
applied
sciences

Article

An Analysis of the Use of Feed-Forward Sub-Modules for
Transformer-Based Image Captioning Tasks

Raymond Ian Osolo 1,2 , Zhan Yang 2,3,* and Jun Long 2,3

����������
�������

Citation: Osolo, R.I.; Yang, Z.;

Long, J. An Analysis of the Use of

Feed-Forward Sub-Modules for

Transformer-Based Image Captioning

Tasks. Appl. Sci. 2021, 11, 11635.

https://doi.org/10.3390/app

112411635

Academic Editor: Byung-Gyu Kim

Received: 13 October 2021

Accepted: 4 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Central South University, Changsha 410083, China;
osoloian@csu.edu.cn

2 Network Resources Management and Trust Evaluation Key Laboratory of Hunan Province,
Central South University, Changsha 410083, China; junlong@csu.edu.cn

3 Big Data Institute, Central South University, Changsha 410083, China
* Correspondence: zyang22@csu.edu.cn

Abstract: In the quest to make deep learning systems more capable, a number of more complex, more
computationally expensive and memory intensive algorithms have been proposed. This switchover
glosses over the capabilities of many of the simpler systems or modules within them to adequately
address current and future problems. This has led to some of the deep learning research being
inaccessible to researchers who don’t possess top-of-the-line hardware. The use of simple feed
forward networks has not been explicitly explored in the current transformer-based vision-language
field. In this paper, we use a series of feed-forward layers to encode image features, and caption
embeddings, alleviating some of the effects of the computational complexities that accompany the
use of the self-attention mechanism and limit its application in long sequence task scenarios. We
demonstrate that a decoder does not require masking for conditional short sequence generation
where the task is not only dependent on the previously generated sequence, but another input such
as image features. We perform an empirical and qualitative analysis of the use of linear transforms
in place of self-attention layers in vision-language models, and obtain competitive results on the
MSCOCO dataset. Our best feed-forward model obtains average scores of over 90% of the current
state-of-the-art pre-trained Oscar model in the conventional image captioning metrics. We also
demonstrate that the proposed models take less time training and use less memory at larger batch
sizes and longer sequence lengths.

Keywords: image captioning; deep learning; transformers; vision-language

1. Introduction

By allowing for the hierarchical representation of features, with complex features
described in subsequent layers by successively simpler features, i.e., multiple levels of
abstraction, deep learning algorithms have led to many breakthroughs in representation
learning dependent tasks. This has resulted in many state-of-the-art achievements in
areas such as object detection and recognition, speech recognition, Natural Language
Processing, computer vision and vision-language tasks such as image captioning. The
fundamental building block of deep learning networks is a neuron which is combined in
different combinations, across multiple layers to create more and more powerful networks.
This includes simple supervised learning algorithms like Multi-Layer Perceptrons (MLPs),
through to more complex architectures such as Recurrent Neural Networks (RNNs) [1],
Long Short-Term Memory (LSTMs) [2], Convolutional Neural Networks (CNNs) [3] and
Transformers [4]. With the emergence of massive models such as the Bidirectional Encoder
Representations from Transformers (BERT) [5], and Generative Pre-trained Transformer
(GPT-3) [6], the trend has been to go bigger, more complex and using of more data. The
results show that this has been positively rewarding with these systems achieving state-of-
the-art results in every field they target.

Appl. Sci. 2021, 11, 11635. https://doi.org/10.3390/app112411635 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9891-6161
https://orcid.org/0000-0002-6336-0228
https://doi.org/10.3390/app112411635
https://doi.org/10.3390/app112411635
https://doi.org/10.3390/app112411635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411635
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411635?type=check_update&version=1

Appl. Sci. 2021, 11, 11635 2 of 24

Recently, works such as [7] have shown that it is possible to achieve competitive
results in text classification and translation tasks while using simpler architectures. These
architectures alleviate some of the limitations inherent in the more complex ones such as
the high computational and high memory requirements that result from, for example, the
quadratic nature of self-attention mechanisms that limit sequence length. In our paper,
where we use image captioning as proof of concept, we completely discard the self-attention
mechanism in the image encoders, and the masked self-attention mechanism in the decoder
and introduce a series of feed-forward layers in a regular deep feed-forward framework,
and evaluate the most optimum way to represent the input features. We aren’t attempting
to achieve a new state-of-the-art score, but provide a qualitative analysis of the resulting
captions, an empirical analysis of the evaluation metrics, and memory usage, providing
a practical insight into the effect of this substitution in vision-language tasks while also
demonstrating competitive results with the much simpler architecture.

In image captioning tasks, a machine is designed to automatically generate captions
describing an input image. To achieve this, an image feature extractor and a language model
are needed. The language model has commonly been implemented by using LSTMs [8–13]
and image feature extraction through a state-of-the-art CNN architecture like ResNet [14],
VGGNet [15], Inception [16] pre-trained on a large dataset like ImageNet [17]. In this
arrangement, the image captioning task is treated as a sequence-to-sequence “translation”
task, a technique inspired by the Neural Machine Translation [18]. Due to their sequential
nature, which inhibits parallelization and them being slow, alternatives to LSTMs have been
explored and implemented resulting in fully convolutional [19,20] and fully attentive archi-
tectures such as transformers. First proposed in the paper “Attention is all you need” [4],
transformers consist of a stack of self-attention and linear layers in an encoder–decoder ar-
chitecture. Transformer-based models like [21–25] have achieved state-of-the-art results in
image captioning. To achieve this [22–24] use a data-intensive pre-training step to achieve
good results. Transformer-only architectures for image captioning like [24] also require
massive amounts of pre-training data, and so use a pre-trained encoder from [26], otherwise
they report very poor results when training from scratch. In M2 [25], the authors employ a
multi-level meshed encoder and decoder increasing complexity and working within the
limitations of the quadratic nature of the self-attention technique. Transformers are more
computationally expensive, more data hungry and memory intensive architectures.

