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Abstract: The real-time analysis of Big Data streams is a terrific resource for transforming data into
value. For this, Big Data technologies for smart processing of massive data streams are available,
but the facilities they offer are often too raw to be effectively exploited by analysts. RAM3S (Real-
time Analysis of Massive MultiMedia Streams) is a framework that acts as a middleware software
layer between multimedia stream analysis techniques and Big Data streaming platforms, so as to
facilitate the implementation of the former on top of the latter. RAM3S has been proven helpful in
simplifying the deployment of non-parallel techniques to streaming platforms, such as Apache Storm
or Apache Flink. In this paper, we show how RAM3S has been updated to incorporate novel stream
processing platforms, such as Apache Samza, and to be able to communicate with different message
brokers, such as Apache Kafka. Abstracting from the message broker also provides us with the ability
to pipeline several RAM3S instances that can, therefore, perform different processing tasks. This
represents a richer model for stream analysis with respect to the one already available in the original
RAM3S version. The generality of this new RAM3S version is demonstrated through experiments
conducted on three different multimedia applications, proving that RAM3S is a formidable asset for
enabling efficient and effective Data Mining and Machine Learning on multimedia data streams.

Keywords: stream processing; real-time analysis; big data; multimedia data streams

One morning, as the authors were waking up from anxious dreams, they discovered that
RAM3S had to be changed into an up-to-date stream processing framework.

1. Introduction

Multimedia (MM) data have been used in a plethora of applications for at least three
decades. The wide availability of such data is facilitated by the presence of low-cost
production (cameras, sensors, etc.) and storage devices. Moreover, often MM data comes in
streams, i.e., sequences of MM objects of the same type that are received from a producer.

The value that can be extracted from MM streams is dramatic, but so are challenges
posed on computing power and analytical intelligence [1]. In particular, real-time analysis
requires that data streams are processed with high throughput and limited latency, so as to
exploit data freshness to respond and make decisions quickly.

In this paper, we describe the metamorphosis of RAM3S [2,3], a framework that
we developed to integrate Big Data management platforms, so as to allow researchers
to easily implement real-time complex analyses of massive MM streams exploiting a
distributed computing environment (RAM3S stands for Real-time Analysis of Massive
MultiMedia Streams).

The use of RAM3S allows researchers to easily adapt complex MM stream analysis
techniques (initially conceived for a centralized system) to a distributed computing scenario,
so as to effectively scale out them. Indeed, Big Data platforms offer a number of services
which are crucial for the management and analysis of large quantities of information, in
order to provide evidence-based decision making in many aspects of human activities.
However, the use of such platforms is made difficult for analysts by the fact that their
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major focus is on issues of fault-tolerance, synchronization, increased parallelism, and so
on, instead of providing an easy-to-use interface to programmers.

The idea behind RAM3S was not to create yet another streaming processing engine,
rather to give MM analysts an easy-to-use interface to existing Big Data streaming platforms.
RAM3S thus acts as a bridge to integrate two complex technologies, one applicative
(the multimedia stream analysis) and one architectural (the Big Data platform), allowing
the seamless implementation of the former onto the latter. In this way, for example, a
developer could compare the performance of different streaming engines before committing
to a specific one for her applications. The fields of application of such technologies are
innumerable, from the security of citizens [1], to recommender systems [4], and sentiment
analysis [5], to cite a few.

Although the generality of RAM3S has been demonstrated before, its applicability to
the ever-changing world of stream analysis was limited by two main issues:

• First, in its original incarnation [2], RAM3S exploited RabbitMQ to feed stream data
into the system, and no other message broker was considered as an alternative;

• Second, the streaming processing model was over-simplistic, consisting of just a single
node where each MM objects was analyzed.

The contributions of the new, metamorphosed version of RAM3S we present here are:

1. The RAM3S interface to input (and output) streams has been generalized so as to en-
compass the use of different message brokers (the current version includes the interface
to three different message brokers as opposed to the single one originally available);

2. Decoupling RAM3S from the message broker also allows cascading different RAM3S
instances, since the output of a single instance can now be used as input to another
one. This provides a recursive, and richer, model for the processing of MM streams;

3. As an additional feature, we also included in RAM3S another popular Big Data
streaming platform, namely Apache Samza, in addition to the ones already present
(Spark Streaming, Storm, and Flink);

4. Finally, thanks to the wide availability of alternatives provided by this new version of
RAM3S, we are able to experimentally compare performances of different message
brokers and stream processing engines on three different real-world applications,
demonstrating the handiness of RAM3S as a platform for testing purposes.

We believe that this new version of RAM3S represents a formidable asset for enabling
efficient and effective Data Mining and Machine Learning on MM data streams.

1.1. Running Example: Face Recognition

The first use case we developed with RAM3S was the automatic recognition of known
faces in videos [2]. In this example, which we will use throughout the paper to illustrate
the various RAM3S components, a number of incoming videos are fed to the system, which
should detect and identify faces contained in each frame. An example of use of such
technique is the detection of criminals in videos obtained through cameras disseminated in
the territory (such as airports, metro stations, public buildings, and so on) For this, each
video is first streamed as a sequence of frames and each incoming frame is examined to:

1. Check whether it contains a face;
2. Compare the (possibly) discovered face against a number of “known” faces, to retrieve

the known face most similar to the input face;
3. If the similarity between the discovered face and its most similar known face is suffi-

ciently high, the face is considered as correctly recognized, otherwise it is regarded as
an unknown face.

For this use case, we exploited the well-known Viola–Jones algorithm [6] for face
detection, while comparisons of “faces” was performed using a technique based on prin-
cipal component analysis using eigenfaces [7]. For the purpose of suspect identification,
whenever a discovered face is sufficiently similar to one of the faces in the knowledge base,
an alarm is raised (see Figure 1a).
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(a) (b)

Figure 1. Face recognition use case: known (a) and unknown (b) face.

