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Abstract: Real-time and reliable short-term traffic state prediction is one of the most critical technol-
ogies in intelligent transportation systems (ITS). However, the traffic state is generally perceived by 
single sensor in existing studies, which is difficult to satisfy the requirement of real-time prediction 
in complex traffic networks. In this paper, a short-term traffic prediction model based on complex 
neural network is proposed under the environment of vehicle-to-everything (V2X) communication 
systems. Firstly, a traffic perception system of multi-source sensors based on V2X communication 
is proposed and designed. A mobile edge computing (MEC)-assisted architecture is then introduced 
in a V2X network to facilitate perceptual and computational abilities of the system. Moreover, the 
graph convolutional network (GCN), the gated recurrent unit (GRU), and the soft-attention mecha-
nism are combined to extract spatiotemporal features of traffic state and integrate them for future 
prediction. Finally, an intelligent roadside test platform is demonstrated for perception and compu-
tation of real-time traffic state. The comparison experiments show that the proposed method can 
significantly improve the prediction accuracy by comparing with the existing neural network mod-
els, which consider one of the spatiotemporal features. In particular, for comparison results of the 
traffic state prediction and the error value of root mean squared error (RMSE) is reduced by 39.53%, 
which is the greatest reduction in error occurrences by comparing with the GCN and GRU models 
in 5, 10, 15 and 30 minutes respectively. 

Keywords: intelligent transportation system; short-term traffic state prediction; V2X communica-
tion; mobile edge computing; neural networks 
 

1. Introduction 
Due to considerable urbanization in recent years, the increasing number of vehicles 

in cities has led to various traffic problems such as traffic congestion, accidents and envi-
ronmental degradation. According to the state-of-the-art, the main solutions to these 
problems lie in improving the traffic capacity of the road [1–3]. However, most studies 
concentrate on in-car advisory systems on lane, speed, and headway [4], strategies design 
on traffic networks [5], and different model managements [6]. Traditional single-compo-
nent sensors are difficult to meet the predicted requirements of complex traffic networks. 
Therefore, more efficient and effective approaches still need to be explored to improve the 
traffic capacity. Along with the development of communication technologies, the mobile 
communication networks are expected to be established in people, vehicles, and roads for 
transforming and transferring real-time information accurately. Vehicle-to-everything 
(V2X), fusing on various vehicles and roads information, has been treated as the core tech-
nology for the next generation of intelligent transportation system (ITS) to perceive real-
time traffic state on the roads [7], which faces huge real-time data processing problems in 
transmission quality. In order to solve the problems, in this paper, an ITS is proposed by 
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integrating vehicles and roads with wireless communication technologies for flexible in-
formation sharing and accurate traffic state prediction. The delay of data transmission can 
be greatly reduced and the efficiency of data processing can then be effectively improved 
with the constructed mobile edge computing (MEC) platform in V2X network [8]. The 
development of these technologies plays a key role in the short-term traffic state predic-
tion, which involves the information of vehicle driving state, road environment, and other 
traffic state messages. Through the support of these technologies, the efficient traffic state 
management can be guaranteed. 

The short-term traffic state prediction has been conducted in many studies, which 
refers to the next stage of traffic state prediction with no more than 30 min [9]. The em-
ployed approaches can be divided into two types: model-driven oriented and data-driven 
oriented. The model-driven methods describe the traffic state by building a macroscopic 
model, which mainly includes various Kalman filtering algorithms [10], and the data-
driven method extracts spatiotemporal features from historical traffic data and applies 
deep learning to predict the traffic state [11]. Based on our intensive investigations, the 
data-driven method, as the main means for traffic state prediction, is utilized in most of 
the research. Lv et al. [12] proposed a traffic flow prediction method based on deep learn-
ing by considering the spatiotemporal correlation of traffic flow, where an automatic en-
coder model was used to learn general traffic flow characteristics and train them in a hi-
erarchical manner. This work was the first opportunity to use an automatic encoder as a 
building block to represent a deep architectural model for predicting traffic flow charac-
teristics. Li et al. [13] established a depth neural network based on long short-term 
memory (LSTM) to predict traffic flow during peak hours. This method identified the 
unique characteristics of traffic data, and further improved the prediction model of mixed 
depth LSTM model. However, these models rarely take the spatial feature of the traffic 
network into account. Moreover, convolution neural network (CNN) and recurrent neural 
network (RNN) are widely applied to a variety of machine learning tasks because of their 
strong hierarchical feature learning ability [14]. They are widely used in the fields of com-
puter vision [15], natural language processing [16], and time series data prediction [17]. 
RNN and its variant model, such as the gated recurrent unit (GRU), can effectively extract 
temporal dependencies [18]. However, CNN model, regarding spatial relations as simple 
Euclidean structures, is not suitable for dealing with traffic networks with spatiotemporal 
characteristics. To solve the above shortcomings, the graph convolution neural network 
(GCN) displayed in CNN is extended in [19]. Cui et al. [20] realized GCN through an 
adjacency matrix based on the traffic network topology and identified the most influential 
road sections in the traffic network. However, the adjacency matrix was heuristic, which 
reflected that the spatial relationship between the vertexes of the road network is not ac-
curate. In order to make up for the shortcomings of the graph convolution model based 
on heuristic adjacency matrix, Ye et al. [21] proposed a self-learning adjacency matrix and 
designed different adjacency matrices on different convolution layers. However, the use 
of multiple convolution layers in the traffic network will lead to the lack of explanation of 
the spatial relationships. Ma et al. [22] proposed a traffic learning model based on GCN. 
In this model, the traffic flow was learned as an image, and the spatiotemporal traffic dy-
namics were transformed into a two-dimensional spatiotemporal matrix, which can de-
scribe the spatiotemporal correlations of traffic flow. Li et al. [23] proposed three-channel 
networks, including GCN, GRU, and fully connected neural network (FCNN) to extract 
spatial, temporal, and other features, respectively. 