In order to study possible ways to alleviate some of the above-mentioned problems,
while still maintaining a competitive performance, in this paper, we implement and analyze
transformer architectures that utilize an encoder composed solely of fully connected feed-
forward layers and a decoder that also uses a deep fully connected feed-forward network
to encode caption embeddings as shown in Figures 1 and 2. The feed-forward architecture
is a simple yet powerful architecture that can adequately model the input textual and image
feature representations. The complexity of the feed-forward only encoder section is linear
instead of quadratic. In order for it to handle image captioning which involves conditional
sequence generation conditioned on the contextual image and textual information, we
retain intra-attention only in the cross-attention layer. Furthermore, the input image
features used are the output of a Faster R-CNN [27] network, which significantly helps to
reduce the dimensions of the input image feature vectors, while retaining and highlighting
(via regional proposals) most of its semantic information.

Our main contributions are summarized below:

• We propose transformer-based systems that, in the first stage, utilize a feed-forward
encoder using deep fully-connected layers and, in the next stage, a decoder that uses
feed-forward layers to encode caption embeddings. We study the memory usage at
different batch sizes, the captions generated and the implication of the evaluation
metric scores.

• We propose, implement and perform a comprehensive analysis of several combina-
tions of fully connected layers on image captioning models in order to add to the body
of knowledge available about the use of simpler networks, in this case, linear layers

Appl. Sci. 2021, 11, 11635 3 of 24

in transformer-based vision-language systems, which is an area that has hardly been
explored.

• We make a comparative analysis of the use of fully connected layers in vision language
models in comparison to self-attention layers and also show that masking of the
decoder input features is unnecessary in feed-forward based caption encoding by
implementing an unmasked decoder input transformer module.

• We make recommendations and offer tips based on the observations made during the
study in order to foster further research in the area of developing simpler transformer
models for vision-language applications.

• The MSCOCO benchmark dataset is used to evaluate the performance of the proposed
models, which demonstrate competitive results despite the simplicity of the models.
The models also show a shorter training time, and lower memory usage at higher
batch sizes in spite of containing more parameters. Lower memory requirements and
training time allow for use in lower end systems.

Figure 1. Model complexity reduction: Contrasting the two methods of creating the decoder feature
representation that is sent to the cross-attention layer. On the left is the default scaled product
attention method that requires masking. The figure on the right shows the much simpler and direct
fully connected (FC) layers, with no look-ahead masking or self-attention.

Appl. Sci. 2021, 11, 11635 4 of 24

Figure 2. The general framework diagram showing the fully linear encoder using deep fully-
connected layers (FC) and a decoder that also uses linear layers to encode caption embeddings.
Intra-attention is still maintained in the cross-attention section. The normalization and residual
sections are not shown for the sake of brevity.

2. Background
2.1. Algorithms in Deep Learning

There are several deep learning algorithms in use today in research and industry by
the computer vision and natural language processing communities. The recent popularity
of deep learning algorithms can be attributed to their success in the image recognition
field where AlexNet [28], which uses deep convolutional neural networks, achieved a
top-5 error rate of 15.3%; 10.8 percentage points higher than the second ranked model,
in the ImageNet Large Scale Visual Recognition Challenge [17]. This error rate has been
further cut down to 3.5% [29] compared to the human error rate of 5%. CNNs excel at
computer vision tasks where they are able to process the spatial and temporal image data
dependencies by applying convolutions using filters to create feature maps of different
regions of the input image. They are usually applied to tasks such as image classification,
image recognition, and image retrieval using powerful architectures such as ResNet [14],
and VGGNet [15]. RNNs are used to deal with sequential data. This kind of data requires a
network to use previously generated data to make future predictions. They achieve this by
incorporating a sort of memory referred to as a hidden state, to save contextual information,
that is propagated through the network at each step of a sequence. They are mostly applied
as LSTMs or GRUs rather than Vanilla RNNs in tasks such as machine translation [18,30],
and automatic summarization [31,32]. MLPs also referred to Artificial Neural Networks
(ANNs) and feed-forward networks are the simplest and most versatile of the bunch of
deep neural network algorithms. They are comprised of a bunch of neurons in each layer
which process the inputs in the forward direction. These neurons can learn a mapping of
almost any input data to a required output form with varying degrees of accuracy. They
are commonly used to process text and tabular data in applications such as classification
and regression prediction. As the subject of this paper, they are discussed in more detail in
later sections of this paper. Due to the fact that image captioning involves both images and
the text, the two most common deep learning algorithms involved are the CNN to encode
the image features into a fixed vector representation, and an RNN to learn to generate the
text captions. This is further discussed in the subsequent sections.

