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Abstract: The emergence of new technologies and the era of IoT which will be based on compute-
intensive applications. These applications will increase the traffic volume of today’s network infras-
tructure and will impact more on emerging Fifth Generation (5G) system. Research is going in many
details, such as how to provide automation in managing and configuring data analysis tasks over
cloud and edges, and to achieve minimum latency and bandwidth consumption with optimizing
task allocation. The major challenge for researchers is to push the artificial intelligence to the edge to
fully discover the potential of the fog computing paradigm. There are existing intelligence-based
fog computing frameworks for IoT based applications, but research on Edge-Artificial Intelligence
(Edge-AI) is still in its initial stage. Therefore, we chose to focus on data analytics and offloading
in our proposed architecture. To address these problems, we have proposed a prototype of our
architecture, which is a multi-layered architecture for data analysis between cloud and fog computing
layers to perform latency- sensitive analysis with low latency. The main goal of this research is to
use this multi-layer fog computing platform for enhancement of data analysis system based on IoT
devices in real-time. Our research based on the policy of the OpenFog Consortium which will offer
the good outcomes, but also surveillance and data analysis functionalities. We presented through
case studies that our proposed prototype architecture outperformed the cloud-only environment in
delay-time, network usage, and energy consumption.

Keywords: IoT; data analysis; offloading; edge computing; fog computing

1. Introduction

Recently, with the advent of high-performance and high-spec IoT devices, SNS data,
e-mail, Internet stream data, multimedia data, etc. are collected and large-capacity trans-
mission is possible. Big data refers to the large amounts of un-formalized, semi-formalized
or formalized data that flows continuously through and around organizations [1]. Big
data analysis provides the advantage of reducing costs when storing huge data while
performing various analyzes in various and efficient ways [2]. The emerging 5G networks
intend to accomplish new opportunities by introducing very high carrier frequencies. The
cloud as the only solution for addressing these problems is not applicable in this random
nature of internet. The Big data may be generated from different resources such as e-
Healthcare, smart city, etc. Data mining and data analysis are a core methodology that
assists investigate huge data to explore patterns, meaningful information in the data set
and this information can be used for another analysis to help answer complex questions.
In the form of wireless wearable accessories which are attached to a patient for retrieving
the information and then analyzing of data performed [3]. That is the challenge to tackle
these issues through coordinating these resources which will provide effective utilization
of handling massive amount of distributed data. The fog computing nodes usually do not
have enough storage and computing resources for dealing with that huge IoT data. The
design uses local computing nodes, between the end points (e.g., sensors, cameras, etc.)
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and the cloud data center. Early big data applications were mostly deployed on-premises,
whereas Hadoop was originally designed to work on clusters of small machines and edges.
An increasing number of technologies such as CPI, storage, and networks facilitate process-
ing data in the fog-cloud. For example, Cloudera [4] and Hortonworks [5] provide their
distributions of the big data framework on the Amazon Web Services [6] and Microsoft
Azure [7] clouds.

In [8] research, they presented a health-care system to support autonomic analysis of
Medical IoT data. A Medical IoT-enabled health care system [9] in which smart gateways
used to provide warehouse and data processing. A prototype of smart-city surveillance
was developed [10], which pre-process the necessary data and make decision. The machine
and deep learning have been widely used in various fields, the use of machine and deep
learning in health-care is discussed in [11] to high accurate predicting and classifying the
data. In [12] a fog based IoT health-care system is proposed for the integration of cloud-
services in interoperable health-care solutions upon traditional health-care framework.

The main motivation of this paper is to use this multi-layer fog computing platform
for enhancement of data analysis system based on IoT devices in real-time, as the current
scenario of whole world due to COVID-19 has highlighted the importance of data and anal-
ysis system to avoid these circumstances in future with proper planning and management.
We will suggest a multi-layered framework which many IoT devices will be used and
connected to edge-fog gateways in collaborative manner to gather the optimal data needed.
Through this study, we performed comparative experiments on delay time, network usage,
and energy consumption when computing-intensive IoT applications are performed in
cloud-only environments and in our framework, multi-layered fog architectures.