Based on the above investigations, the challenges of traffic state prediction can be 
summarized as follows: 
• How to perceive and predict traffic state in real time. The traditional traffic sensors 

are difficult to meet the predicted requirements of short-term traffic state prediction, 
especially for the accuracy requests of intelligent connected vehicles (ICVs). 

• How to perceive and analyze the dynamic data of vehicles. The vehicles running on 
the road may face all kinds of sudden traffic incidents. However, traditional 
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vehicular dynamic data strategies (such as floating vehicle) are difficult to meet the 
requests of accurate prediction in real time. 

• How to effectively analyze and filter spatiotemporal features of traffic state. The spa-
tiotemporal features of the traffic state are high nonlinear correlations, which are still 
the focus problems of urban traffic research. For example, the variation of traffic flow 
at one intersection will affect the traffic state at the adjacent intersection, meanwhile, 
affect the future traffic state over time. 
To solve the above problems, this paper proposes a traffic perceptual and computa-

tional system, which incorporates the roadside intelligent sensors, ICVs, and traffic signal 
controller at the intersection. It can accurately perceive not only each single vehicular 
state, but also the whole intersection traffic state. The main contributions of the paper can 
be summarized as follows: 
• Firstly, this paper proposes a traffic perceptual and computational system based on 

the MEC architecture, in which each edge server is responsible for managing the data 
upload of vehicles within its service scope. Moreover, the MEC server will predict 
traffic state based on the perceptual information. 

• Secondly, this paper applies on board unit (OBU) data of ICVs to predict traffic state 
by tracking vehicular driving state in real time, which can effectively improve the 
accuracy of prediction. 

• Thirdly, with the characteristics of the MEC, this paper designs a traffic prediction 
model to analyze and evaluate the traffic state at the intersection in V2X environment. 
GCN and GRU models are combined to analyze spatiotemporal features of traffic 
data in the model. Then, the soft-attention mechanism is utilized to integrate the var-
ious extracted features. 
The reminder of this paper is organized as follows. The traffic state perception system 

of an intersection scenario, which is based on MEC architecture in V2X communication, is 
described in Section 2, where a predicted model of short-term traffic state is then con-
structed and clarified. Section 3 presents experimental results and demonstrates the effec-
tiveness of the proposed method. Finally, the conclusion is provided in Section 4. 

2. Materials and Methods 
The framework of the proposed method is described in Figure 1, which consists of a 

traffic perception system based on V2X, an edge computing module, and a traffic state 
prediction output module. Traffic states from various perception sources, such as road-
side sensors, OBU, and traffic signal controller, can be collected by traffic perception sys-
tem based on V2X. These states will then be delivered to a MEC server for further pro-
cessing. Through graph constriction of intersection network, spatiotemporal feature anal-
ysis and soft-attention mechanism, the short-term traffic state at the intersection based on 
fusion results of V2X multi-source sensors can be accurately depicted and predicted. The 
involved modules are described in Sections 2.1–2.3. 
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Figure 1. The framework of the proposed method. 

2.1. Traffic State Perception 
Traffic state is an unevenly distributed and complex random variable related to time 

variation. At the micro-level, the traffic state perception can be regarded as perceiving the 
behavior state of each vehicle, and at the macro-level, as the flow, speed, density, etc. in 
traffic scenarios. In this section, a traffic state perception system based on V2X communi-
cation will be introduced, and the perceptual information of traffic state will be analyzed. 

2.1.1. Traffic Perception System Based on V2X Communication 
At an urban intersection, the traffic state usually refers to the driving state of all ve-

hicles, which has the characteristics of dynamic, periodicity, randomness, etc. With the 
development of V2X communication technologies, the traffic state is generally perceived 
by the fusion of multi-source traffic sensors, then the information can be fed back to the 
users of other subsystems such as traffic management system (TMS) [24]. Finally, the per-
ceived traffic information can be used to solve traffic and ICVs problems for ITS. 