1.2. Paper Outline

After describing the context that led us to devise RAM3S (Section 2), we provide
a high-level view of the framework and its model (Section 3). In Section 4 we describe
Apache Samza, while in Section 5 we show how the latter stream processing platform has
been included in this novel RAM3S implementation. We then report a series of experiments
we conducted in our datalab over a number of application where RAM3S was effectively
exploited to build useful Web-based services in the fields of citizens security, traffic control,
and product recommendation (Section 6). Finally, we conclude, drawing possible future
research directions (Section 7).

2. In the Beginning

Our experience with Big Data streaming analysis platforms derives from a private-
financed project focused on the analysis of multimedia streams for security purposes. The
private company already had an experience in Big Data batch processing, through the long
term use of tools such as Hadoop (http://hadoop.apache.org, accessed on 3 December
2021) and Spark. (http://spark.apache.org, accessed on 3 December 2021). However, it was
clear that the use of such technologies was inappropriate for a number of security tasks,
such as face detection for the automatic identification of “suspect” people [7], recognition
of suspicious behavior from videos [8], human actions [9] or gesture [10], audio events [11],
and so on. Indeed, in such online applications, data have to be analyzed as soon as these are
available, so as to exploit their “freshness”. The storing of incoming data is, thus, usually
unnecessary and the efficiency of the system depends on the amount of data processed,
keeping low latency, at the second, or even millisecond, level.

To deal with this (at the time) novel stream processing paradigm other Big Data plat-
forms were introduced, among which Storm, (http://storm.apache.org, accessed on 3
December 2021) Flink, (http://flink.apache.org, accessed on 3 December 2021) and the
streaming version of Spark. Abstracting by specificities of each Big Data streaming platform
(see [12,13] for details on Spark and Flink, respectively), the following common charac-
teristics can be discovered (see also [2] for a more detailed comparison of the streaming
processing platforms considered in RAM3S):

• Some nodes in the architecture are in charge of receiving the input data stream, thus
containing the data acquisition logic (these are called Receivers in Spark, Spouts in
Storm, and Producers in Flink);

• Other nodes perform the actual data processing (these are called Drivers in Spark,
Bolts in Storm, and Task Nodes in Flink);

• Finally, data sources and data processing nodes are connected to realize the data
processing architecture, which takes the form of a Directed Acyclic Graph, where arcs
represent the data flow between nodes (in Storm, such architecture is termed Topology).

http://hadoop.apache.org
http://spark.apache.org
http://storm.apache.org
http://flink.apache.org


Appl. Sci. 2021, 11, 11584 4 of 19

We were, therefore, challenged to implement a number of security-related use-cases
on top of such stream processing Big Data platforms, with the goal of comparing them by
way of several performance KPI, such as throughput, scalability, latency, etc. This required
to re-implement every multimedia stream analysis application on top of each platform,
leading to huge code replication and other inefficiencies. We were therefore led to consider
realizing a middleware software framework to allow users to:

1. Avoid having to deal with details of each specific Big Data streaming platform (such
as how fault-tolerance is achieved, how stream data are stored, etc.); and

2. Easily extend already available (centralized) software to a scaled out solution.

This way, we strove to bridge the technological gap between facilities provided by Big
Data analysis platforms and advanced applications (for which transition to a distributed
computing scenario might not be straightforward).

2.1. The Message Broker

A message broker is a software module that allows applications, systems, and ser-
vices to communicate with each other, translating a message from the sender’s formal
communication protocol to the receiver’s one. This allows interdependent services to
“talk” directly with each other, even if they have been written using different languages
or implemented on different platforms. Message brokers act as intermediaries between
different applications, so senders can send messages without knowing where the recipients
are, whether they are active or not or how many of them are present. This clearly facilitates
the decoupling of processes and services within systems. The task of a message broker is
obviously not only to pass data, as it also deals with aspects related to security, priority,
and orderly forwarding of messages.

Typically, the message broker is instantiated in a server process communicating with
both the sender and the receiver using their respective communication protocols, thus
providing status control and tracking of all customers who are involved in the communica-
tion, in order to avoid that individual applications should implement the aforementioned
functionalities and complex message delivery.

Generally speaking, the entities that interact in the Message Broker context are:

• One or more Producers, i.e., processes generating messages;
• One or more Consumers, i.e., processes dealing with the handling of messages;
• The Message Broker himself, storing messages coming from Producers and forwarding

them to the Consumers.

The nature of middleware allows a message broker to decouple heterogeneous systems
which, with other configurations, would be strongly coupled; a message broker can validate,
store, direct, and deliver messages to the correct destinations, in fact they are typically used
as intermediaries between applications. This implies that producers can deliver messages
to brokers without even knowing which consumers will process them. To provide a reliable
message storage system and a guarantee of message delivery, brokers typically rely on
a structure called a message queue that stores and sorts messages until consumers have
processed them.

Message brokers commonly use an asynchronous model of message communication:
This prevents the loss of important data and allows systems to continue operating even in
presence of intermittent connectivity or latency problems, as typical in public networks.
Asynchronous messaging ensures that messages will be delivered once (and only once) in
the correct order relative to other messages.

2.1.1. Communication Models

Message brokers typically offer two basic message exchange models:
Point-to-Point model: This model considers a one-to-one relationship between the

sender of the message and the recipient. Each message in the queue is sent to only one
consumer and is consumed exactly once. Once the message is consumed, the recipient
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sends a confirmation signal (an acknowledgement) to the broker who can then delete the
message from its queue. Point-to-point messaging is required when a message only needs
to be processed once. The model also provides for the possibility of having multiple
consumers connected to a queue, but a specific message will always be consumed by
at most one of them. Examples of cases for this messaging model include payroll and
financial transaction processing: In these systems, both the sender and the recipient need
to be guaranteed that each payment will be sent only once.

