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Abstract: The Sound Event Detection task aims to determine the temporal locations of acoustic
events in audio clips. In recent years, the relevance of this field is rising due to the introduction of
datasets such as Google AudioSet or DESED (Domestic Environment Sound Event Detection) and
competitive evaluations like the DCASE Challenge (Detection and Classification of Acoustic Scenes
and Events). In this paper, we analyze the performance of Sound Event Detection systems under
diverse artificial acoustic conditions such as high- or low-pass filtering and clipping or dynamic
range compression, as well as under an scenario of high overlap between events. For this purpose,
the audio was obtained from the Evaluation subset of the DESED dataset, whereas the systems
were trained in the context of the DCASE Challenge 2020 Task 4. Our systems are based upon the
challenge baseline, which consists of a Convolutional-Recurrent Neural Network trained using the
Mean Teacher method, and they employ a multiresolution approach which is able to improve the
Sound Event Detection performance through the use of several resolutions during the extraction
of Mel-spectrogram features. We provide insights on the benefits of this multiresolution approach
in different acoustic settings, and compare the performance of the single-resolution systems in
the aforementioned scenarios when using different resolutions. Furthermore, we complement the
analysis of the performance in the high-overlap scenario by assessing the degree of overlap of each
event category in sound event detection datasets.

Keywords: sound event detection; DCASE challenge 2020; multiresolution; acoustic degradation

1. Introduction

Humans are able to identify the occurrences of our near environment using only
acoustic information, namely, by hearing the sounds that are produced by those occurrences.
For instance, it is sufficient to hear the knocking of a door to understand the underlying
event and act in consequence. In this case, the knock on the door would be an example of a
sound event.

The task that aims to automatize the localization of sound events in time and their
classification is called Sound Event Detection (SED), and it is currently a relevant field
of research in machine learning and signal processing. Over the last decade, several
datasets were released with the objective of developing and evaluating SED systems.
Urbansound [1] was proposed as an ontology and a sound dataset containing recordings
of 10 event categories of urban outdoors environments. Google AudioSet [2] was also
released as both an ontology of sound events and a dataset, but considering a wider set
of event categories (632) from different domains, and using YouTube (http://youtube.
com (accessed on 6 December 2021)) videos as source for the sound clips. The general-
purpose ontology of AudioSet was partially used by more recent sound event datasets,
such as Freesound Datasets (FSD) [3], which contains 200 event categories and sound
recordings from Freesound (http://freesound.org (accessed on 6 December 2021)), or
DESED (Domestic Environment Sound Event Detection) [4], which focuses on 10 event
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categories belonging to the domain of domestic environments and also uses AudioSet as
a source for audio recordings, in addition to Vimeo (http://vimeo.com (accessed on 6
December 2021)) and synthetic recordings that are generated by overlapping target events
and recordings of background sounds.

Moreover, the competitive evaluations organized by the DCASE (Detection and Clas-
sification of Acoustic Scenes and Events) community [5] greatly supported the recent
research in the field, and helped to define benchmarks not only for Sound Event Detection,
but also for other related tasks such as Acoustic Scene Classification [6] or Anomalous
Sound Detection [7]. The DCASE Challenge proposes the task “Sound event detection
and separation in domestic environments”, with the goal of determining the temporal
boundaries of sound events in 10-second audio clips and classifying them.

In the last years, different deep-learning-based approaches were proposed for the task
of Sound Event Detection [8]. Most of them rely on the use of convolutional neural networks
(CNN), recurrent neural networks (RNN), or a combination of both (convolutional neural
networks, or CRNN) [9–15]. These neural networks are usually trained over audio features
such as the Short-Time Fourier Transform (STFT), mel-spectrograms, or mel-frequency
cepstral coefficients (MFCC) [16], in which a bank of filters is applied to short segments of
the input audio signal, obtaining a time-frequency representation of the audio. Some recent
approaches have also employed attention-based networks [17–19] like Conformers [20],
which were originally proposed for Speech Recognition.