To improve the traffic efficiency, a traffic perception system based on the V2X com-
munication technology is designed by taking advantages of low delay, high reliability, 
and high security of the V2X in this paper. As shown in Figure 2, intelligent roadside 
infrastructures mainly include LiDAR sensors, high definition (HD) cameras, intelligent 
roadside units (RSUs), switches, traffic signal light controllers, intelligent OBUs with V2X 
communication functions, a shared base station, and a series of MEC servers. In the per-
ception database at the intersection of this system, the perception data are distributed, 
dynamic, heterogeneous, and spatiotemporal. Average traffic flow and mean speed ca-
pacity are chosen to be predicted and evaluative indicators of traffic state, then the com-
prehensive analyses are shown in the following parts. 
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Figure 2. Traffic perception system based on V2X communication. 

2.1.2. Traffic Perception Data 
The purpose of our system is to construct a stereoscopic and accurate perception da-

tabase of the intersection. By comparing our system with the traditional traffic perception 
methods, the performance of the constructed system will be observed that whether it can 
realize more complex information interaction between vehicles and roads, and perceive 
the driving status of a single vehicle and roadside traffic environment information. 

In ITS and cooperative vehicle infrastructure systems (CVIS), the traffic management 
department monitor the real-time traffic state by a variety of advanced sensors. Therefore, 
fusing more than two traffic sensors of data can provide more efficient, reliable, and ac-
curate results. The fusion information of the system is reflected in feature-level data fu-
sion, which is from roadside sensors, intelligent OBUs, and traffic signal controllers. The 
types and sources of the traffic perception data in this system are shown in Table 1. 

Table 1. Types and sources of traffic perception data. 

Data Sources Data Types 

Roadside sensors 

Vehicle information: license plate number, latitude, longitude, 
speed, horizontal distance, heading angle, etc. 

Traffic state information: average vehicular speed, average traffic 
flow, average queue length, parking line location, etc. 

OBU 
Timstamp, latitude, longitude, speed, acceleration, license plate 

number, wheel speed, steering angle, braking status, etc. 

Traffic signal controller 
Signal cycle, signal phase, traffic light color, remaining time of 

green, etc. 

1. Data from Roadside Sensors 
In the system, roadside sensors include LiDAR sensors and cameras, by which real-

time states of each target within the range of the sensors at the intersection can be easily 
obtained. To prevent the impact of pedestrians and other traffic participants, vehicles at 
the intersection are selected as targets to predict the traffic state in this system. 

Based on the data fusion of the point cloud and the image, the accurate information 
of each vehicle, including the license plate number, the latitude, the longitude, the speed, 
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the horizontal distance, the heading angle, and so on, can be perceived. Moreover, LiDAR 
sensors and cameras can also perceive the traffic state of the intersection, including the 
average vehicle speed, the average traffic flow, the average queue length and the parking 
line location. 
2. Data from OBU 

OBU data consist of the real-time information of ICVs while driving at the intersec-
tion. Therefore, millions of observations and terabytes of data are generated every day 
[25]. In this system, the recorded information from OBU contains an anonymous identifier 
(ID), the timestamp, the GPS position (latitude, longitude), the speed, the acceleration, the 
license plate number, the wheel speed, the steering angle, and so on. Additionally, OBU 
data includes vehicular braking states. 
3. Data from Traffic Signal Controller 

Traffic signal control is a fundamental element in traffic guidance at urban signalized 
intersections [26,27]. The core of the integration between traffic signal control and traffic 
guidance is in temporal and spatial synchronization [28]. At the macro level, traffic signal 
control can actively guide the drivers to choose the path by combining the traffic guidance 
information to balance the traffic pressure. At the middle and micro level, the spatial var-
iables, such as the number of lanes, lane functions, and traffic flow directions, are com-
bined with the temporal variables to achieve more efficient traffic optimization, including 
green signal ratio, phase sequence and phase difference of signal light. In our system, the 
signal cycle, the signal phase, the traffic light color, the remaining time of green, etc., are 
involved in the traffic signal controller. 

2.2. MEC Architecture 
MEC architecture can extend the cloud computing services to the edge of networks 

according to the white paper proposed by European Telecommunications Standards In-
stitute (ETSI). In our system, edge computing provides a service environment with high 
bandwidth and low latency in tasks offloading from mobile vehicles to MEC servers. The 
MEC architecture of this system includes three modules, which are cloud module, road-
side module, and on-board module, as described in Figure 3. In this paper, roadside com-
puting resources provided by the MEC architecture can meet the computing demands. 
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Figure 3. MEC architecture. 

As shown in Figure 3, the roadside module is the perceptual part of the system, where 
LiDAR sensors and HD cameras are wired to the MEC server through the switch, and the 
ICVs are connected with traffic signal controllers based on V2X communications provided 
by RSU. The cloud module can store the historical traffic data from roadside sensors and 
provide cloud computing services. The on-board module refers to ICVs with OBUs, which 
can upload their own messages to the MEC server by task offloading strategy. Specifically, 
in the MEC architecture, ICVs can receive application-oriented information and upload 
messages to MEC server via PC5 interface. The service schedule is described in Figure 4. 
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Figure 4. The data processing progress of the MEC paradigm. 