Publish/Subscribe model: In this messaging model, often referred to as “pub/sub”,
the producer publishes the message on a topic and multiple consumers subscribe to
the topics they want to receive messages from. All messages published on a topic are
distributed to all applications subscribed to it. This is a broadcast-style distribution method,
where there is a one-to-many relationship between the publisher of the message and its
subscribers. For example, if an airline were to issue updates on landing times or the delayed
status of its flights, multiple receivers could be interested in such information: The ground
crews who maintain and refuel the aircraft, baggage handlers, flight attendants, and pilots
preparing for the next trip, and travelers. Unlike the Point-to-Point model, which groups
messages until they are retrieved by consumers, topics immediately transfer messages to
all their subscribers. All client processes subscribing to a given topic will then receive every
transmitted message, unless they have set up a message filtering policy.

The first version of RAM3S only considered RabitMQ as message broker, while the
current version also supports ActiveMQ and Kafka. All currently supported message
brokers are described in the following sections.

2.1.2. RabbitMQ

RabbitMQ (https://www.rabbitmq.com/, accessed on 3 December 2021) is an open-
source message broker that implements the Advanced Message Queuing Protocol (AMQP)
0.9.1. The RabbitMQ server is written in Erlang and is based on the Open Telecom Platform
(OTP) framework for managing clustering and failover. It is considered to be one of the
most popular open-source message brokers used worldwide by small start-ups up to large
enterprises. Its popularity stems from its ease of installation and also from the broad
support provided for programming languages and operating systems.

RabbitMQ was originally launched in 2007 by the collaboration between Lshift and
CohesiveFT as a complete open source implementation of the AMQP protocol, the emerg-
ing standard for high performance enterprise messaging. In April 2010, RabbitMQ was
acquired by SpringSource, a division of VMware, which added the messaging system to
its suite of technologies, to reduce the complexity associated with developing, deploying,
and managing enterprise applications. The project then became part of Pivotal Software
in 2013.

2.1.3. ActiveMQ

ActiveMQ (http://activemq.apache.org/, accessed on 3 December 2021) is an open
source messaging software, written completely in Java, which allows the creation of a multi-
protocol, highly available, and highly scalable messaging system. It can therefore serve as
the backbone for a messaging-based distributed application architecture. ActiveMQ is a
Java Message Service (JMS) provider, which means that it implements the functionalities
specified in the JMS API. Client applications, producers, and consumers can, therefore, use
the JMS API to send and receive messages. However, ActiveMQ also offers support for
other protocols such as AMQP, MQTT, and STOMP.

The ActiveMQ project was originally created by LogicBlaze in 2004, as an open source
message broker, hosted by CodeHaus. The ActiveMQ code and branding were donated to
the Apache Software Foundation in 2007, where the founders continued to develop the
codebase with the extended Apache community.

https://www.rabbitmq.com/
http://activemq.apache.org/
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2.1.4. Kafka

Apache Kafka (https://kafka.apache.org/, accessed on 3 December 2021) is an open
source distributed event streaming platform developed by the Apache Software Foundation
and used by thousands of companies for high-performance data pipelines, streaming
analytics, data integration, and mission-critical applications. Written in Scala and in Java,
the project aims to provide a unified, high-performance, low-latency platform for managing
real-time data feeds. Apache Kafka can connect to external systems (for data import/export)
via Kafka Connect and provides Kafka Streams, a Java stream processing library.

Kafka combines three key features to enable implementing use cases for end-to-end
event streaming with a single solution in a distributed, highly scalable, elastic, fault tolerant,
and secure way:

• Writing and reading event streams, including continuous import/export of data from
other systems;

• Archiving streams of events in a durable and reliable way;
• Processing flows of events as they occur or retrospectively.

Kafka was originally developed by LinkedIn and became open source in 2011.

3. Let There Be RAM3S

The first step towards the definition of a framework for the analysis of massive
multimedia streams came from the realization that, in all the use cases we considered,
incoming data streams were processed as illustrated in Figure 2 (we note that the simple
model presented here has been appropriately extended in the current version of RAM3S to
encompass other, more complex, types of analyses):

1. First, the input data stream is transformed in a sequence of individual MM objects
(such as images or small video/audio sequences);

2. Then, each single MM object is analyzed to derive a result (e.g., an alarm is raised if a
suspect person is recognized in an image or a particular audio event is detected).

Alert 
generation

Face 
detection

Face 
recognition

Knowledge 
Base

Known
face?

yes

AnalyzerReceiver

Stream analysis

Figure 2. Analysis of a multimedia data stream with RAM3S.

In this case, the topology of nodes in the architecture is extremely simple, being
composed of several data sources which are connected to a network of data processing
nodes, each of which is able to deliver its result by analyzing a single MM object. The
underlying architecture is therefore extremely standardized and is independent of the
actual application and/or the particular MM object/stream. In this way, each application
can be implemented on top of each Big Data platform by simply specifying how:

https://kafka.apache.org/
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1. Each MM stream can be broken up into a sequence of individual MM objects; and
2. Every single MM object can be analyzed to produce (a part of) the result.

The RAM3S framework thus provides a common interface to specify the two above
specified behaviors, introducing the Receiver and the Analyzer abstract components.
Both interfaces are extremely simple:

• For the Receiver component, only the start() and the stop() methods should be
defined, specifying how the data stream acquisition is initiated and terminated; the
output of a Receiver is a sequence of multimedia object instances;

• On the other hand, the Analyzer only includes a constructor and a single analyze()
method, the latter taking a single multimedia object instance as input, producing a
boolean value in output.