Whereas the aforementioned deep-learning methods are widely used for other sig-
nal processing tasks (e.g., CNN and CRNN for image representation [21,22] or music
tagging [23], and conformers for speaker diarization [24] or audio-visual speech recog-
nition [25]), other works tried to further improve SED performance by tackling specific
problems like domain mismatch between synthetic and real data [26,27], or by training a
sound separation front-end [28], which aims to aid the detection system.

During the 2020 edition of the DCASE Challenge, we introduced an approach that in-
creased the performance of a SED system based in convolutional-recurrent neural networks
(CRNN) by using several time-frequency resolutions in the process of mel-spectrogram
feature extraction, and then combining the outputs obtained with up to five different
time-frequency resolution points. The idea behind this method is that each time-frequency
resolution is more adequate for the detection of certain event categories, depending on
their temporal and spectral characteristics. Therefore, the combination of resolutions leads
to systems that show better overall performance.

In this paper, we offer an analysis of the performance of single-resolution and multires-
olution SED systems when facing adverse acoustic scenarios that critically affect the spectra
of the acoustic signals (high-pass and low-pass filtering) or their dynamic range (clipping
and dynamic range compression), as well as situations in which the acoustic events are
noticeably overlapped in time. For this purpose, we process the audio segments of the
Public Evaluation set of DESED to achieve the mentioned acoustic conditions, and then
compute SED metrics over the resulting datasets. Through this study, we aim to determine
whether the improvement on performance obtained by the multiresolution approach is
robust to the proposed types of acoustic degradation. These adverse settings represent
plausible scenarios that could be found when applying the detectors in other data. For
instance, audio from web sources can be recorded using a wide variety of capturing devices
that affect their quality and their acoustic characteristics. In the case of a real life application
in which sound events are detected in a stream of recorded audio, similar kinds of channel
distortions could appear due to the malfunction of the capturing device.

The application of artificially generated acoustic conditions to DESED evaluation
data is inspired by some of the scenarios described in the DESED Synthetic evaluation
set, in particular, high- and low-pass filtering, dynamic range compression, and clipping.
Whereas this dataset was already used to analyze the robustness of state-of-the-art SED
systems [29] using synthetically generated audio segments, in this work we apply different
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degradations to the DESED Public evaluation set, which is formed by real audio recordings
obtained from YouTube videos.

The rest of the paper is organized as follows. Section 2 explains the materials used
in this work and the methodology of the experiments: the Sound Event Detection task
of the DCASE Challenge 2020 (Section 2.1) and its baseline system (Section 2.2), our mul-
tiresolution approach (Section 2.3), and the motivation of this analysis and the different
acoustic scenarios that we are considering (Section 2.4). In Section 3, the results of the ex-
periments are provided and discussed. Finally, the conclusions of this work are highlighted
in Section 4.

2. Materials and Methods
2.1. DCASE 2020 Challenge: “Sound Event Detection and Separation in Domestic Environments”

In the 2020 edition of the DCASE Challenge, one of the tasks proposes a Sound Event
Detection scenario where systems are trained using the DESED dataset [4], composed
of 10-second audio recordings (Task 4). An optional preprocessing step based on sound
separation is proposed in the task, however, the source separation stage is out of the scope
of this work.

The training data used for this work includes 1578 weakly labeled and 14,412 unlabeled
audio clips extracted from Google AudioSet, along with 2584 strongly labeled audio
segments that were synthetically generated using the Scaper toolkit [30]. Synthetic clips
contain mixtures of foreground events from Freesound and background soundscapes
extracted from the SINS dataset [31].

In addition, a subset of 1168 AudioSet segments is provided (DESED Validation set)
with strong, human-verified annotations, which are used to validate the performance of
the systems. Finally, the YouTube subset of the DESED 2019 Evaluation set, which is called
DESED Public Evaluation, is intended to act as a benchmark for SED performance.