In Figure 4, the MEC server is responsible for dealing with the uploaded data of ve-
hicles in the local server, which includes data acquisition and traffic state prediction. The 
MEC server can be integrated into the strategy development of vehicular data acquisition. 
The process of data acquisition can be described as: 
• Firstly, the MEC server can decide whether the requests of data uploading can be 

received by listening to messages broadcast from vehicles. These messages include 
the required bandwidth of the vehicle and the section ID associated with the vehicle. 

• The MEC server will check if the ID of the corresponding section is selected. If the ID 
does not match, the MEC server rejects the request; otherwise, if the ID matches, the 
actions proceed to the next step. 

• The MEC server then checks whether the required bandwidth can be met. If not, the 
MEC server rejects the request; if yes, the MEC server allocates bandwidth to the 
vehicle. 

• Finally, the MEC server is ready to receive the uploaded vehicle data. If the data is 
uploaded successfully, the MEC server updates the allocated bandwidth of the cor-
responding road section. Otherwise, the allocated bandwidth will not be updated. 
As for the traffic state prediction, the MEC server can fuse the actual traffic state 

based on the uploaded messages of vehicles and multi-source information of roadside 
sensors. The process can be depicted as: 
• Firstly, multi-source information can be fused by the MEC server. 
• Then, the MEC server processes the original vehicular data, including eliminating 

invalid data and sensing the traffic state information based on vehicular data. 
• Finally, by designing a model of short-term traffic state prediction, the MEC server 

can predict the traffic state of the intersection of the system. 
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Considering the temporal and spatial features of traffic states, a short-term traffic 
state prediction model is designed. As shown in Figure 5, the framework is divided into 
five modules: input module, temporal feature module, spatial feature module, attention 
mechanism module, and prediction module. 

Input graph G; Adjacent matrix W; Traffic state X

Attention
mechanism PredictionImprove prediction 

accuracy
Y

GCN

GRU

Spatial 
feature

Temporal 
feature

GRU modelGCN model
  

Figure 5. The prediction model network. 

2.3.1. Graph Construction of Intersection Network 
In the network of urban intersection, vertexes can represent a series of traffic features, 

which usually include vehicular speed, acceleration, position, and other vehicular state 
information. 

As shown in Figure 6, the network of intersection at different times can be described 
as { , , }G V E W= . In the graph G, each vertex is treated as a vehicle, and V is a set of vehicle 
vertexes, 1 2{ , ,..., }NV v v v= , where N represents number of vertexes; E is a set of edges, 
where ije EÎ . W  is the adjacent matrix, which represents the connection between vehi-

cles, N NR ´ÎW . Adjacent matrix is the basis for exploratory analysis of the spatiotem-
poral correlation of traffic flow at the intersection network. The adjacency matrix is de-
scribed by a binary matrix [0, 1], where 0 stands for there being no link between two edges, 
and 1 denotes that there is a link. 

 
Figure 6. Graphs of vehicular state at intersection. 

In Figure 6, each vertex in networks has actual attributes including speed, accelera-
tion and other vehicular information, and can be expressed as 1 2{ , ,..., }Nt t t tC c c c= , 
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tc  represents the attribute of the vertex vi at time t and P represents the 
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number of vertex attributes. The attributes of the vehicle vertex in the network can be 
obtained from V2X environment. Therefore, N K

tx R ´Î  is used to represent the traffic 
state at the time t at the intersection, where K is the number of traffic state attributes, in-
cluding traffic flow, traffic speed, traffic density and queuing length. 

According to the characteristics of urban intersections, the mean speed capacity vM  
and the average traffic flow tQ  are selected to be indexes to describe traffic sates at the 
intersection. The mean speed capacity is defined as shown in Equations (1) and (2). 

1

k

tt
v

V
k

==   (1)

max

=v
VM
v  

(2)

where V  is the mean speed of all vehicles at the intersection in time k, and maxv  is the 
limitation maximum speed in time k. vM , as the mean speed capacity, is positively cor-
related with the performance of traffic state; thus, it is also used to evaluate the traffic state 
at an intersection. The threshold of vM  is set to 0.6 for a standard traffic sate in [29]. 

Therefore, the problem of short-term traffic state prediction can be described as: in 
the given s historical time steps, the vehicular observation value of N vertexes in graph G 
is 1{ , ,..., }t s t s tC C C- - + , and the traffic state is 1{ , ,..., }s

t t s t s tX x x x- - += . Then at the next time 
step T, the predicted value set of all vertexes in graph G is 1 2{ , ,..., }T

t t t t TY x x x+ + += , as 
shown in Equation (3). The f function is mapped to learn the spatiotemporal features of 
the traffic state. 

( ; )T s
t tY f G X=  (3)

where s is the length of historical time series, T is the length of time series that need to be 
predicted. 