When cascaded, the Receiver and the Analyzer components implement the generic
functionalities of a stream analyzer, where the continuous flow of input data produces a
sequence of booleans, indicating activations/de-activations of the alarm.

Clearly, the RAM3S framework also includes other classes, which are not detailed here,
that implement the connection to the underlying Big Data platforms: All issues specific
to distributed data processing are dealt with within these classes, so that the intricacies
of distributed computing (such as fault-tolerance, isolation, and stateful processing) are
hidden to the user, who can focus on how to adapt her data stream analysis technique to
the Receiver and the Analyzer interfaces.

4. Introducing Samza

Big Data streaming platforms that were included in the original RAM3S incarnation
were Spark Streaming, Storm, and Flink [2]. To further expand features included in
RAM3S, we considered to add Apache Samza to the supported streaming processing
platforms. Apache Samza (https://samza.apache.org/, accessed on 3 December 2021) [14]
is a distributed framework for stream processing originally developed by LinkedIn in 2013,
which in 2014 became an Apache top-level project.

The advantage introduced by Samza is the possibility of using a single callback-based
API to describe the application logic independently of the data source, which can be both
batch and streaming. Furthermore, the framework allows to process and to transform data
obtained from various sources: Samza offers a built-in integration with Apache Kafka,
AWS Kinesis, Apache Hadoop, Azure EventHubs, and ElasticSearch. Another point in
favor of Samza is that it can be used as a normal library integrated into a Java/Scala project
eliminating the need to use a separate cluster for stream processing: It becomes a real library
embedded in the application. This mode of use is called stand-alone mode and allows one
to have control over the entire life cycle of the application. The stand-alone mode also gives
the possibility to increase the capacity of the application by creating multiple instances; all
such instances will coordinate with each other to be able to equally balance the work: If an
instance should fail for any reason, the task assigned to it would be reassigned to another
instance. Coordination between the instances is carried out through Zookeeper but, since
the coordination logic is pluggable, it can also be dealt with other frameworks.

The other deployment mode supported by Samza is execution on Apache YARN:
In this modality, a Samza application is sent to YARN to be then executed on its cluster.
Thanks to this integration with YARN, isolation, multi-tenancy, resource management, and
application deployment are provided; the number of containers needed, the number of
cores, and the memory to be reserved for each container can also be specified. In addition,
Samza works with YARN to provide the necessary resources for the application at hand
and run it in a cluster of machines and to automatically restart failing application instances.
When multiple applications share the same YARN cluster, they must be isolated from each
other: Samza works with YARN to set CPU usage and memory occupation limits. As
a result, any application that uses more than it is allowed is automatically terminated,
conferring multi-tenancy on the system. Each deployment model brings its benefits in
order to give flexibility in choosing which one to adopt.

https://samza.apache.org/
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Finally, it is important to underline the at-least-once semantics adopted by Samza
which ensures that every message coming from an input stream is processed at least once;
this model ensures that no losses occur in the event of failures, making Samza a fault-
tolerant choice for applications. Moreover, Samza is the only system that provides support
for both deployment systems: Some systems, such as Kafka, only support the library model,
while others, such as Flink or Spark streaming, only provide the framework model for
stream processing.

4.1. Samza Streams, Partitions, and Jobs

Samza processes the data as organized in streams. In particular, a Samza stream is a
collection of immutable messages, typically organized by categories, where each message
belonging to the stream is modeled as a <key, value> pair. A stream can have multiple
producers writing its data and as many consumers reading its data. In particular, the data
can come from infinite sources (e.g., Kafka topics) or from finite sources (e.g., a set of HDFS
files). A stream is then separated into multiple partitions to make its manipulation more
scalable: Each partition is, therefore, an ordered sequence of records. When a message is
written to the stream, it is stored in one of its partitions and identified by a specific offset.
Samza allows to adopt various systems to realize stream abstraction; for example, a topic
coming from Kafka or even a sequence of updates to the tables of a database. A job is
code that consumes a set of input streams. To make the system throughput as scalable as
possible, jobs are separated into smaller units called tasks.

Samza provides scalability to applications by logically dividing them into multiple
tasks: A task is the logical unit of parallelism of the application. Each task manipulates data
from one or more partitions for each input stream. Since there is no specific order between
partitions, tasks can operate on them independently of each other. In the event that a task
is running on a failed machine, it is restarted on another machine, always processing the
same partition. Since there is no order among the messages belonging to various partitions,
the tasks can process entirely independent of each other without having to share state.

Just as a task is the logical unit of parallelism of the application, a container is its
physical unit: Each worker can be thought of as a JVM that executes one or more tasks.
An application that makes use of Samza typically has multiple containers distributed
among the various hosts. Each application also includes a Coordinator that manages the
assignment of tasks between the various containers. The coordinator also monitors the
life cycle of each container and redistributes the tasks among the remaining ones in case
of failure. The coordinator itself is pluggable, making Samza able to support various
deployment solutions.

4.2. Samza APIs

Samza provides two different APIs that can be exploited to build applications: High-
level or low-level APIs. In both cases it is possible to describe the application logic in
its entirety, with the only difference that with high-level APIs the application processes
message streams, while with low-level APIs single messages are the processing unit.
Each Samza task receives data from an input stream (possibly split in more than one
partition), process such data, and emits results to an output stream (in turn, possibly split
in multiple partitions).

When using high-level APIs, the stream processing application is represented as a Direc-
tional Acyclic Graph (DAG) operating on streams (each implementing the MessageStream
<M> interface, where M is the type of message contained in the stream). To create an applica-
tion using high-level APIs, the StreamApplication interface has to be implemented, by
specifying the describe() method, where the (input and output) streams are described,
together with the operations to be performed on each message of type M.