The set of target categories includes ten event categories which are usually found in the
acoustic context of a house: Speech, Dog, Cat, Alarm/bell/ringing, Dishes, Frying, Blender,
Running water, Vacuum cleaner, and Electric shaver/toothbrush. More than one target
category, or several events of the same class, could be present in the same audio recording,
and different categories are allowed to overlap in time. The number of occurrences of each
event category is not balanced, but the distribution of events is similar across datasets, with
some of the categories, like Speech or Dishes presenting larger numbers of appearances,
whereas some other classes like Vacuum cleaner or Blender have less examples. Table 1
shows the number of events of each class that can be found in the strongly labeled subsets
of DESED.

Table 1. Number of events per class in the strongly labeled DESED subsets: Synth Training, Validation,
and Public Evaluation, and total number of events and audio clips in each set. The total number of
events and sound clips in each dataset is presented in the bottom rows.

Event Class Synth Train Validation Public Eval

Alarm/bell/ringing 587 420 196
Blender 370 94 84

Cat 731 341 240
Dishes 1123 559 488

Dog 824 570 441
Electric shaver/toothbr. 345 65 108

Frying 229 94 90
Running water 270 237 109

Speech 2760 1752 913
Vacuum cleaner 343 92 96

Nº events 10,885 4224 2765
Nº clips 2584 1168 692
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Systems output the predicted onset and offset times of the detected events, along with
their category. To define whether a prediction is correct, a collar of 200 ms is considered for
the onset times, whereas for the offset times the collar is the maximum between 200 ms
and 20% of the event length, aiming to handle the difficulty to determine the offset times of
long events. The system performance is measured by means of the F1 score metric, which is
computed as a combination of the True Positive (TP), False Positive (FP) and False Negative
(FN) counts [32]:

F1 =
2 × TP

2 × TP + FP + FN
. (1)

Firstly, F1 scores are computed for each event category, then the Macro F1 is obtained
by averaging the class-wise F1 scores. Macro F1 is used to measure the global performance
of the systems.

2.2. DCASE 2020 Baseline System

The challenge provides a baseline system as a benchmark of SED performance [33].
Such system is based on a Convolutional Recurrent Neural Network implemented in
pytorch (https://github.com/turpaultn/dcase20_task4 (accessed on 6 December 2021)) and
trained using the Mean Teacher method [34] for semisupervised learning. This method
defines a teacher network identical to the student, but which weights are computed as an
exponential moving average of the student weights. To allow the network to learn from
the different types of annotations present in DESED, including strongly labeled, weakly
labeled, and unlabeled data, a classification loss and a consistency loss are defined for weak
and strong predictions. Whereas the classification loss consists on the binary cross-entropy
between the student predictions and the annotations of labeled data, the consistency loss
measures the mean square error between the predictions of teacher and student. Therefore,
considering that the computation of this consistency loss does not require ground truth
annotations, it allows the network to leverage unlabeled data.

The CRNN model is composed of 7 convolutional layers and 2 bidirectional recurrent
layers. Each convolutional layer is composed by a different number of blocks that perform
three operations: a 2D convolution using a 3 × 3 kernel, a ReLU (Rectified Linear Unit)
activation function [35], and an average pooling. The convolutions are meant to learn
transformations over the input features, while the pooling operations reduce the size of
the feature representations in each layer. The recurrent layers are formed by bidirectional
gated recurrent units (BiGRU) [36], which are intended to further model the output of
the convolutional stage. Additionally, an attention pooling module is used to infer the
temporal locations of events using weak labels. The system is fed with the mel-spectrogram
features of the audio segments, and the output of the network is a sigmoid layer with
10 outputs, one for each target category. For a given audio segment, this layer provides
10 time sequences, containing the score values (from 0 to 1) of each target category along
the duration of the segment. Finally, a threshold is applied to these score sequences, and
the resulting binary vectors are smoothed by means of a median filter of approximately
450 ms. A threshold value of 0.5 is used to compute F1 score. A visual representation of the
baseline system structure is presented in Figure 1.