2.3.2. Spatial Feature Extraction 
An intersection is defined as the structure of the road network graph, and the GCN 

model is more sensitive to traffic spatial features. The GCN model can deduce its own 
vertex information by using the information of the surrounding vertexes and its own orig-
inal information. Therefore, in the graph of intersection, both vertex information and 
structure of graph should be integrated for consideration. The GCN model can learn not 
only the characteristics of vertexes automatically, but also the correlation information be-
tween any of two vertexes. 

The convolutional neural (CN) model is an operation which convolves on the graph 
by the Fourier transform. The advantage of the GCN model is to extract spatial features 
by the neighborhood information of vertexes. According to the corresponding changes of 
graph convolution in [30], the most important graph convolution can be obtained, as 
shown in Equation (4): 

( )T Tg h U g h* = u u  (4)

where g is convolution kernel function, ℎ  is graph signal on each vertex, and 
. u is not only the basis of Fourier transform, but also the eigenvector 

of Laplace matrix. In particular, the more complicated the traffic situation becomes, the 
higher the computational complexity when the Laplace matrix is decomposed. 

According to [31], the function f can be used Chebyshev polynomials for k-order ap-
proximation. The recursive function of Chebyshev polynomial is expressed as 

[ (1), (2),..., ( )]h h h h n=
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1 2

0

1

( ) 2 ( ) ( )
1

( )

k k kT x xT x T x
T
T x x

- -= -

=

=

 (5)

where k is the order of Chebyshev expansion. 
On the spectral graph, the approximate solution is carried out by Chebyshev polyno-

mials, and the effect is equivalent to calculate the characteristic of each vertex by extract-
ing the information of the 0~(k − 1)-th order neighbors of each vertex in the graph. There-
fore, the output of the (l + 1)-th layer 1l +H  in GCN can be written as 

1 11 ( ) ( )2 2( )l l lσ θ+ =H D WD H    (6)

where N= +W W I  is the matrix with added self-connections, NI  is the identity matrix, 

ijj= åD W   represents the degree matrix, ( )lH  is the output of the layer, ( )lθ  is the pa-

rameter of the layer, and ( )σ   represents the sigmoid function for a nonlinear model. 

2.3.3. Temporal Feature Extraction 
The variation in traffic over time is usually nonlinear and unstable. LSTM model, as 

the most extensive network, is used to deal with time series-related problems. The GRU 
is proposed based on LSTM. Compared with LSTM, the GRU model has a simpler struc-
ture, smaller parameter values and faster training speeds. The GRU model can effectively 
deal with short-term information with gated mechanism for different task processes. 

As shown in Figure 7, the structure of GRU contains an update gate zt, a rest gate rt, 
and a memory unit ht. The reset gate is used to control the degree of ignoring the status 
information of the previous moment. The update gate is used to control the state infor-
mation of the previous moment, so that the useful information can be brought into the 
current state. 

[··,··]

Tanh

rest
gate

update
gateGRU

Yt Xt

Yt

(i=1,2,3···,       ）Xi

GRU

···

GRU

Xt

ht

[ ]1,t th x-

1 tZ-

WZ

1th -

1t -

(i=1,2,3···,       ）1t -hi

 
Figure 7. The structure of GRU unit. 

The states of update gate, rest gate, and memory unit are defined as follows: 

[ ]1( , )t z t tz h xσ -= W   (7)

[ ]1( , )t r t tr h xσ -= W  (8)

[ ]1tanh( , )t h t t th r h x-= ÄW  (9)

1(1 )t t t t th z h z h-= - Ä + Ä  (10)
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where 1 2{ , ,..., }tx x x x=  is the output of the GCN model, which has extracted spatial fea-
tures of the traffic data. zW , rW  and hW  represent the weight matrixes of zt, rt and ht 
respectively. ( )σ   and tanh( )  are the two activation functions, which can be defined 
as 

1
1 xe

σ -=
+

 (11)

tanh
x x

x x

e e
e e

-

-

-
=

+  
(12)

In summary, the GCN model is used to extract the topological structure of intersec-
tion for obtaining spatial features. The GRU model is used to extract the dynamic variation 
of traffic state in the network for obtaining temporal features. 

2.3.4. Attention Mechanism Module 
To make use of the spatiotemporal characteristics of the historic traffic state at urban 

intersection, the short-term prediction of traffic state is carried out through the redistribu-
tion of weight by attention mechanism. First, the attention coefficient of each time series 
needs to be calculated for the predicted target. Then these coefficients are used to evaluate 
the prediction results. Finally, when predicting the traffic state, the state values of vertexes 
with stronger correlation are calculated by the soft-attention mechanism. 

The structure of the attention mechanism is shown in Figure 8, where the output of 
the last layer of GRU model is the input of the soft-attention mechanism. For different 
time series, the weight of each time series feature is calculated by normalization of the 
SoftMax function, which can be expressed as Equations (13) and (14): 

i i ie w x b= ´ +  (13)

1
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where w is weight, b is bias. 
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Figure 8. The structure of the soft-attention mechanism. 