On the other hand, the use of low-level APIs allows to specify operations on a single
message in an object representing a real task (logical unit of parallelism). For this, it is
sufficient to implement the TaskApplication interface, again by specifying the describe()
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method, to indicate that each message will be processed by another object, implementing
either the StreamTask or the AsyncStreamTask interfaces, representing, respectively, syn-
chronous and asynchronous tasks. To implement such interfaces, one needs to specify the
process(M) method, describing how the message M has to be processed (the asynchronous
interface also requires a callback argument, which is a function that will be invoked when
processing of a message is terminated). The advantages of asynchronous communication
are clear: Each task in the graph is allowed to process data at its convenience, while
synchronous communication is necessary, for example, when a timely response is needed.

4.3. Samza and Kafka

The close connection between Samza and Kafka may seem restrictive; however, it
gives the system some unique characteristics, not commonly found in others systems for
stream processing, somehow mirroring the way MapReduce relies on HDFS. For example,
Kafka already provides replicated data storage and can be accessed with low latency.
Furthermore, it is also possible to store intermediate results thanks to Kafka and then
process them in downstream states. The strong relationship between Samza and Kafka
allows the processing steps to be loosely coupled with each other. An arbitrary number
of subscribers can be added to the output for each step without affecting the processing
of the other subscribers. This can be very useful for organizations when multiple teams
need to access similar data: Teams can become subscribers to topics created by other
teams without causing stress on the system infrastructure. Writing directly to Kafka also
eliminates back-pressure problems, i.e., when the load peaks of a data flow are greater
than the components’ ability to process in real-time, thus potentially introducing stalls and
data losses. Being designed to keep data for certain periods of time, thanks to Kafka the
components can process it according to their abilities and start over without causing loss
of results. As a result, Samza is a good choice for stream processing and, furthermore, it
greatly simplifies stream processing by offering low latency performance.

5. The New RAM3S

In this Section we show how RAM3S has been extended to encompass (i) the use of
different message brokers and (ii) the Apache Samza streaming platform.

5.1. Generalizing the Message Broker

The first extension needed for RAM3S is the ability to specify the message broker
used to read the input stream and to write the output stream: The original version of
RAM3S was hard-coded to use RabbitMQ. Decoupling RAM3S from the message broker
avoids binding the underlying frameworks to a specific choice of message broker, so that a
factory (MessageBrokerFactory) can be used to obtain a particular message broker that
will be automatically used by the frameworks that manage the stream processing. For this,
two interfaces were added to RAM3S, so as to manage separately the input and output
streams: The Reader is directly connected to the RAM3S Receiver while the Writer is used
to store results obtained from the analyze() method of the Analyzer (the output of the
Analyzer::analyze() method has also been modified to return a MM object instance rather
than a boolean value). Figure 3 displays an UML diagram of the main interfaces created
in RAM3S. The Receiver (respectively, the Analyzer) uses the MessageBrokerFactory to
obtain a Reader to read MMObjects from (resp., a Writer to write results to).
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«interface»
Writer

+ setup(String[]): void
+ start(): void
+ stop(): void
+ write(byte[]): void

«interface»
Reader

+ setup(String[], String): void
+ start(): void
+ stop(): void
+ read(): List<byte[]>

«interface»
Receiver

+ read(byte[]): MMObject

«interface»
Analyzer

+ analyze(MMObject): byte[]

«interface»
MessageBrokerFactory

+ createReader()
+ createWriter()

Figure 3. UML diagram of the main RAM3S interfaces.

Four methods were included in the Reader (resp. Writer) interface:

• The constructor offers the possibility to configure the message broker through an
array of strings, typically obtained from the Receiver (the Writer constructor has an
additional parameter to possibly specify a name for the output stream).

• The start() and stop() methods are included in case a specific message broker,
implementing the interface, requires some startup/shutdown operation.

• The read() (resp. write()) method reads (resp. writes) a byte array from/to the stream.

The use of a specific message broker only requires to exploit the particular Message
BrokerFactory interface provided by RAM3S, so as to obtain the Reader/Writer objects
for the chosen message broker (see Figure 4 for the case of Kafka).

«interface»
MessageBrokerFactory

+ createReader()
+ createWriter()

KafkaFactory

+ createReader()
+ createWriter()

«interface»
Reader

+ setup(String[], String): void
+ start(): void
+ stop(): void
+ read(): List<byte[]>

«interface»
Writer

+ setup(String[]): void
+ start(): void
+ stop(): void
+ write(byte[]): void

KafkaReader

+ setup(String[], String): void
+ start(): void
+ stop(): void
+ read(): List<byte[]>

KafkaWriter

+ setup(String[]): void
+ start(): void
+ stop(): void
+ write(byte[]): void

«create»

«create»

Figure 4. UML diagram of the message broker factory for the Kafka case.

The creation of a particular application is obtained by implementing the Application
Factory interface to produce the specific Receiver/Analyzer objects. In the Receiver,
the read() method specifies how a sequence of bytes can be used to create a particular
MMObject, while the analyze() method of the Analyzer performs the analysis of a single
MMObject, producing the result in form of a sequence of bytes that can be written on the
Writer. Figure 5 shows the UML diagram for the face recognition application.
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«interface»
ApplicationFactory

+ createReceiver()
+ createAnalyzer()

FaceFactory

+ createReceiver()
+ createAnalyzer()

FaceReceiver

+ read(byte[]): MMObject

FaceAnalyzer

+ analyze(MMObject): byte[]

«create»

«create»

«interface»
Receiver

+ read(byte[]): MMObject

«interface»
Analyzer

+ analyze(MMObject): byte[]

Figure 5. UML diagram of the application factory for the face recognition case.