Appl. Sci. 2021, 11, 11635 5 of 24

2.2. Image Captioning

The quantity and quality of image data generated or used by both users and re-
searchers keeps increasing due to new technologies. This is because of the availability of
better image capturing hardware such as smart phones, and the popularity of social media
networks where images are uploaded. Companies now need to store more data because of
the quality (and by extension, size) of the images being generated. From a computer vision
perspective, people are now taking more random images in random places surrounded
by random objects, which requires processing by more sophisticated algorithms. This
stands in contrast to images in the past, which were taken in studios or well-planned in
advance and thus contained more predictable objects. This presents a greater challenge for
computer vision tasks such as image captioning. As a result, there are several techniques
that have been devised to reduce them to their simplest form while retaining as much
of the salient information as possible, for example, by detecting and only retaining the
most important features using techniques such as autoencoders and principal component
analysis. The other alternative has been to devise more complicated algorithms. As a
result, deep learning models have been getting more complicated, bigger and a lot of the
state-of-the-art performance of a number of models such as GPT, BERT can be attributed
to the amount data used to train them. Some methods using simpler architectures have
been proposed to reverse this trend such as using Fourier transforms and fully connected
layers [7,33] to get performances close to the state-of-the-art.

Modern image captioning methods are deep learning based, and treat the task as a
sequence-to-sequence image-to-text translation task where the image features are input
in the encoder in an encoder–decoder architecture which produces a fixed length feature
representation vector of the image which is fed to the decoder. The decoder is the language
model and is trained in an auto-regressive manner where the image feature vector and
previously generated words are used to predict the next word. This technique is usually
accomplished by CNN encoders and LSTM decoders [8,9,11–13], CNN encoders and CNN
decoders [19,20] and lately transformers [21–23,25].

While transformers have reached several milestones in vision, language and vision-
language tasks, they have a lot of shortcomings when implemented in their most popular
format as proposed by the original authors [4]. For long sequences as is the case with
images and usually with text too, it is very expensive to train transformers both due to
the memory and computational requirements. Transformer-only vision or vision-language
models [24,34] that do not use convolutional image features as input, require a lot of image
training data, as much as needing millions more images [26] to achieve the same results
as convolutional based models in tasks such as classification. This is because of the initial
unfocused nature of the transformer, which requires it to use some data to learn where to
focus, and what to focus on. The inductive biases in convolutional neural networks (due
to the kernels) and in recurrent networks (due to their inherent sequential nature) bias
them towards an area on which to focus and so they only need to learn what to focus on,
and not where to focus. As a result, a number of transformer-based captioning methods
vision-language models use pre-training methods [22,23] in order to achieve competitive
results.

In this work, we explore the effect of replacing the self-attention layer with fully
connected layers and concretely analyze its impact on caption generation. We also suggest
a set of guidelines and recommendations based on our observations as pertaining to
the aforementioned research. Previous works only concentrate on self-attention [21,25],
recurrent [8,9,11] or convolutional [19,20] implementations on the image captioning task, or
analyze the scenario in same domain sequence applications [7]. To best of our knowledge
there have been no other attempts to explore not using a “look ahead” mask in the masked
transformer decoder input module. In among other things, we implement a non-masked
fully connected feed-forward decoder input layer, a feed-forward encoder (with non-linear
activation functions) module utilizing a number of deep and shallow networks to analyze
their effects and show that fully connected layers can be worthy replacements for self-

Appl. Sci. 2021, 11, 11635 6 of 24

attention in image captioning. We also analyze the training time and memory consumption
at different batch sizes and caption sequence lengths. In addition to image captioning, it
should be possible to attain similar benefits in other visual-language tasks such as visual
question answering, dialog and vision-language navigation [35–39].

2.3. Masking in Transformer Decoders

In LSTM and GRU sequence generation, their inherent sequential nature ensures that
the model only has access to past tokens and the previous hidden state. In transformer-
based language models, the text embeddings are input in parallel during the training
phase. The decoder is trained in an autoregressive manner, where the previously generated
words are used as part of the input to predict the next word. In current implementations
of transformer-based text generation tasks, as shown in Figure 1, the self-attention layer
over the captions is masked so that the network only has access to previous tokens when
learning to predict a future token. According to [4], masking is required because of the
parallel nature of inputs to the transformer. Due to this parallelism, the auto-regressive
model has access to the full ground truth caption sequence which it may exploit and learn
to output the next word in the input sequence, instead of predicting based on the already
generated tokens. The authors argue that, at each time step, it will simply look at the
input sequence and output the next word, instead of producing a probability distribution
from which the next token can be sampled. So in order to achieve this, as in Figure 1,
a mask is added to the input sequence representation. The mask is basically a matrix with
negative infinity (−∞) in the position of the elements that you don’t want attended to,
in order to ensure that they have no influence on the output representation. When the
softmax operation is then applied to the resultant matrix, the high scores will be boosted
and the negative infinity scores zeroed out. We use fully connected linear layers rather than
self-attention to encode both the image feature representation and caption embeddings,
without masking the caption input during training as explained in Sections 3.2 and 5 and
more formally below.

During the training phase, assume we have an input caption sequence X =
{x1, x2, x3, ..., xn}, where x1 : n are the individual sequence tokens of a sequence of length
n. In a sequential model like an RNN, x1 is given as an input and the model trained to
produce x2. In the next iteration x1, x2 are given as inputs to train the model to generate x3,
and so on. As can be seen, the sequential nature prevents the model from looking ahead to
see and condition on future tokens. On the other hand, the common transformer architec-
ture [4] uses the full sequence {x1, x2, x3, ..., xn} as input, i.e., passed in parallel. To prevent
future tokens from being processed, a look-ahead mask, e.g., ({−∞1,−∞2,−∞3, ...,−∞n})
is added to the input sequence and a softmax operation performed as in (1).