Finally, the traffic state prediction result of the whole network is calculated, as shown 
in Equation (15): 

1

n

t i i
i

Y xα
=

= *å  (15)

3. Experimental Results and Discussion 
In this section, a constructed platform of the traffic state perception is demonstrated, 

based on which we will describe the intersection scenario selected for the experiment. The 
datasets collected by ourselves are introduced. Then the parameter settings and experi-
mental conditions of the neural network model are also clarified. Finally, experimental 
results based on the proposed predicted model are analyzed and discussed. In addition, 
the comparisons between our method and other methods are evaluated. 

3.1. Field Test and Data Analysis 
In the field test, a typical intersection, located in Fushi Road, Shijingshan District, 

Beijing City, is selected as the experimental intersection. There are four lanes in one direc-
tion from east to west, and the rightmost lane is the dedicated right-turn lane, which is 
not controlled by traffic lights, as shown in Figure 9a. In addition, we design a mobile 
intelligent roadside perception and computing platform for multiple test scenarios. The 
intelligent roadside platform consists of the LiDAR sensor, HD camera, switch, intelligent 
RSU, GPS, MEC server and monitor screen, as shown in Figure 9b. 

At the experimental platform, the resolution of the camera is 1080 P (1920 × 1080) 
with a sampling rate of 25 Hz. After testing, the resolution can detect and recognize targets 
about 200 m. The LiDAR sensors with 32 lines can detect surrounding environment about 
300 m. The camera is responsible for detecting traffic signs and vehicles, while the LiDAR 
sensor is for exploring blind spots and long-distance targets in complex traffic environ-
ment. 

  
(a) (b) 

Figure 9. Experimental field. (a) Experimental intersection; (b) Experimental platform. 

In the experiment, we intercepted test data in 30 min, which is collected by the road-
side perception platform containing a series of vehicles, pedestrians, and buildings. After 
data preprocessing, about 22,000 pieces of vehicular data are obtained, which are shown 
in Tables 2 and 3. 
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Table 2. Dataset of vehicles. 

V2X  
communication 

License 
Plate 

Latitude Longitude Rev 
(r/s) 

Steering 
Angle (°) 

Speed 
(m/s) 

Acceleration 
(m/s2) 

Horizontal 
Distance 

(m) 

Heading 
Angle (°) 

Yes N C5530 116.201054 39.923663 0.05 15 0.10 −0.06 5.82 7.30 
No N 46735 116.200968 39.923662 —— —— 1.26 —— 11.71 6.52 
          
Yes A V3210 116.2011 39.923624 2.4 43 4.32 0.33 20.15 13.49 
No U B3957 116.201055 39.9236244 —— —— 4.98 —— 12.43 8.03 

Table 3. Dataset of the traffic state. 

Time 
Stamp 

Traffic 
Flow 

(veh/s) 

Average 
Speed 
(m/s) 

Average 
Queue 
Length 

(m) 

Signal  
Cycle 

(s) 

Signal 
Light 

(E→W) 

Signal  
Remaining 

Time 
(s) 

1609232611 5 1.38 6.80 105 Red 10 
1609232612 7 0.83 14.80 105 Red 9 

       
1609234429 13 3.44 0 105 Green 5 
1609234430 11 2.85 0 105 Green 4 

3.2. Evaluation Index 
To describe the performance of the GCN–GRU model, the following three indexes 

are proposed to evaluate the predicted results. 
(1) Root mean squared error (RMSE) 

2

1
ˆ( )m

t tt
y y

RMSE
m

=
−

=


 (16)

(2) Mean absolute error (MAE) 

1
ˆ| |m

t ti
y y

MAE
m

=
−

=   (17)

(3) Accuracy (Accuracy) 

ˆ
1 t t F

t F

y y
Accuracy

y
−

= −  (18)

where ty  and ˆty  represent the real traffic state value and predicted traffic state value, 
respectively. 

RMSE and MAE can reflect the difference between the real value and the predicted 
value, and both two values fall into the interval [0, +∞). These evaluation values are neg-
atively correlated with the prediction effect, that is, the smaller the value is, the better the 
prediction effect is. Accuracy is used to detect the precision of predicted results, that is, the 
larger the value is, the better the prediction effect is. 

3.3. Parameter Settings 
In the experiment, we normalize the traffic data to the interval [0, 1] and the purpose 

is to speed up model training. In addition, we treat 70% of the dataset as the training set 
and the remaining 30% as the test set. In this experiment, the learning rate of the model is 
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0.001, the size of batch is 32 and the size of epoch is 800. In addition, the model uses L2 
regularization to prevent over-fitting. Adam optimizer with gradient descent is employed 
to train the model. 

In the multi-source information fusion of the dataset based on V2X technology, we 
set the size of the hidden layer to 20, 40, 60, 80, 100, 120, and 140, respectively. Table 4 
shows the comparison of prediction performance under different hidden neurons. Figure 
10 shows the comparison of prediction accuracy under different hidden neurons in the 
dataset. It can be seen from the results that the over-fitting phenomenon occurs when the 
number of neural units in the hidden layer increases from 20 to 140, the prediction accu-
racy increases at first and then decreases. When the number of neurons in the hidden layer 
is 100, the Accuracy is 0.9544. Therefore, the number of hidden layer neurons set in the 
model is set to 80. 