The remainder of this article is organized as follows. In the next Section 2 provides a
background and related work, which follows by the Section 3 provide the system overview
of our idea, a fog computing real-time data analytics platform in detail. The Section 4
provide the use case and evaluation based on the performance and then the last section
provides the conclusion and future directions.

2. Background and Related Work

The big-data analysis framework has capabilities to integrate, storage, pre-processing,
manage, and apply sophisticated computational processing to the big data. There are
platforms for big data in which Hadoop [13] is the basic and popular to provide a unified
storage and processing environment for highly scalable data volumes. In IoT based
edge computing environment, the volume and variety of data can cause consistency
and processing issues, and data silos can result from the use of different platforms and data
stored in a big data architecture. Big data analytics describes the process of performing
sophisticated analytical tasks on data that typically includes grouping, aggregation, or
iterative processes [2]. The raw data is generally unformalized that neither has a pre-
defined data model nor is organized in a pre-defined manner. A ETL (Extract, Load and
Transform) process extracts data from multiple sources, then transforms and loads it into a
data storage for analysis [14].

2.1. Backgrounds

OpenFog Consortium (OpenFog) was released as an industrial alliance [15], which
main goals was to accelerate the adoption and the deployment of fog computing, while
addressing the main issues posed by this new paradigm. The consortium has published the
architecture of an open fog computing system [16]. This provides a high-level framework of
the fog node computing, their communications and management and will help drive stan-
dardization across the various layers and interfaces specified by the consortium. Ref. [17]
was to implement a distributed and concurrent offloading framework, DisCO. A DisCO is
to offload the computation-intensive or data-intensive division of the IoT application exe-
cuted or collected on the edge device to the resourceful edge server with high computing
resources and processing capacity in real time and then returned the results of executing.
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A research contents to achieve profiling IoT applications in edge devices and migrating or
transferring offload units with overhead to edge servers and concurrently executing them
and returning results. Additionally, Ref. [17] designed a security mechanism technology
to solve security issues that may occur when offloading a part of IoT application to edge
server or exchanging data for simultaneous processing between mobile edge servers. A [18]
introduced an intelligent edge-to-edge and edge-to-fog collaborative computing platform
that enables collaborative processing in an edge-fog environment through elasticity and
verify functionalities.

2.2. Related Works

The fog computing has special features which make it more appropriate for the
applications necessary low latency, mobility, interactions, real-time analytics, and interplay
with the cloud computing [19]. Less time-consume data analysis task can still go to
the cloud for long-term storage and historical analysis. The various analysis techniques
are addressed in [20]. In [21], the problem of minimizing time-delay was proposed as
a delay-minimizing policy in which an analytical model was implemented to estimate
delay time. Ref. [22] proposed an data analysis framework based on the fog computing
for big data analytics in smart cities which is hierarchical, scalable, and distributed, and
supports the integration of a massive number of things and services. The framework was
consisting of four multi-layers. The FogGIS framework based on the fog computing was
proposed for mining analytics from geospatial data. FogGIS had been used for preliminary
analysis including compression and the transmission time to the cloud had been minimized
by compression. Especially in healthcare it is becoming more attractive to deploy fog
computing as structures introduce tightly connected to various medical devices into their
health IT ecosystem.

3. Multi-Layered Architecture Overview

In our works we have presented a platform, which is a multi-layered architecture for
data analytics of data come from smart IoT-based devices such as intelligent CCTVs. The
tri-tiers consists of cloud computing, edge-fog computing and sensors which work together
with one another. As we know that fog computing is mainly a virtualization technology
that offers storage and computing between end devices and cloud layer. The schematic
overview of our architecture is shown in Figure 1.

The first physical layer composes of a set of IoT devices and variable sensors. The
core job of the sensors is to collect all data and send to edge-fog gateways via offload-
ing. Then the second tier, which will be consists of edge gateways and edge-fog servers.
When data arrives at edge gateways, the data needs to be filter-out, pre-processing, for
further processing. In this process, 30–70% of meaningless data to data analytics is deleted.
Through this, it is possible to reduce the data transmission burden and increase the data
analysis processing speed. This tier work as a server. The amount of data arrives at edge
servers then distributed among the various edge devices according to the computation
requirements of the data for reducing the latency in real-time scenario. The offloading of
requests works must be carried out using a proposed efficient task-scheduling algorithm.