X = {x1, x2, x3, ..., xn}+ {0,−∞2,−∞3, ...,−∞n}
X = So f tmax{x1,−∞2,−∞3, ...,−∞n}

X = {x1, 0, 0, ..., 0}.
(1)

For subsequent operations, the mask is modified so as to mask the required values, i.e.,
{0,−∞2,−∞3, ...,−∞n}, {0, 0,−∞2, ...,−∞n}, {0, 0, 0, ...,−∞n} and so on, as required. In
this paper we show that when feed-forward layers are used in place of self-attention layers,
masking is not required, thereby reducing on the complexity of the model. The idea for
this partly arose from the fact that residual connections in a transformer model are used in
such a way that the unmasked input information is added to the masked input information
in the “Add $ Norm” section of the decoder transformer. The model should still be able
to exploit this to learn something about future tokens, thus rendering the benefits of the
look-ahead masking procedure not as significant as it is currently assumed.

Appl. Sci. 2021, 11, 11635 7 of 24

3. Method
3.1. MLP

A multi-layer perceptron can be described as a mathematical function that maps input
values into output values to provide a new representation of the input values. Arranged
in different combinations across several layers (deep), they allow for automatic feature
engineering, with features learned across multiple levels of increasing abstraction making
them capable of tackling complex data. Given a set of N features X = {x1, x2, ..., xN},
X ∈ RN×D where N is the number of features and D is the dimension of each feature, an
MLP learns the parameters of a function f ∗ that maps the input features to a target (e.g.,
a category) y and can be described by y = φ(∑N

N=1 WiXi + b) = φ(WTX + b) where W
represents the learnable weights, b the bias and φ a non-linear activation function that is
used to introduce non-linearities to the network that enables it to be able to map and learn
non-linear patterns in the data. In a feed-forward topology (basically a directed acyclic
Graph), an MLP consists of an input layer with nodes that correspond to the input feature
dimension, one or more hidden layers, and finally an output layer. The neurons in the
hidden and output layers compute a weighted summation of the input features and then
applies a non-linear activation function. After predicting an output that is compared to the
expected output (supervised learning), the loss is computed and the weights updated by
back-propagation.

An image is comprised of matrix of pixels. To use this with an MLP, the image will
usually be resized, scaled normalized transforming them to have a mean and standard
deviation 0.0 and 1.0 respectively. A 28 × 28 image for example, will be reshaped to a
feature vector of size 748 which will be fed to the MLP. In our method, we process the input
features using a Faster R-CNN network and use the output as the input features to the
encoder. Directly feeding input features of a color image to an MLP would significantly
increase the computational complexity of the model since even a simple 64 × 64 3-channel
color image would lead to 12,288 weights to a single neuron. For this reason, we use a
2048-dimensional feature vector from a Faster R-CNN network. The output of the network
is a set of 2048-dimensional feature vectors, corresponding to the features detected in each
image.

A neural network only understands numbers, typically it is fed a matrix of features. In
order to deal with text, every word needs to be represented by a vector. To accomplish this,
a vocabulary is defined that contains all the unique words in the input corpus, or at least a
subsection of words with a frequency above some arbitrary threshold. Each of the words
in the vocabulary can then be represented by a one-hot-encoded vector, and subsequently,
each of the words in an input sentence can now be represented by this sparse one-hot-
encoded vector. More commonly though, the words are represented by word embeddings.
Word embeddings retain the structure of the text, and therefore the context in which they
were used. This has the added benefit of identifying similar words and representing
them in similar representations within a predefined vector space. A real-valued vector
representation of the text is learned using a predefined fixed sized vocabulary learned from
a large corpus. To achieve this, each word is mapped to one vector and learned creating a
dense vector representation containing hundreds of dimensions that when learned like a
neural network captures the meaning of words around them [40].

3.2. MLPs in Image Captioning

Using MLP sub-modules, our objective is to demonstrate and analyze transformer-
based vision-language models, specifically, image captioning models. The models we
analyze and propose use linear layers to encode and transform the image and caption
embeddings rather than using self-attention yet still generate satisfactory captions and
evaluation scores comparable to their self-attention-based counterparts.

Transformer models [4], as used in image captioning tasks, consist of two parts: an en-
coder and decoder section. The encoder creates a fixed vector representation of the input
image which is sent to the auto-regressive decoder, which uses this representation together

Appl. Sci. 2021, 11, 11635 8 of 24

with the caption embeddings representation to create a probability distribution over the
vocabulary. From this probability distribution, the next word in the caption sequence is
sampled, i.e., to predict the next token xt+1, we compute the P(xt+1|I, x1, x2, ..., xt) where I
represents the image features and x1, x2, ..., xt are the previously generated word tokens.

Unlike the typical models that consist of a self-attention network to compute the
relevance or attention score of each image feature in relation to the other features, we use
linear transformations in conjunction with activation function non-linearities to learn a
representation of the input. The image input features are transformed through one or
several fully connected layers as in (2) and (3), respectively.