Table 4. The predicted errors in different hidden neurons. 

The number of  
Hidden Neurons 

RMSE MAE Accuracy 

20 2.8942 1.9852 0.9505 
40 2.7863 1.9723 0.9516 
60 2.7021 1.9623 0.9528 
80 2.6967 1.9483 0.9531 
100 2.6547 1.9372 0.9544 
120 2.7654 1.9521 0.9529 
140 2.7735 1.9652 0.9517 

 
Figure 10. The comparison of prediction Accuracy under different hidden neurons. 

3.4. Performance of Prediction Model 
Based on the perception dataset of the traffic state, the experiment predicts the aver-

age traffic flow and the mean speed capacity of urban intersections in a short term. The 
specific analyses are presented as follows. 

Figure 11a shows the performance of the training model with dividing the dataset of 
the average traffic flow by 7:3 for training and testing. Figure 11b shows the fitting results 
of the actual average traffic flow data and the predicted results, as well as the errors be-
tween the predicted values and the real observed values. It is worth noting that the aver-
age traffic flow of the intersection has spatiotemporal periodicity, and the model accu-
rately predicts the trend at the next time step by learning the spatiotemporal correlation 
of data. The values of RMSE and MAE are 0.9823 and 0.8049, respectively, which prove 
that the prediction results can meet the requirements [32,33]. 
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(a) 

 
(b) 

Figure 11. Prediction results of the average traffic flow. (a) The training performance of real value 
and predicted value in average traffic flow; (b) Fitting results of the actual average traffic flow data 
and the predicted results; errors between the predicted values and the real observed values. 

Figure 12a shows the performance of the training model with dividing the dataset of 
the mean speed capacity by 7:3 for training and testing. For the threshold is set up as 0.6, 
the time of the mean speed capacity exceeding the threshold can be observed obviously. 
The prediction results can be treated as a reference to evaluate the short-term traffic state 
of the intersection in real time. 
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(a) 

 
(b) 

Figure 12. Prediction results of the mean speed capacity. (a) The training performance of real value 
and predicted value in mean speed capacity; (b) Fitting results between the real value and the pre-
dicted value of the mean speed capacity; errors between the predicted values and the real observed 
values. 

As shown in Figure 12b, the fitting results between the real observation valued and 
the predicted valued of the mean speed capacity meets the predicted requirements [34]. 
The values of RMSE and MAE are 0.1970 and 0.1585, respectively, which can prove that 
the prediction model is effective. 

Through the prediction of the average traffic flow and mean speed capacity, the traf-
fic operation state of intersections can be perceived in real time. At the same time, it can 
provide data support for traffic managers to conduct real-time traffic guidance at inter-
sections and relieve the queuing pressure at intersections. 
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In order to validate effectiveness of the proposed model, we compare it with the other 
four predicted models, including LSTM, RNN, CNN, and back propagation (BP) neural 
network models. In the process of prediction, we choose the same parameters described 
in Section 3.3. Tables 5 and 6 show comparison results of the average traffic flow and mean 
speed capacity for 5, 10, 15, and 30 min, respectively. 

Table 5. Comparison results of the average traffic flow. 

Time 
Evaluation 

Index 
GCN–GRU LSTM RNN CNN BP 

5 min 
MAE 1.0002 1.9823 3.5521 4.3511 3.8552 

RMSE 1.2354 2.9940 5.3215 6.5362 4.5113 
Accuracy 0.949 0.832 0.775 0.682 0.751 

10 min 
MAE 0.9303 1.9823 3.3241 4.3012 3.8463 

RMSE 1.1532 2.9940 4.9215 6.4621 4.4963 
Accuracy 0.954 0.832 0.779 0.682 0.758 

15 min 
MAE 0.8049 1.9838 3.4843 4.2984 3.8466 

RMSE 0.9803 2.9843 5.0122 6.4551 4.4985 
Accuracy 0.958 0.845 0.780 0.671 0.756 

30 min 
MAE 0.7842 1.8856 3.5012 4.3123 3.8512 

RMSE 0.9053 2.7650 5.1230 6.5010 4.5013 
Accuracy 0.967 0.883 0.789 0.663 0.758 

Table 6. Comparison results of the mean speed capacity. 

