of these methods has successfully implemented these
algorithms, and combination of the two methods resulted in perfect results. For the ROM
method, monitoring the activity of each mode was based on the behavior of the person per-
forming the dumbbell exercise. The SVMs with a non-linear kernel are extremely powerful
classifiers. The results showed that the accuracy rates of six mode detections were 100%,
98%, 100%, 99%, 100%, and 97%, respectively. Additionally, we developed an estimated
cycle for a task using a small amount of data to detect the action. Further, we have not only
used the acceleration and velocity of the angle but also the angle of the Kalman filter to
create an algorithm that may obtain an accuracy result of 100%. The classification of the
action mode has a significant benefit for dumbbell exercises in that humans will not be
bored by interacting with each mode of motion. In the future, it may replace the personal
trainer for assisting human training of dumbbell exercisers.

In future research, we aim to work on creating an algorithm for all modes of exercise
with dumbbells. Additionally, we would like to allow people to correct the activity through
following a guide on the monitor of the human interface machine. The research may open
a new direction in which exercise testing can be considered a non/invasive diagnostic
technique applied in clinical practice. Through the recognition of motion status with dumb-
bells, the increase/decrease of movement speed or parameters of action can be analyzed.
As a result, abnormal data associated with repeatedly wrong movements is detected, which
may contribute to clinical implications in diagnosing the disorder symptoms including
exercise-induced asthma, growth hormone deficiency, congenital heart defects, and so on.
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