2.3. Multiresolution Analysis

Each sound event category shows different temporal and spectral characteristics. This
fact is easily illustrated by the different durations of the event categories, shown in Table 2.
Therefore, to improve SED performance, our main idea is that different time-frequency
resolutions would be more suited to detect different types of events. Thus, combining the
information of several mel-spectrogram features extracted at different resolution points
should lead to a better overall performance [37].

https://github.com/turpaultn/dcase20_task4
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Figure 1. Block diagram showing structure of Sound Event Detection baseline system. First step is extraction of mel-
spectrogram features from audio waveform. Mel-spectrograms are fed into Convolutional Recurrent Neural Network,
which is composed of a convolutional stage (CNN), a recurrent stage (RNN), and an attention pooling module. Outputs
of CRNN are K score sequences, one for each target category (K = 10). Finally, to compute F1 score, score sequences are
converted into binary values using a threshold of 0.5, and then smoothed with a median filter of 0.45 s.

Table 2. Mean and standard deviations of durations of sound events in DESED Public Evaluation set,
computed for each target category.

Event Class Mean (s) Std. (s)

Alarm/bell/ringing 2.42 2.88
Blender 5.57 2.87

Cat 1.05 1.05
Dishes 0.57 0.69

Dog 0.72 0.92
Electric shaver/toothbr. 5.43 3.24

Frying 8.72 2.09
Running water 6.37 3.60

Speech 1.36 1.10
Vacuum cleaner 8.31 2.20

Aiming to test this hypothesis, we defined five different time-frequency resolutions,
taking as a starting point the resolution used by the baseline system, which we called
BS. Each resolution point is defined by a set of values for the parameters of feature
extraction: Fast Fourier Transform (FFT) length (N), window length (L), window hop (R)
and number of filters in the Mel filterbank (nmel). Due to the feature extraction process,
there is a compromise between temporal resolution and frequency resolution. For instance,
increasing the length of the window (L) allows a finer frequency analysis, but implies
obtaining a lower time resolution. Hence, we propose a resolution point with twice better
time resolution than the baseline, which we call T++, and a resolution point with twice
better frequency resolution than the baseline, which we call F++. In the intermediate points
between each of these points and BS, we define T+ and F+, respectively. The parameters of
the five resolution points are described in Table 3.

To obtain multiresolution systems, firstly, we trained single-resolution systems, which
were based on the DCASE Challenge baseline and modified to operate on each of the
different resolution points by adapting the sizes of the pooling layers in the convolutional
stage. Then, we performed a model fusion averaging the score sequences given by systems
trained with different resolutions before the application of the threshold and the median
filter. Using this method, we obtained a three-resolution system which combines the BS
resolution with T++ and F++, denoted as 3res in this paper, and a five-resolution system
combining all the mentioned resolutions, denoted as 5res.
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Table 3. FFT length (N), window length (L), window hop (R), and number of Mel filters (nmel) of five
proposed time-frequency resolution working points. N, L, and R are reported in samples, using a
sample rate fs = 16,000 Hz.

Resolution T++ T+ BS F+ F++

N 1024 2048 2048 4096 4096
L 1024 1536 2048 3072 4096
R 128 192 255 384 512

nmel 64 96 128 192 256

Through the use of the 3res and 5res systems, we were able to outperform the single-
resolution baseline system in the DCASE 2020 Challenge task 4 [37,38]. The improvement
of performance in terms of macro F1 score was observed over the DESED Validation set
and the DESED Public evaluation set. The 5res system was submitted to the evaluation and
outperformed the baseline system over the DESED 2020 Evaluation set.