Xi = φ(WTxn + b), (2)

where φ, W, b are the ReLu activation function, weight and bias of a fully connected layer,
xi ∈ RNi×D is the input image sequence with Ni, D being the number of input features and
the dimension of each input feature, respectively,

Xi = g(xn), (3)

where g(xn) = φ
(

W(L)...φ
(

W(1)xn + b1

)
+ bL

)
. L is the layer number in a multi-layer

setup.
For the deeper models as in (3), akin to autoencoders, the input features xn can be

transformed into latent space h = f (xn) then the features reconstructed r = g(h). In an
under-complete architecture h is of a lower dimension than xn, whereas it is of a higher
dimension in an over-complete architecture.

Image features, as shown in Figure 2 are taken from the output of a Faster-R-CNN
model. Each feature xi is ∈ RN×D where the dimension of the features D = 2048 and N,
which is set to 50 is the number of selected features, i.e., regional proposals per image.
Because of their source (output of Faster-R-CNN), positional encodings are not used. This
is due to the fact that the features are a bag of detections from regional proposals which
do not preserve the spatial and geometric location information of each regional proposal.
There is thus little to no benefit in using positional encodings in the encoder.

Encoder section: Similar to [4], the stack of encoders is arranged such that the output of
one encoder is used as the input of the other next decoder, but different from them, as in [25],
instead of only using the output of the final decoder as the final image vector representation,
we save the output of each encoder, which will be shared with the corresponding decoder.
Consequently, we have the same number of encoders as decoders. The final transformation
in the encoder is another linear layer, which is composed of two fully connected layers.

The time complexity is used to depict the amount of computer time required to run
an algorithm. The computational complexity of the self-attention mechanism is O

(
n2 · d

)
whereas that of CNNs and RNNs is O

(
k · n · d2) and O

(
n · d2), respectively, where n is

the sequence length and d is the dimension of the features, the k variable in the CNN
complexity represents the convolutional kernel size. The feed-forward network complexity
is function of the number of layers, number of neurons per layer and the feature dimensions.
While the number of neurons in the input layer corresponds to the feature dimension, it
may differ for the hidden and output layers. These computations for a fully connected layer
are dominated by the matrix operations and are computed as N1×N2, where N1 ∈ Rn1×n2

is the dimension of the input matrix and N2 ∈ Rn2×n3 is the dimension of the output matrix.
In comparison, as shown in (4), in addition to the quadratic calculation of the relevancy
scores, there are also 4 matrix multiplications for the Queries, Keys and Value matrices.

Decoder section: In image captioning applications, captions are both the targets and
at the same time one of the inputs. Captions are entered into the decoder in a parallel
manner, but usually masked in order to ensure that the decoder can only see the previ-
ously generated tokens. In our implementation, where we encode and extract caption
information using a linear transformation with ReLu activations, we found that masking

Appl. Sci. 2021, 11, 11635 9 of 24

was unnecessary. This is explained in detail in Section 5 and shown in Figure 1. Briefly,
as in the standard implementation, caption embeddings are concatenated with sinusoidal
positional embeddings. This ordinarily would then go to a masked self-attention layer, but
we use a deep fully connected layer to encode these caption features, without masking
future captions, i.e., when predicting the token at a position, the model has access to future
and past tokens, i.e., a non-masked caption embedding representation with positional
contextual information added.

Cross-attention/image-caption translation section: During the training phase, this
learns the relationship between the image feature representation and the caption em-
beddings representation, in an autoregressive manner, so as to produce a new feature
representation that can be used to predict the next word in a caption sequence. First
off, the linearly transformed caption embeddings from the previous layer are sent to the
cross-attention layer. Owing to the fact that this section requires a cross comparison be-
tween image features and caption representations, and an attention mechanism where the
caption embeddings are used as Queries (Q) over the image feature representations (Keys
(K)-Values (V) pair), the possible linear transformations required and attention mechanisms
would be more complicated than a self-attention mechanism. We argue that this is the
only part of the original transformer architecture that greatly benefits from intra-attention
mechanisms. As such, we resolved to use it in only this section of the model. The Query (Q)
vectors from the caption embeddings, and the Key (K)-Value (V) vectors from the image
feature representation are used to compute the relevance score of each image feature to
other features, to produce the attention matrix as shown in (4). See Figure 2 for the visual
representation of the previous statement.

Attention (Q, K, V) = so f tmax(
QKT
√

dk
) V (4)

where Q = Xi ∗WQ, K = Xi ∗WK, V = Xi ∗WV . Xi represents the encoder input features
x1...xn; WQ, WK, WV are learned projection matrices for the queries, keys and values, re-
spectively. Multi-head attention as well as residual connections, are employed to send
information from the input of one layer to the next in order to reduce information loss. This
loss may occur due to the many transformations undergone by the data. This also helps
the gradients propagate through the model more easily. Since we do not just use the final
output of the last decoder, but rather the final outputs of the all the encoders (multi-level
encoder-decoder network), are saved for interfacing with the corresponding decoder.