By introducing the Reader and Writer abstractions, we also allow the new version of
RAM3S to be recursively cascaded so as to perform more complex operations on the input
stream. Suppose that the first operation performed on the input MM stream produces
a new stream of MM objects; this output stream could be redirected as input to another
RAM3S instance, analyzing such an MM stream to produce the result: For example, the
first input stream could be a stream of documents that are first analyzed to extract images
they contain. Such images are then fed (as a new MM stream) to a second RAM3S instance
that performs some, say, classification task. This was clearly not possible with the original
RAM3S, where all computations were relegated on a single node (where the analyze()
method was run).

As another example, consider the use case originally presented in RAM3S, concerning
the recognition of known faces from incoming videos for security purposes (see also
Section 1.1). In this case, for each image in the incoming stream, the RAM3S Analyzer
should (i) check whether it contains at least a face and (ii) compare all faces in the image to
the “known” ones. As also acknowledged in [2], the first task is the most computationally
expensive, mostly because, in the considered domain, detection should be particularly
accurate so as to avoid the mis-detection of a face. Moreover, while some images may not
contain any face, other ones might contain many of them, thus making the recognition task
very unbalanced (some images can produce a high latency, while others are processed very
quickly). Splitting the two tasks of face detection and face recognition into two cascaded
RAM3S instances (see Figure 6) could bring two advantages:

1. First, the second task of face recognition could be better parallelized in the second
RAM3S instance, since every Analyzer only has to process a single image, thus the
overall latency is likely to be reduced;

2. Second, the two instances could be run on different processing nodes, so that a larger
number of nodes (or nodes with higher processing power) could be allocated for the
most time-requesting task of face detection.

Face 
Detection

AnalyzerReceiver

Face 
Recognition

AnalyzerReceiver

Alert 
Generation

Knowledge 
Base

R
e
a
d
e
r

W
r
i
t
e
r

R
e
a
d
e
r

W
r
i
t
e
r

Figure 6. Cascading two RAM3S instances.
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Currently, the communication model of RAM3S components is the Point-to-Point
model, thus each Writer can only be connected to a single Reader. This prevents to use
the output of a single RAM3S instance to feed multiple RAM3S instances, because each
result would only be processed by one of them only. Therefore, the topology of RAM3S
instances can only take the form of a pipeline, instead of a more general Directed Acyclic
Graph (DAG). As a further extension of RAM3S (which we are already considering),
the Writer/Reader communication protocol could be modified into a Publish/Subscribe
model, thus allowing DAG topologies of RAM3S instances.

5.2. Adding Samza

In order to include Samza to the set of stream processing frameworks supported
by RAM3S, we then need to specify how to exploit objects implementing the RAM3S
Receiver and Analyzer interfaces. Thanks to the generality of the Samza APIs, it is quite
straightforward to build a Samza custom stream using the RAM3S Receiver. As to the
Analyzer, this can be directly mapped to the TaskApplication Samza object. Due to the
compatibility with other frameworks, in RAM3S we decided to exploit the synchronous
StreamTask Samza interface, whose process() operation corresponds to the analyze()
method in the RAM3S Analyzer. Figure 7 shows the UML diagram of classes involved in
the creation of a RAM3S application with Samza. In details, the SamzaApplication class
uses the ApplicationFactory to obtain the Receiver and the Analyzer specific for the
application at hand, then obtains the Reader and the Writer (not shown in the diagram)
from the MessageBrokerFactory. Finally, a SamzaTaskApplication is created that uses
a SamzaStreamTask, invoking the analyze() method to process a single message (i.e., a
MMObject). We note here that several other service classes and methods (not shown in the
diagrams) were required to adapt RAM3S to the Samza APIs. We deliberately chose to hide
such intricacies to only characterize elements that are of interest for the developer of MM
stream analysis applications, because she needs to write code to interface with them.

«interface»
ApplicationFactory

+ createReceiver()
+ createAnalyzer()

SamzaApplication

+ main(String[]): void

«interface»
Receiver

+ read(byte[]): MMObject

«interface»
Analyzer

+ analyze(MMObject): byte[]

SamzaTaskApplication

+ describe(TaskApplicationDescriptor): void

Samza

«interface»
TaskApplication

+ describe(TaskApplicationDescriptor): void

«interface»
StreamTask

+ process()

SamzaStreamTask

+ process()

«interface»
MessageBrokerFactory

+ createReader()
+ createWriter()

Figure 7. UML diagram of the Samza version of a RAM3S application.

The interaction of the different RAM3S objects involved in the processing of a mes-
sage/MMObject is shown in Figure 8 as a UML sequence diagram. Upon invocation of the
process() method, the SamzaStreamTask requests the Receiver to read the next message;
this is performed by the Reader whose result is used to create a new MMObject. The just
created object is then sent to the Analyzer and the result of the analyze() method is finally
written on the Writer.
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:SamzaStreamTask

process

:ConcreteReceiver

read

obj: 
ConcreteMMObject

create

:ConcreteReader

read

List<byte[]>

:ConcreteAnalyzer

write

byte[]

:ConcreteWriter

return

obj

analyze(obj)

Figure 8. UML sequence diagram showing the interaction between objects during the processing of
a message in the Samza version of a RAM3S application.

6. Experimental Results

The experimental results we present in this section were collected in the datalab,
(http://www-db.disi.unibo.it/research/datalab, accessed on 3 December 2021) a research
lab equipped with a computer cluster using BigData platforms, such as Hadoop, Spark,
Storm, Flink, and Samza. Research at datalab focuses on tackling problems that cannot
solved by means of traditional techniques, due to the inherent nature of data or to the
architecture of the system at hand.