2.4. Experiments under Acoustic Degradation Scenarios

Both the DESED Validation set and the Public Evaluation set consist of YouTube audio
segments drawn from Google AudioSet. Due to the crowdsourced nature of a web resource
like YouTube, the audio clips can have diverse origins and qualities, ranging from mobile
recordings to professional studio productions. Therefore, the evaluation of Sound Event
Detection on YouTube data requires the systems to be able to handle a variety of acoustic
conditions that sometimes may be adverse for the task.

To test the performance of Sound Event Detection in a wider range of acoustic settings,
we have applied several types of degradations to the DESED Public evaluation set, which
contains 692 audio clips. We computed the F1 scores of single-resolution and multiresolu-
tion systems over the original set and its degraded copies, aiming to analyze to what extent
does multiresolution help to improve performance when the test data is degraded.

We consider several types of degradations for the audio segments: frequency filtering,
dynamic range compression, clipping, and audio overlap. Whereas the first three scenarios
modify the audio segments while keeping the same ground truth labels, the audio overlap
scenario sums each audio segment with another one in the dataset, obtaining different
clips and labels rather than degraded versions of them. Frequency filtering, dynamic range
compression, and clipping are performed employing MATLAB, whereas Python is used to
obtain the overlapped audios and annotations.

We apply each operation to the whole dataset, obtaining a total of nine new sets.

2.4.1. Frequency Filtering

We apply high- and low-pass filtering separately. In both cases, aiming to cover
different degrees of acoustic degradation, the cutoff frequencies are 500 Hz, 1000 Hz, and
2000 Hz, leading to a total of six copies of the DESED Public evaluation set. The filters used
are FIR (Finite Impulse Response), with a steepness factor of 0.85.

2.4.2. Dynamic Range Compression

We apply dynamic range compression with a threshold of −50 dB and a ratio value of
5:1. The compressor acts with an attack time of 0.05 s, and a release time of 0.2 s.

2.4.3. Clipping

To obtain clipping distortion, we multiply the audio signals, which are bounded to
[−1, 1], by a scale factor of 5, limiting the output values again to [−1, 1].

2.4.4. Audio Overlap

Each audio segment in the DESED Public evaluation set is summed with a randomly
chosen segment from the same dataset. The assignment of segments is performed through
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a random permutation of the set, therefore each audio clip is summed exactly once. Addi-
tionally, it is assured that clips are not assigned to be summed with themselves. The labels
of each resulting segment are computed as the union of the ground truth annotations of
both involved clips, resulting in a predominance of event overlap. We performed three ran-
dom permutations, and summed the original dataset with each one of them, obtaining an
overlapped set with three times the size of the Public evaluation set (2076 audio segments).

3. Results and Discussion

All the results are provided in terms of event-based F1 score, considering the same
collar settings as in the DCASE 2020 Challenge task 4.

3.1. Results over DESED Public Evaluation Set

The results of the seven systems over the original DESED Public evaluation set are
presented in Figure 2. The figure represents the F1 scores of each system in groups of bars,
one group for each event category and an additional one for the macro average, which
represents the global performance.

Figure 2. F1 scores of single-resolution systems (F++, F+, BS, T+, T++) and multiresolution systems
(3res, 5res) over DESED Public Evaluation set. “Macro F1” shows average score over 10 target
categories. Best viewed in color.

In terms of macro F1, the 3res and 5res systems both outperform every single-resolution
system. However, this improvement is not applicable to every target class. Whereas most
event categories obtain their best performance when using a multiresolution system, other
classes reach their maximum F1 score with a single-resolution system; this is the case with
Alarm/bell/ringing (T+), Dishes (F+), Dog (T+), and Speech (F+).