For the objective functions, as with many similar sequence generation works, we first
optimize the cross entropy then perform CIDEr-D metric optimization [41], i.e., given (y∗1:T)
as a sequence of ground truth word tokens where T is the sequence length of the sequence
y1, ...yT . The cross-entropy loss is given by:

L(θ) = −
T

∑
t=1

log
(

pθ

(
y∗t | y∗1:t−1

))
(5)

where θ represents the model parameters. The CIDEr score is optimized by SCST:

LRL(θ) = −E(y1:T∼pθ [r(y1:T)] (6)

where r is the score function. The gradient is then approximated by:

∇θ LRL(θ) ≈ −(r(ys
1:T)− r(ŷ1:T))∇θ log pθ(ys

1:T) (7)

Summary: How it all comes together: The output of Faster-R-CNN model, which
contains detected image features (regional proposals) is used as the input to the encoder
of out transformer model. The first sub-module which is comprised of fully connected
layers, learns to create the most optimum generalized representation of the input features
during training. The position-wise feed-forward layers create a fixed vector representation

Appl. Sci. 2021, 11, 11635 10 of 24

of the input image in the model dimension, which will be the output of the encoder and
one part of the decoder input for the cross-attention sub-module. A representation of the
captions which are the decoder inputs and targets (outputs) is created using a deep fully
connected decoder input sub-module and passed on to the cross-attention sub-module.
The cross-attention sub-module detects and learns the relationships between the caption
embedding representation and the image feature representation. From the output of the
cross-attention layer, transformed by the position-wise linear layer, the image-caption
representation is passed through a final linear layer and after a softmax operation outputs a
probability distribution over the vocabulary. The first or next token in the caption sequence
can be sampled from this probability distribution. During inference this is done in an
auto-regressive manner until the end of sequence token is predicted.

4. Experiments and Results

The proposed model is set up as shown in Figure 2 with the memory usage graphs
shown in Figure 3 and graphs for evaluation metrics shown in Figure 4. Below we detail
some of the information such as implementation settings and datasets that were used
to train and test the model. In addition, in the evaluation studies section, we justify the
different components that were chosen in the proposed model, and also give information
about other experiments we performed on the model variants to validate some of the
decisions that we made.

(a). Memory usage at different batch
sizes compared.

(b). Memory usage at different se-
quence lengths compared

Figure 3. Graphs showing a comparison between the memory usage of the self-attention based
variant (FC-SA) and our best model (FC4) at: (a) different batch sizes. (b) different sequence lengths.
The memory usage reported is for usage during the cross-entropy optimization stage.

4.1. Materials: Dataset and Evaluation Metrics

The MSCOCO dataset [42], using the pre-defined Karpathy splits was used for train-
ing, validation and testing. Using the pre-defined Karpathy splits makes it easier to make
comparisons with other models. The dataset consists of 113 k, 5 k and 5 k images for the
training, validation and test sets, respectively. The effectiveness of the proposed methods
was quantitatively evaluated using the standard evaluation metrics. The BLEU [43] eval-
uation metric is an n-gram precision based metric where the “n” represents number of
n-grams from 1–4, i.e., BLEU-1 to BLEU-4. The CIDEr [44] evaluation metric uses the Term
Frequency-Inverse Document Frequency (TF-IDF) statistical measure to give more weight-
age to important n-grams. ROUGE [45] is a metric more commonly used in automatic
summarization, but can also be used to compare generated captions and the ground truth
captions. METEOR [46] performs unigram matching. The SPICE [47] metric calculates an
F1-score over caption scene-graph tuples, i.e., computing the balance between the precision
and the recall.

Appl. Sci. 2021, 11, 11635 11 of 24

4.2. Settings Implementation

A Faster R-CNN model pre-trained on the ImageNet dataset and fine-tuned on the
visual genome dataset is used to extract image features. The model was first trained by
optimizing the cross-entropy loss, followed by CIDEr-D optimization (REINFORCE). A
vocabulary size of 10,000, a beam width of 5, the Adams optimization algorithm, dropout
and early stopping were employed. The number of feature detections from the Faster
R-CNN network is limited to 50. PyTorch was the deep learning library used, running on
Intel E5-2600 CPUs and 2080Ti GPUs.

(a). BLEU-1 and BLEU-4 scores for the
models discussed.

(b). CIDEr scores for the models dis-
cussed.

(c). METEOR scores for the models
discussed.

(d). SPICE scores for the models dis-
cussed.

Figure 4. The Graphs above show various evaluation metrics across the training epochs for select
model variants corresponding to: (a) BLEU-1, BLEU-4 (b) CIDEr, (c) METEOR, and (d) SPICE scores.

4.3. Evaluation Studies

We perform memory consumption and training time per epoch tests (results shown
in Table 1), and implement several model variants (configurations shown in Table 2 and
Figure 5). The evaluation metric results of our best model compared to the comparison
models are shown in Table 3 while those of the model variants are displayed in Table 4.
Details of the model variants and evaluation studies are discussed below: where X refers
to the input feature set of either text or image features.

(i) To evaluate the memory consumption of our model to a similar one using self-attention,
we designed a variant that we refer to as FC-SA. In this variant, the encoder feed-
forward network is replaced by a self-attention network, and the decoder one, replaced
by a masked self-attention layer. The GPU memory consumption with the batch size

Appl. Sci. 2021, 11, 11635 12 of 24

set to 10, 20, 40, 50, 80, 100 and 150 for both our best model (FC4) and the self-attention
based variant FC-SA are shown in Figure 3a.