3.1. Fog Layer Module

The Fog layer module components share the same concept with the OpenFog archi-
tecture, although the Edge devices behavior in the framework is a different way. Fog
computing facilitates preprocessing data before they even reach the cloud, minimizing
the communication time, as well as reducing the need for huge volume data storage via
filtering. Generally, it is a suitable approach for the applications and services with the IoT.
Our approach is concerned tightly with fog computing architecture. The edge devices are
working in autonomous manner; therefore, every Fog Node (FN) which is comprise of
edge servers and edge devices in the Fog layer is managing a set of computational tasks. In
our architecture, we have introduced the data analytics and offloading module for the fol-
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lowing tasks to perform such as; (i) the data generated from IoT devices gathered/collected
for analysis if required and (ii) the task resources exceed from the given edge server then
it will perform the offloading to other edge server in the premises or to the cloud. The
task allocation and offloading are the important actions during the data analysis process
because the completion of processes depends on it.
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The fog module is based on [23] which will provide data analysis methods and the
capabilities for IoT devices to communicate and collaborate with the cloud layer and the
devices in the fog layer. It provides facilities for transferring fog side data to cloud and
interacting with the cloud as well as a gateway. A gateway enables end-devices that are not
directly connected to the internet to reach cloud services. Although the term gateway has a
specific networking-oriented function, it is also used to describe a group of end-device that
management and processes data on behalf of clustering of devices. Now, we will address
our data analysis module in next sub-section for detail discussion.

3.2. Data Analysis in Fog Module

In Figure 2 shows data analytics processing close to the data source using Fog Module
before the data volume and sizes are increase exponentially. In-stream data is locally
analyzed in the Fog Module while data of the Fog Module is collected and transferred to
the cloud side for offline data analytics and processes. The data analytics modules deployed
in Fog Modules are periodically updated based on the policies decided and communicated
by the cloud analytics. As the raw data are preprocessed, filtered, and cleaned in the Fog-
module prior to offloading to the cloud modules, the amount and size of offloading data is
smaller than the data generated by IoT devices. In addition, the analytics on Fog-module is
real-time while the analytics on the cloud is offline. Fog-module has restricted computing
and storage power compared with the cloud side, however, processing and management
on the cloud side requires more latency time. The Fog module offers a high level of fault
tolerance as the tasks can be transferred to the other Fog Modules in the vicinity in the
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event of a failure. With the appearance of the resourceful IoT which enables real-time, high
data-rate applications, moving analytics to the source of the data and enabling real-time
processing seems a better approach. In future, Fog-module may adopt many different
types of hardware components such as multi-core processor, GPU with fine granularity
versus a cluster of similar nodes in the cloud.
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3.3. Offloading in Fog Module

In recent times, study shows that fog-edge computing technology provides an op-
portunity to overcome the limitation of hardware for the end user devices by offloading
the computational-intensive tasks to the rich edge servers for execution. The execution
in the edge servers follows the requirement of the task and provide the final results to
the end devices. The fog computing paradigm brings both computational and network
resources closer to the user. In this paper, we will keep a watchful eye on the fairness
among the network nodes to which the offloading tasks are offloaded. A task offloading
network architecture with multiple fog nodes is deployed in fog module. The performance
factor will include the delay of each fog node. We will propose an offloading scheme with
keeping in mind the selection of fog nodes according to the task scheduling metrics and
then offload the task to the fog nodes which require minimum delay in performing the task.

Whenever a computing task is generated at the terminal node, a number of fog nodes
are selected according to the performance requirements and the characteristics of these
nearby fog nodes. Rather than computing the task locally, the task is divided into multiple
subtasks and offloaded to these selected fog nodes for computing. The computing results
are transmitted back to the terminal node afterwards. It is obvious that the nearest fog
nodes with strongest computing capability will be selected when pursuing the minimum
task delay and best performance.