The computing cluster hosted at datalab is composed of 16 PCs with an Intel Core
2 Duo, 2.80 GHz CPU, and 4 GB of RAM, connected with a 100 Mbit/s Ethernet network.
An additional identical machine was designated as the master. Finally, an external machine
hosts the message broker, which is used to handle input/output streams. Figure 9 depicts
the computing environment in our datalab.

message broker

Flink job manager
Storm spout
Spark receiver
Samza coordinator

Flink task workers – Storm bolts – Spark workers – Samza containers

100 Mbit/s

Figure 9. The datalab computing environment.

6.1. Message Brokers Comparison

To evaluate the performance of message brokers, we performed an experiment to test
the processing speed of the brokers, rather than their sending speed, i.e., we compared
the speed at which they write and receive a message on and from a topic (in the case
of Kafka) or a queue (for RabbitMQ); for ActiveMQ, we considered both its queue and
topic modalities. For each message, size and timestamp have been saved upon sending
and receiving.

http://www-db.disi.unibo.it/research/datalab
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The experiment aims at comparing throughput of the three message brokers when
feeding messages with constant size. Table 1 reports the processing speed of RabbitMQ,
ActiveMQ (in both the topic and the queue modalities), and Kafka, when feeding messages
of constant size to a RAM3S Receiver (in this case, the Analyzer is empty in order to
avoid delaying the message reception). All message brokers exhibit similar performance,
with ActiveMQ (in the topic modality) achieving the best result for small messages and
RabbitMQ being the winner for larger message sizes. Kafka appears to be a valuable
alternative, obtaining good performance in both considered scenarios. For this reason, in
the following experiments we will only use Kafka as message broker.

Table 1. Performance comparison between the three considered message brokers: Message size 1 KB
(a) and 1 MB (b).

(a) (b)

Message Broker Throughput (MB/s) Throughput (MB/s)

RabbitMQ 38.9 44.2
ActiveMQ (queue) 37.5 40.5
ActiveMQ (topic) 43.5 43.5

Kafka 42.8 41.1

6.2. Use Cases

In this section, we describe experiments we performed on the different multimedia
applications implemented on top of RAM3S. In all considered use cases, the input multime-
dia data stream is a video, which is first segmented into individual images, that are then
fed to the message broker.

6.2.1. Face Recognition

The first experiment we report considers the use case of face recognition described
in Section 1.1: Our real dataset consists of the YouTube Faces Dataset (YTFD) [15], in-
cluding 3425 videos of 1595 different people, with videos having different resolutions
(480 × 360 pixels is the most common size) and a total of 621,126 frames containing at least
a face (on average, 181.3 frames/video). The average dimension for an image is 22.3 KB.
Results are included in Table 2. As in following experiments, the table reports (for each
framework) the obtained throughput with 16 workers in terms of images/MB processed
per second.

Table 2. Performance comparison between the four considered frameworks for the face recognition
use case.

Framework Throughput (Images/s) Throughput (KB/s)

Spark 8.1 170.1
Storm 17.2 361.2
Flink 37.7 791.7

Samza 11.4 239.4

6.2.2. Printed Text Recognition in Videos

The objective of this application, which extracts printed text within video streams,
is twofold:

1. Identifying “critical” videos by analyzing and automatically interpreting the streams
of a significant data sample; and

2. Defining new useful services in the context of monitoring proselytizing phenomena by
terrorist groups (this is of utter importance, for example, according to the Christchurch
Call to Action (https://www.christchurchcall.com/, accessed on 3 December 2021)).

https://www.christchurchcall.com/
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In this case, key frames were extracted from a dataset of about 100 YouTube videos
dealing with terrorism and proselytism. A pre-filtering is performed in the Receiver to
eliminate superfluous frames, maintaining only those in which true information is present.
This was obtained with a frame-to-frame analysis, eliminating frames that are too similar
to each other. The summarization process exploits the functionalities of the SHIATSU
video retrieval tools [16]. When the summary has been obtained, retained images are fed
to Analyzers which analyze them by:

1. Filtering each image to segment text and logos/symbols from the background;
2. Performing OCR by using the Tesseract library, (https://github.com/tesseract-ocr,

accessed on 3 December 2021) and/or extracting logos by using the OpenIMAJ library
(http://openimaj.org/, accessed on 3 December 2021);

3. Once the text detection phase is over, extracted text and logos are compared with
those included in the knowledge base, so as to recognize the ones that have to be
considered critical.

Table 3 reports experiments performed using this specific use case (average image
size is about 61 kB).

Table 3. Performance comparison between the four considered frameworks for the text recognition
use case.

Framework Throughput (Images/s) Throughput (KB/s)

Spark 6.5 396.5
Storm 7.2 439.2
Flink 5.4 329.4

Samza 7.4 451.4

6.2.3. Plate Recognition

Automatic license plate recognition (ALPR) concerns the identification of vehicle
license plate from an image or video [17]. Applications of ALPR range from electronic toll
collection on pay-per-use roads to speed limit enforcement and traffic control.

To identify a plate in a given image we:

1. Perform plate localization to discover the plate in the image;
2. (Possibly) rotate the image to correct the possible skewing of the plate;
3. Segment characters within the plate to detect them;
4. Recognize the extracted characters using Optical Character Recognition (OCR) techniques;
5. If the recognized plate is included in the knowledge base of “known” plates, the

alarm is raised.

Examples of plate recognition are shown in Figure 10.
In our implementation, we exploited the open source C++ library OpenALPR,

(http://www.openalpr.com/, accessed on 3 December 2021) that uses OpenCV (https:
//opencv.org/, accessed on 3 December 2021) for image processing and Tesseract for
OCR. Experiments were performed on the OpenALPR benchmark, (https://github.com/
openalpr/benchmarks/tree/master/endtoend/, accessed on 3 December 2021) including
pictures of cars taken under different light conditions with resolution ranging between
640 × 480, 800 × 600, and 1792 × 1312 pixels.