(ii) To evaluate the memory consumption at different sequence lengths, just as above, we use
the FC4 and FC-SA variants. Since it is just a test of memory consumption and not
a test of caption generation, we duplicate the captions to create longer captions, i.e.,
every caption is a multiple of its original length. So we measure memory usage at
multiples of the caption length, i.e., (1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8) * caption
length. Basically, given a caption sequence X = {x1, x2, ..., xn} = X ∗ 1.0, then,
X ∗ 1.5 = {x1, x2, ..., xn, x1, x2, ..., x n

2
} where n is the original sequence length. The

results are shown in Figure 3b. We also report the inference time required to generate
captions for 5000 randomly selected images.

(iii) To investigate the performance of the model before and after using a look-ahead mask,
we ran the FC4 and FC-SA variants with and without the mask.

(iv) To evaluate the time complexity of the introduction of the feed-forward layers, we
build 2 variants of our model that are comprised of only the encoder. One variant con-
tains the self-attention layers. In the other variant, the self-attention layers are replaced
by feed-forward layers. The time taken to produce the image feature representation is
noted and shown in Table 1.

(v) FC0, FC1 and FC2 investigate the effect of change in number of layers or stacks on the base
variant model FC0. FC0 is designed with the “normal” configuration as shown in
Table 2 where input features (2048-dimensional) are directly transformed into the
model dimension (512-dimensional) and forwarded to the next stage, i.e., position-
wise feed-forward stage, without any other changes. The experiments covered 3-
, 6- and 12-layer variants. A layer here refers to one whole encoder or decoder
section. Varying the number of layers may improve or degrade the performance of
the model. While it could initially improve performance because of the additional
discriminatory information mined, the increase in the complexity may result in a
reduction in performance, and an explosion in the size of the model and training time.
This is discussed further in Section 5.

(vi) FC3 is used to investigate mapping the input image features into a higher dimensional space.

X ∈ RN×D mapped
====⇒ X

′ ∈ RN×D
′
, where D

′
> D. This is the initial building block for

the next couple of experiments. In this experiment, we try to find out the effect of
mapping the input image features (2048-dimensional) into a higher dimensional space
(4096-dimensional), an arrangement that mimics an over-complete autoencoder. The
aim is to see if it creates a better representation of the input features, which would
then lead to better captions. In the same line, in FC5, we implement a model that
mimics an under-complete stacked auto encoder configuration, i.e.,

X ∈ RN×D mapped
====⇒ X

′ ∈ RN×D
′ mapped
====⇒ X

′′ ∈ RN×D, where D
′
< D. Both these are

done to try to get the best possible representation of the input features when using
feed-forward layers.

(vii) FC4 and FC8 are designed to investigate the effect of having a deep feed-forward network
over the caption embeddings. The caption embeddings representation is created using a
non-masked deep fully connected neural network. One of the novelties of this paper
is the use of a non-masked caption embeddings and so we perform experiments on
a variant that has “normal” encoder feed-forward layer and deep fully connected
decoder input sub-module that contains a series of 2048 dimensional hidden layers
before being converted to the model dimension. We also test and report the results of
increasing the number of layers in this configuration.

(viii) Building on the previous configuration, we perform experiments with variants FC6
and FC7 where we use a deep feed-forward networks in both the encoder and decoder
sections. This is done to see if we can extract any additional benefits from representing
both the images and the text using a series of high dimensional feed-forward layers in both
model sections.

Appl. Sci. 2021, 11, 11635 13 of 24

Table 1. The memory consumption in gigabytes (GB) and training time in minutes (Mins) of the
feed-forward variant (FC4) compared to the self-attention variant (FC-SA). t-enc refers to the time
taken by the encoder to produce the image feature representation. t/E refers training time (t) per
cross-entropy optimization Epoch (E).

Batch Size FC-SA FC-SA
t-enc FC-SA t/E FC4 FC4 t-enc FC4 t/E

(GB) (Mins) (Mins) (GB) (Mins) (Mins)

10 2.1 32 47 2.6 26 42
20 3.2 26 37 3.7 19 34
40 5.2 23 34 6.2 20 32
50 6.5 22 32 7.1 17 28
80 9.3 21 32 9.6 16 30
100 10.9 21 31 8.1 18 31
150 10.7 19 31 9.5 16 31

Table 2. Model configuration for the variants used in the ablation studies. ff = feed-forward, sae =
stacked autoencoder, normal = input features directly transformed into the model dimension and
forwarded.

Method (Layers) Encoder Decoder

FC0 (3), FC1 (6), FC2 (12) normal normal
FC5 (3) sae normal
FC3 (3) deep ff normal

FC6 (3), FC7 (6) deep ff deep ff
FC4 (3), FC8 (6) normal deep ff

Table 3. Performance of comparison models on the Karpathy MSCOCO splits. B1 = BLEU-1,
B4 = BLEU4, M = METEOR, R = ROUGE-L, C = CIDEr, and S = SPICE.

Method B1 B4 M R C S

Xu et al. [9] 70.7 24.3 23.90 - - -
SCST [41] - 34.2 26.7 57.7 114.0 -

Up-
Down [11] 79.8 36.3 27.7 56.9 120.1 21.4

RFNet [48] 79.1 36.5 27.7 57.3 121.9 21.2
FC4 80.3 38.1 28.2 58.0 124.4 21.8

Table 4. Performance of select variant models on the Karpathy MSCOCO splits. All variants’ results
reported after CIDER-D optimization.