In Figure 3, We show the process of offloading the information collected in IoT de-
vices [17] based on our research.
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3.4. Cloud Layer

The cloud computing is the basic architecture of improving the computation of task
in the IoT environment such as, Amazon AWS, Microsoft Azure IoT and so on. The fog
computing is an extended form of cloud computing to provide the resources nearer the
end user, therefore cloud cannot be excluded from the architecture. In this paper, the cloud
plays the same role of providing the centralized data analytics and storage of data for
future processing. However, our focus will be to less utilize the cloud in the computation
of task, which can cause delay in performing the tasks. The tasks which require the
more computation resources should be offloaded otherwise, the cloud act as a centralized
storage. The cloud placement policy is based on the classical cloud-based implementation
of applications where all units of an application execute in cloud data centers. The sensing,
processing, and actuate loop in applications are executed by having sensors transmitting
sensed data to the cloud side where it is processed, and actuators are notified whether
action is required.

The cloud layer will be mainly responsible for complicated, resource consuming
tasks and updates of rules for detection on the fog layer. Data collection phase is the
prime aspects of these solutions, which sets the communication protocols between the
components of an IoT software platform. The global data analysis and overall resource
monitoring. Cloud gives an approved model of pay-as-you-go once Fog Module will be a
attribute of the user. Depending on the IoT application, in the case of a limited access to
power, fog core may be battery-powered and needs to be energy efficient while the cloud is
supported with a constant source of power.

4. Application and Verification

We have discussed the application and how that can be validate with required per-
formance metrics of our proposed model. Our proposed architecture is a multi-layered
model in Figure 1. The physical layer belongs to the IoT based sensors and actuators or
other devices. The gathered data from the end devices will be transmitted to fog layer
for processing and analyzing of the tasks. The primary objective is to perform the data
analysis without compromising the latency issue. For the purpose of data analytics in IoT
based environment the fog computing is the best solution. The offloading of task can be
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assigned within the edge devices and if it cannot be performed, then in that case it will be
assign to cloud layer. However, the main responsibility of cloud layer is to perform the
management and storage of data for further analysis and monitoring of the system. For
the purpose of comparing the results of our platform versus traditional fog computing
platforms, we will use iFogSim toolkit to simulate the systems. The iFogSim [23] is a
tool used for simulation of specified configurations and give the outputs, which makes
convenient to observe end results. We will analyze the latency, computation overhead
of our platform to show the impact of our platform. The proposed platform will benefit
from both the cloud computing and fog computing. Our proposed ideas will be helpful in
the field of IoT based applications and we will try to use the surveillance through camera
networks as a case study for our project.

4.1. Camera Surveillance

The camera surveillance system has acquired much attention in recent years. The
interdisciplinary applications in areas of safety, security, transportation, IoT, smart farm,
smart factory, and health-care domain. However, monitoring video streams from the
system of cameras manually is not practical and time-consuming works. Therefore, the
tools and applications are needed that analyze data collecting from cameras and analyze
the results in a way that is beneficial to the client. The requirements and functions of such
a system has many factors according to the environment provided. The most common
requirements are as follows: (i) low-latency communication, (ii) processing huge amount
of data, and (iii) reduce complex and heavy computing processing.

The use case studied in this paper is providing the surveillance through camera
and real-time analytics with minimum latency. The centralize tools are not desirable for
analyzing camera-generated data due to the complex and huge volume of data, which
requires the central processing system. This is the reason which leads to high latency
in the system and the bandwidth requirement increases exponentially. The surveilling
system aims at coordinate multiple cameras with different place to monitoring and surveil
a given area. The intelligent camera which detects motion and transmit the video to
surveillance application.

As shown in Figure 4, the surveillance will consist of motion detector, object tracker,
PTZ Control, and user interface in the fog module. The surveillance is fed live streams
by a lot of CCTV cameras and the PTZ control in each camera constantly control the PTZ
attributes. In the sensor layer, a motion detection is implemented in the intelligent cameras
used in the use-case. It will continuously read the raw video streams captures by the
camera to find motion of an object. When the detection of motion event occurs in the
camera’s FOV, then it transmitted to next step processing for the object tracker. In the object
tracking mode, the evaluated coordinates of the tracked objects and evaluated an optimal
PTZ configuration of all the cameras covering the area so that the objects tracked can be
captured in the most effective manner. The PTZ control will be enable on each camera and
adjusts the physical camera to confirm to the PTZ parameters sent by the object tracker. The
methodology presents a user interface by sending a fraction of the video streams including
each tracked object to the end device.
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4.2. Verification and Estimation