Time 
Evaluation 

Index 
GCN–GRU LSTM RNN CNN BP 

5 min 
MAE 0.2911 0.5451 0.9528 1.4213 0.9984 

RMSE 0.2935 0.6654 1.0981 1.7520 1.2135 
Accuracy 0.965 0.852 0.781 0.625 0.773 

10 min 
MAE 0.2133 0.5431 0.9413 1.5312 0.9988 

RMSE 0.2465 0.6641 1.0005 1.7640 1.2141 
Accuracy 0.967 0.864 0.788 0.631 0.771 

15 min 
MAE 0.1835 0.5394 0.9641 1.4812 0.9985 

RMSE 0.2004 0.6604 1.2154 1.7024 1.2031 
Accuracy 0.966 0.865 0.791 0.640 0.773 

30 min 
MAE 0.1585 0.5388 0.9721 1.5531 0.9971 

RMSE 0.1970 0.6541 1.3412 1.7233 1.1998 
Accuracy 0.965 0.859 0.799 0.627 0.772 

In addition, the experiments also compare the training time and prediction time be-
tween the GCN–GRU model and the other four models, as shown in Table 7. 

Table 7. The computational cost of LSTM, RNN, CNN, BP, and GCN–GRU. 

 LSTM RNN CNN BP GCN–GRU 
Training time 183.2 s 105.4 s 309.7 s 123.4 s 112.3 s 

Prediction time 1.353 s 0.932 s 2.332 s 1.234 s 0.995 s 

It can be seen from Table 7 that the training time and prediction time of GCN–GRU 
model are longer than that with the RNN model. However, the prediction accuracy of 
GCN–GRU model is much higher than that in other models. We can infer that the pro-
posed method is practical and significant in the objective of improving the predicted 
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accuracy. To sum up, the prediction performances of GCN–GRU are better than that with 
other neural network prediction models in prediction accuracy. 

3.5. Comparison Experiment Results 
To verify whether the proposed model can effectively extract the spatiotemporal fea-

tures from the dataset of traffic state, we compare the GCN–GRU model with GRU and 
GCN model in the experiment. As shown in Figures 13 and 14, the average traffic flow 
and the mean speed capacity at the time points 5, 10, 15, and 30-min are compared, re-
spectively, and then the error performances are analyzed intensively. 

 
(a) (b) 

Figure 13.  Comparison results of the average traffic flow prediction. (a) The comparative experiment of the RMSE; (b) 
The comparative experiment of the MAE. 

  
(a) (b) 

Figure 14. Comparison results of the mean speed capacity. (a) The comparative experiment of the RMSE; (b) The compar-
ative experiment of the MAE. 
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In the beginning 5 min, by comparing with the GCN model which only considers 
spatial features, the predictions for the average traffic flow, the RMSE and MAE show the 
superiority of our proposed GCN–GRU model with 33.35% and 34.4% reductions. In the 
same way, for the 10, 15, and 30-min prediction of the average traffic flow, the RMSE 
performed in our GCN–GRU model is reduced by 30.89%, 37.51% and 39.53%, respec-
tively, and the MAE is reduced by 33.66%, 36.9% and 34.95%, respectively. Thus, it can be 
clearly observed that RMSE and MAE errors of the proposed model have been signifi-
cantly reduced. We infer that our proposed GCN–GRU model can extract spatial features 
efficiently. 

Similarly, by comparing the prediction results of our GCN–GRU model with the 
GRU model at the time points 5, 10, 15 and 30 min, the RMSE of the GCN–GRU model is 
reduced by 28.68%, 24.36%, 32.54% and 35.43%, and the MAE is reduced by 33.47%, 
32.39%, 30.2%, and 29.5%, respectively. The prediction results indicate that the GCN–GRU 
model can also efficiently extract temporal features. 

In Figure 14, the predicted performance of the GCN–GRU model is consistent with 
the average traffic flow in the mean speed capacity. The errors of RMSE and MAE are 
reduced to a certain extent, then remain relatively stable in (0.2, 0.3) and (0.1, 0.3), respec-
tively. Therefore, the significant error reductions of the proposed GCN–GRU in EMSE 
and MAE reveal that fusing the spatiotemporal features is effective in accurate short-term 
traffic flow prediction. 

4. Conclusions 
To improve the traffic efficiency, we proposed a short-term traffic state prediction 

model based on the data acquisition strategy of MEC-assisted V2X network. The model 
combines the advantages of GCN and GRU soft-attention mechanism to analyze the spa-
tiotemporal characteristics of traffic data. In addition, we design an intelligent roadside 
platform to verify the proposed model. The main conclusions are summarized as follows: 
(1) This paper fuses multi-source information between intelligent OBUs, roadside sen-

sors and traffic signal controller to accurately perceive the traffic state based on the 
V2X communication. 

(2) The prediction model considers the spatiotemporal dependence of all vehicles at ver-
texes of the intersection network. The proposed model can effectively extract vertexes 
features from the intersection, which greatly improves the prediction accuracy of the 
model. Based on the data acquisition strategy of the MEC-assisted V2X network, the 
comparative experiment reveals the effectiveness of our proposed model. 

(3) This paper mainly analyzes the traffic operation state of the single intersection, which 
limits the usage of the proposed model in extended scenarios and may pose a chal-
lenge to the adaptability of the model. In further research, we will study the traffic 
state prediction problems with the regional intersections to explore the efficiency and 
effectiveness of data support and implementation scheme in CVIS, as well as the 
adaptability of the model in these scenarios. 
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