3.2. Results under High-Pass Filtering

The results obtained when applying high-pass filtering to the DESED Public evaluation
set are shown in Figure 3. Three separate graphs are presented, one for each cutoff frequency
( fc). As expected, the general performance decreases for every class and every system
when the cutoff frequency of the high-pass filter increases. In terms of macro F1 score, the
multiresolution systems 3res and 5res achieve the best results for fc = 500 Hz, similarly to
the clean set. However, for fc = 1000 Hz and fc = 2000 Hz the highest macro F1 scores are
obtained with some of the single-resolution systems, BS and T+, respectively.
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Figure 3. F1 scores of single-resolution systems (F++, F+, BS, T+, T++) and multiresolution systems
(3res, 5res) over DESED Public Evaluation set applying a high-pass filter with cutoff frequencies of
500 Hz (top), 1000 Hz (center), and 2000 Hz (bottom). “Macro F1” shows average score over 10 target
categories. Best viewed in color.

3.3. Results under Low-Pass Filtering

Figure 4 shows the results for the DESED Public evaluation set after applying low-pass
filtering with fc = 2000 Hz, fc = 1000 Hz and fc = 500 Hz. The performances decrease
when lowering the cutoff frequency of the filter, which is the expected behavior. When
using a cutoff frequency fc = 2000 Hz, the best overall performance is obtained by the
multiresolution system 5res, whereas for fc = 1000 Hz both 3res and T++ achieve the
highest macro F1. When the cutoff frequency is set to fc = 500 Hz, the best macro F1 scores
are obtained with the single-resolution systems T+ and T++.
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Figure 4. F1 scores of single-resolution systems (F++, F+, BS, T+, T++) and multiresolution systems
(3res, 5res) over DESED Public Evaluation set applying a low-pass filter with cutoff frequencies of
2000 Hz (top), 1000 Hz (center), and 500 Hz (bottom). “Macro F1” shows average score over 10 target
categories. Best viewed in color.

3.4. Results under Dynamic Range Compression

The results obtained after applying dynamic range compression to the DESED Public
evaluation set are presented in Figure 5. In this scenario, the best overall performance
(macro F1) is obtained by the multiresolution systems, 3res and 5res. However, for some
particular classes the best performance is obtained with a single-resolution system, as
observed in the clean set results. Such is the case of Alarm/bell/ringing (F++), Cat (F+),
Dishes (T++), and Running water (T++).
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Figure 5. F1 scores of single-resolution systems (F++, F+, BS, T+, T++) and the multiresolution
systems (3res, 5res) over DESED Public Evaluation set applying dynamic range compression. “Macro
F1” shows average score over 10 target categories. Best viewed in color.

3.5. Results under Clipping

Figure 6 presents the results obtained when applying clipping saturation to the Public
evaluation set. The best macro F1 performances are achieved by the multiresolution systems,
whereas in some event categories multiresolution is not able to outperform every single-
resolution system. This situation is observed for Dishes (T+), Dog (F++) and Shaver (F+).

Figure 6. F1 scores of single-resolution systems (F++, F+, BS, T+, T++) and multiresolution systems
(3res, 5res) over DESED Public Evaluation set applying clipping saturation. “Macro F1” shows
average score over 10 target categories. Best viewed in color.

3.6. Results under Event Overlap

The results obtained for the Overlapped set are depicted in Figure 7. The Macro
F1 performance of the single-resolution systems decreases to 20% or below, whereas the
multiresolution fusions 3res and 5res offer a slight improvement, reaching 22% Macro F1.
However, this decrease of performance is not equally observed in each event category.
Attending to the relative difference between the results with overlap and over the original
data, some classes (Alarm/bell/ringing, Dishes, or Running water) present between 60%
and 70% relative decrease in F1, while other categories (Speech or Vacuum cleaner) only
suffer a relative decrease of around 25%.

Additionally, not all categories obtain higher F1 scores when applying multiresolution:
For Alarm/bell/ringing and Frying, the best performance is obtained with T++. In the
case of Running water, T+ slightly outperforms the multiresolution systems in terms of
F1 score. However, in these cases the performance of multiresolution is near the best
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single-resolution result, and above other resolution points that obtain lower F1 scores. Only
for the Dishes category multiresolution supposes a decrease in performance with respect
to every single-resolution system.