Table 4 reports experiments performed using this specific use case (average image
size is about 340 kB). In this case, an additional test was performed to stress the network,
feeding images with size of about 1 MB.

https://github.com/tesseract-ocr
http://openimaj.org/
http://www.openalpr.com/
https://opencv.org/
https://opencv.org/
https://github.com/openalpr/benchmarks/tree/master/endtoend/
https://github.com/openalpr/benchmarks/tree/master/endtoend/
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(a) (b)

Figure 10. Plate recognition use case: known (a) and unknown (b) plate.

Table 4. Performance comparison between the four considered frameworks for the plate recognition
use case: normal image size (a) and large image size (b).

Framework Throughput (Images/s) Throughput (KB/s)

Spark 18.0 6120
Storm 17.3 5882
Flink 15.4 5236

Samza 18.4 6256

(a)

Framework Throughput (Images/s) Throughput (KB/s)

Spark 5.2 5183
Storm 5.2 5234
Flink 7.4 7412

Samza 6.2 6231

(b)

6.3. RAM3S vs. Samza

Our final experiments aim to compare RAM3S with Samza. Indeed, the simplified
interface offered by Samza to the developer (with respect to those of the other considered
frameworks) make it a competitor of RAM3S, when it comes to consider abstracting the
developer from the details of the underlying stream processing platform. It is thus desirable
to compare the performance of RAM3S and Samza both in ease of use and in throughput.

In the first experiment, we compare the number of code lines required to implement
the face recognition use case (see Section 1.1) when using the different considered frame-
works. As results in Table 5 show, Samza is very effective in reducing the developer
burden, requiring the minimum number of code lines. However, this result is only valid
when Samza is used in connection with the Kafka message broker: When using a custom
connector, to abstract from the used message broker, the performance of Samza is the worst
one. On the other hand, RAM3S is the second best, but is already independent of the used
message broker, thus representing the most effective general framework.
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Table 5. Ease of use in implementing the face recognition use case over the considered frameworks.

Framework Lines of Code

Spark ∼170
Storm ∼150
Flink ∼200

Samza (Kafka) ∼50
Samza (custom connector) ∼250

RAM3S ∼120

In the second experiment, we compared the throughput of using Samza alone or
within RAM3S, again for the face recognition use case. As reported in Section 1.1, the
throughput obtained when using RAM3S on top of Samza is about 240 KB/s. The use of
Samza alone using the custom connector allows to reach the throughput of about 280 KB/s,
with a 15% improvement, while using a Kafka connector we obtain a further speed increase,
reaching 320 KB/s, with a 35% improvement over the original case.

The lesson we learned from this last experiment was twofold:

1. The introduction of a custom connector to manage the input stream is slowing down
the overall system;

2. The tight coupling between Samza and Kafka results in high performance (see
Section 4.3).

The system slowdown is clearly caused by this overlapping of levels: This is inevitable
if we want to achieve generality in using any stream processing framework coupled with
any message broker.

7. Conclusions

The first result obtained by RAM3S is the simplified implementation of complex
multimedia stream analysis applications, by resulting in a reduction in code lines one
has to write to run them in a distributed computing environment. This clearly helps
developers in quickly scale out their multimedia stream data mining applications which
were originally conceived for a non-distributed scenario. This benefits an easier extraction
of value and knowledge from massive multimedia data streams.

A second advantage is the independence of the implementation from the underlying
exploited Big Data platform, since RAM3S can indifferently run on top of Spark, Storm,
Flink, or Samza, and the decision can be performed at runtime. This allows, for example, to
devise which, of the four platforms, is the most suitable for the scenario at hand, considering
both the characteristics of available hardware and the requirements of the online application
(e.g., limited latency, scalability, high throughput). Indeed, as recently acknowledged [18],
the benchmarking of stream engines has become quite a battleground, as contrasting results
from Spark [19] and Flink [20] have been published. Quoting from [18]:

“It is better not to believe benchmarking these days because even a small tweaking can
completely change the numbers. Nothing is better than trying and testing ourselves
before deciding.”

However, implementing even a simple application on top of different stream process-
ing platforms could be quite hard, since the developer has to deal with details specific
to each framework. Here, the generality and wide applicability of RAM3S are of imme-
diate help, since the same code could be executed on top of any of the four included
streaming platforms. A relevant step in this direction is being pursued by Google, whose
Apache Beam platform (https://beam.apache.org/, accessed on 3 December 2021) has
the goal of writing stream (and also batch) processing applications independent of the
underlying engine (called runner), so that the resulting code could be executed on any
of the supported runners (which also include the proprietary Google Cloud Dataflow
(https://cloud.google.com/dataflow/, accessed on 3 December 2021) [21].

https://beam.apache.org/
https://cloud.google.com/dataflow/
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To conclude, we would like to point out that, since the scenario of stream processing
platforms is evolving at a breathtaking speed (an example is the short life of Apache
Apex (https://apex.apache.org/, accessed on 3 December 2021)), we plan to continue in
metamorphosing RAM3S, e.g., to include other streaming engines. For example, we are
considering including Apache Kafka not only as a message broker, rather as a first class
citizen of the streaming world, thanks to its Kafka Streams API. A further direction for
future work is the deployment modality of underlying platforms: At the moment every
streaming engine is deployed in stand-alone mode, while including a resource manager
such as Apache Hadoop Yet Another Resource Negotiator (YARN) could automatically
add fault-tolerance and resource balancing to the overall architecture. Finally, a further
extension of the Reader and Writer classes would allow to connect more than a Reader to
any Writer (and vice versa) so that the whole multimedia stream processing architecture
can assume the form of a Directed Acyclic Graph.
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