In this section, we have simulated a fog computing environment for the application
use-case study using the topology of the use-case study in the Figure 5. Then, we evaluated
efficiencies, latency, and network use.
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(1) Evaluation of the case study: For presenting the flexibility of iFogSim, the surveillance
application has been used to estimated. The special surveillance sector has 4 intelligent
cameras monitoring the area. Each of the four intelligent cameras can recognize and
track objects within a 180-degree range. In addition, using 4 cameras, shooting data
collected from 8 areas within the range is used. The number of special surveillance
sector has been varied from 1 to 8. Four intelligent cameras are located at the vertex
positions of the square. One camera can recognize and track an object within a
180-degree range, and by combining four cameras, capture data can be obtained from
8 locations within the shooting range. The number of surveilled areas is varied across
physical topology configurations Config 1, Config 2, Config 3, and Config 4, having
1, 2, 4, and 8 surveilled areas, respectively. The network latencies between devices
are listed in Table 1. On the basis of the aforementioned configuration of entities, a
physical topology is designed. The topology has the cloud data center at the apex and
smart cameras at the edge of the network. Smart cameras are fed live video streams in
the form of tuples for performing motion detection and the PTZ control of the camera
has been modeled as an actuator. Similarly, the analytics performs at cloud and edge
are adopted for offloading application modules on the physical network. In case of
cloud, all operators in the application are placed on the cloud data center except the
motion detector module, which is bound to the intelligent cameras. However, in the
edge-gateway, the object detector and object tracker modules are pushed to Wi-Fi
gateways connecting the cameras in a surveilled area to the internet. The simulation
of this use-case was performed for a period of 1000 s.

Table 1. Description of Network Link for Surveillance through Camera.

Source Destination Latenc (ms)

Camera area switch 2
Area GW ISP gateway 2

ISP Gateway CLOUD DC 100

(2) Average latency of control loop: Figure 6 shows the average processing latency time
of sensing actuation control loop. In the case of cloud strategy, as shown in Figure 6,
cloud data centers turned to a bottleneck in execution of the modules, which caused a
notably important increase in latency. On the other hand, the Edge-GW succeeds in
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maintaining low latency, as it places the modules critical to the control loop close to
the network edge.
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(3) Network Usage: Figure 7 shows the network use of the intelligent surveillance appli-
cation for the placement strategies. As number of devices connected to the application
increases, the load on the network increases significantly in the case of cloud only de-
ployment in contrast with edge-GW deployment. This observation can be attributed
to the fact that in the Fog-based execution, most of the data-intensive communication
takes place through low-latency links. Hence, Object tracker is placed on the edge
devices, which substantially decrease the volume of data sent to a centralized cloud
data center.
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(4) Energy Consumption: The energy consumption is also the important aspect while
performing the offloading task. The Figure 8 demonstrates the energy consumption
by grouping of devices in the simulation. The deployment of applications on fog
devices has been compared to the deployment on the cloud data centers. The motion
detection executed by camera in the video frames, which draw out a large amount
of power. Hence, as shown in the Figure 8, when surveillance spots increase, the
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consumption of energy in these devices increases, too. The cloud data center energy
consumption decreases when the tasks perform at fog devices.
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5. Conclusions

In this article, we addressed iFogSim to model and simulate Fog computing environ-
ments. Specially, iFogSim allows investigation and comparison of resource management
techniques on the basis of QoS criteria such as latency under different workloads and
network usage. We have showed the case study of surveillance through camera networks
with the simulation results. The results related to latency, network usage and energy
consumption presented are showing the importance of the architecture proposed on the
fog computing-based methodology. In the future, we plan to supplement and implement
the collaboration method between fog computing nodes, which has not been completed
in this paper. In this process, we plan to increase the possibility of collaboration between
west-east computing nodes based on deep learning. In addition, there are many issues that
may occur in the process of information transfer between offloading and fog computing
nodes. The current experiment was conducted with laboratory-level simulations, but in
the future, experiments to overcome unpredictable situations by conducting experiments
in the real field where various variables exist are planned.
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