Figure 7. F1 scores of single-resolution systems (F++, F+, BS, T+, T++) and multiresolution systems
(3res, 5res) over Overlapped set. “Macro F1” shows average score over 10 target categories. Best
viewed in color.

3.7. Discussion

The proposed adverse settings have a negative impact on the performance of both
single-resolution and multiresolution Sound Event Detection systems. Among frequency
filtering, dynamic range compression, and clipping, the most critical scenario is high-pass
filtering, especially with fc values of 1000 Hz and above. This suggests that the information
of low frequencies is essential for this task, especially when considering categories like
Blender, Speech, Running water, or Vacuum cleaner. On the other hand, low-pass filtering
is the most adverse condition for the class Frying, implying that high frequencies are
particularly relevant for this event.

In the case of an increased proportion of event overlap, SED performance is noticeably
decreased with respect to the original data. This behavior is explained by the low level of
event overlap found in the strongly labeled training data, more similar to that of the Public
evaluation set than the studied Overlapped set. Nevertheless, the multiresolution systems
offer better results in most categories.

To compare the levels of overlap in different datasets, we compute a value, ρ, for each
event in the ground truth annotations. We define ρ as the ratio between the overlapped
time of an event (i.e., the duration of the intervals of time in which such event coincides
with one or more other events) and the total length of the event:

ρ =
toverlap

tevent
. (2)

Therefore, the value of ρ can range from 0, if the event does not overlap with any
other target event, to 1, if the entirety of the event sounds at the same time than other
events. Nontarget events are not included in the ground truth annotations, and thus are
not considered for this measure.

The global overlap level ρ of a dataset is computed as the average ρ across all the
events in its ground truth annotations. Whereas the Synthetic training set has an overlap
level of ρ = 0.24 and the Validation set has ρ = 0.26, the Public Evaluation set shows a
slightly superior, yet similar, overlap level of ρ = 0.31. In contrast, in the Overlapped set
this value rises to ρ = 0.80. The global and class-wise values of ρ in the Public Evaluation
and Overlapped sets are presented in Table 4.
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Table 4. Value of overlap ratio (ρ) per class in each dataset. The overlap level of a class in a dataset is
computed as the average ρ across all the events belonging to that class, where for each event ρ is the
ratio between its overlapped time and its total length. The global ρ of each dataset is computed as
the event-wise average.

Event Class Public Evaluation Overlapped Set

Alarm/bell/ringing 0.16 0.78
Blender 0.11 0.76

Cat 0.06 0.76
Dishes 0.55 0.88

Dog 0.17 0.81
Electric shaver/toothbr. 0.30 0.80

Frying 0.30 0.80
Running water 0.12 0.74

Speech 0.41 0.79
Vacuum cleaner 0.05 0.72

Global (event-wise) 0.31 0.80

Although we already stated the problem of event overlap in SED, as well as analyzed
its impact in single-resolution and multiresolution systems [39], the scarcity of highly
overlapped events in the Validation data was a limiting factor for the study of the behavior
of our systems in such a situation. Nonetheless, in this work the generation of artificially
overlapped data helped to overcome that limitation.

Despite not being a very frequent problem in current evaluation data, event overlap
could cause a severe degradation of performance in certain applications in which events
tend to overlap, such as event detection in crowded areas. To combat the negative effects of
event overlap, some existing strategies could be used. On the one hand, Mixup training [40]
is a form of data augmentation that provides the deep learning algorithms with linear
combinations of training examples, thus helping them to learn to confront this type of
data. On the other hand, source separation algorithms aim to extract the underlying events
or different audio sources in a segment [41,42], thus reducing event overlap before the
event detection system. Both Mixup and source separation have already been explored to
increase the performance of SED in the DCASE evaluation [43,44], however, the impact of
these techniques in highly overlapped scenarios has not been explicitly assessed yet.

Table 5 presents the macro-averaged F1 results of the discussed systems over the
original DESED Public evaluation set and its degraded versions, showing that the im-
provement on performance obtained when combining several single-resolution systems
into a multiresolution system does not always hold when facing very adverse conditions.
Likely, this effect is due to the way in which our multiresolution systems are obtained. An
average fusion of the scores of different models can result in more accurate scores when the
individual scores are precise enough. On the other hand, in scenarios where the individual
systems perform worse, the average fusion is not able to obtain better results.

Nevertheless, under these adverse settings, multiresolution systems always hold
better macro-F1 than the average result of the single resolution systems. In this sense, our
multiresolution approach provides an improved robustness against these very adverse
distortion and overlap scenarios. The best performing system across all the proposed
degradations is 5res, with an average macro-F1 of 28.99%.



Appl. Sci. 2021, 11, 11561 13 of 16

Table 5. Macro-averaged, event-based F1 scores of single-resolution and multiresolution systems
over DESED Public evaluation set (“Clean”) and proposed degradation scenarios. “Avg-S” col-
umn presents average performance of single-resolution systems (F++, F+, BS, T+, T++). “Overall”
row presents averaged results across all degradation scenarios. Best result for each row is high-
lighted in bold.

Dataset F++ F+ BS T+ T++ Avg-S 3res 5res

Clean 36.26 36.74 37.62 37.12 35.15 36.58 41.81 43.05

HPF @ 500Hz 28.71 32.29 30.38 35.15 28.12 30.93 35.72 36.20
HPF @ 1000Hz 17.53 17.09 22.73 22.43 19.10 19.78 21.41 22.72
HPF @ 2000Hz 11.17 8.62 9.09 11.50 6.80 9.44 10.71 11.04

LPF @ 2000Hz 32.11 32.87 33.44 35.38 33.72 33.51 38.14 39.18
LPF @ 1000Hz 22.44 24.41 26.90 29.45 30.58 26.76 30.55 30.16
LPF @ 500Hz 18.64 19.56 20.71 25.89 26.13 22.19 25.22 25.26

Compression 27.80 31.74 31.88 33.55 32.44 31.48 35.01 37.45
Clipping 29.88 29.58 31.95 30.51 29.47 30.28 35.53 36.74
Overlap 20.15 19.85 18.55 19.66 19.36 19.51 22.35 22.14

Overall 23.16 24.00 25.07 27.06 25.08 24.87 28.29 28.99

4. Conclusions

In this paper, we studied the performance of several Sound Event Detection systems
over a public dataset when diverse acoustic perturbations are applied. Five of these
systems are convolutional neural networks with a common structure, but employing
mel-spectrogram features extracted using different time-frequency resolutions. Two more
systems are considered, which combine the previous systems into multiresolution models
by means of an average fusion, increasing the performance over the evaluation subsets of
the DESED dataset.

According to the results, the proposed acoustic scenarios have a clearly negative
impact on the performance of our systems, as expected. Although our multiresolution
approach is robust to slight degradations, the average fusion is unable to improve per-
formance when facing adverse conditions. However, an extra robustness against these
adverse scenarios is observed when using multiple resolutions.

Along with the generation of an artificially overlapped subset, we introduce a way to
measure the level of overlap in sound event detection datasets, defining the metric ρ as
the ratio between overlapped time and total duration of an event. This metric allows to
compare the amount of event coincidences that are found in different datasets.

Possible lines of future research include the extension of the analysis to consider
other acoustic conditions, such as additional background noise or reverberation, and other
evaluation metrics like the Polyphonic Sound Detection Score [45]; the exploration of other
methods to combine the information from different resolution points, and the development
of algorithms to tackle specific problems like event overlap.

Furthermore, the data generated and the results obtained through this study will serve
as a benchmark to evaluate the performance of future Sound Event Detection approaches
and their robustness to diverse acoustic settings.
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