Method B1 B4 M R C S

FC0 79.3 37.4 28.2 57.6 122.0 21.8
FC5 79.3 37.0 27.5 56.7 120.8 20.8
FC1 80.2 37.9 28.0 57.4 124.4 21.1
FC6 78.4 36.3 27.4 56.7 117.0 21.0
FC3 78.6 36.6 27.6 56.9 120.0 21.1
FC4 80.3 38.1 28.2 58.0 124.4 21.8

Appl. Sci. 2021, 11, 11635 14 of 24

Figure 5. The configuration options available at each stage in the variants tested. The first stage
(bottom) shows the formats available for the input features to the model. The second stage contains
the options that were considered for learning the feature representation. The top shows the next
stage depending on whether it is in the encoder or decoder section. As indicated, some options are
only available to the encoder, decoder or to both.

The models’ performance, and insights are discussed in Section 5.

4.4. Comparison with Other Models

Xu et al. [9] is the classic state-of-the-art deep learning based image captioning model
that used attention and the CNN-LSTM paradigm. SCST [41] introduced the idea of directly
optimizing non-differentiable metrics like CIDEr using a policy gradient methods in image
captioning. Up-Down [11] integrate grid-based features and region proposal features from
a Faster R-CNN network to perform image captioning. RFNet [48] exploit information
from multiple encoders to generate informative representations for the decoder. The results
from our best model, FC4 are competitive in all metrics and better than the comparison
models.

5. Results Discussion

The associated epoch-by-epoch graphs are shown in Figure 4. The evaluation met-
ric scores are displayed in Tables 3 and 4 for the comparison models and the variants,
respectively. Table 5 shows a sample of the captions generated by the model variants
alongside the ground truth captions (GT). Additional information is displayed in the
Appendices A.1 and A.2. Figure A1 in the Appendix A.1 shows additional graphs that
highlight some specific comparisons that provide deeper insights into the performance of
select model variants. In Appendix A.2, Tables A1 and A2 display a larger sample of captions
generated by the linear models explored in this work.

Appl. Sci. 2021, 11, 11635 15 of 24

Table 5. Sample captions generated by the models.

GT: a large semi truck pulling a blue tractor behind it.
FC0: a large truck is driving down a traffic light.
FC1: a large dump truck driving down a traffic light.
FC6: a construction truck carrying a crane on the road.
FC4: a construction truck driving down a traffic light on the
road

As can be seen in Table 4, FC4 and FC1 are by far the best models overall when the
evaluation metric performance, simplicity and training time is taken into consideration.
FC1, follows the “normal” configuration shown in Table 2 with 6 encoder–decoder stacks,
whereas FC4 simply has a deep fully connected decoder input sub-module. The evaluation
result metrics of the 6-layer stacked FC1 that are significantly higher than FC0, its 3-layer
counterpart show the merits of increasing the number of layers. This is also clearly ob-
served in the graphs in Figure A1a. Both FC4 and FC1 performed better than the model
that had projected input image features into deep higher dimensional spaces (FC3, FC6
and FC7) or where a reconstruction of the most important input features (as in an autoen-
coder) was attempted (FC5). This is because the input features which are from a Faster
R-CNN network are already compressed with the most salient features (regional proposals)
highlighted and extracted as feature vectors, making any further such manipulation mostly
counterproductive, actually leading to a degradation in performance. Compared to the
state-of-the-art Oscar [22] model, which uses self-attention and pre-training (on 6.5 million
image-text pairs), FC4 attains 94% (38.1 vs. 40.5), 95% (28.2 vs. 29.7), 90% (124.4 vs. 137.6)
and 96% (21.8 vs. 22.8) of the Oscar-big model [22] score in the BLEU-4, METEOR, CIDER
and SPICE metrics, respectively. Compared to the Oscar-large model (larger hidden size,
see their paper for more details), FC4 attains 91% (38.1 vs. 41.7), 92% (28.2 vs. 30.6), 89%
(124.4 vs. 140.0) and 89% (21.8 vs. 24.5) of the model’s score in the BLEU-4, METEOR,
CIDER and SPICE metrics, respectively. In terms of time required to train, the results of
tests that were performed at different batch sizes as shown in Table 1, demonstrate that
the fully connected feed-forward variant consistently required less time to train than the
self-attention variant.

From the same table, it can be deduced that most of the time is spent in encoder
section of the model. For example, at a batch size of 50, 60.7% and 68.8% of the total time is
spent in the encoder section for the fully connected compared to the self-attention variant,
respectively. This is because that section involves reading to memory several gigabytes
of image data compared to a few megabytes of caption data in the decoder section. The
time taken by the FC4 model is also much less than the time taken by the self-attention
based model. We surmise that this could be because of the much simpler architecture of the
feed-forward model which leads to far fewer processing steps. In terms of inference time,
in order to process and create captions for 5000 images, the feed-forward based model takes
2.1 min compared to 1.9 min for the self-attention based one. This comes out to an average
of about 39.7 compared to 43.9 images per second for the feed-forward and self-attention
variant, respectively, on the GPU server. Since the inference part is one that is likely to be
processed locally on a desktop pc or laptop, we repeated the test on an Intel i7-6700HQ
processor with an Nvidia GeForce-GTX 960M GPU, where it took 16.2 min (5.1 images
per second) compared to 15.8 min (5.2 images per second) for the feed-forward and self-
attention variant respectively. A large chunk of the processing time for this sequential task
is spent in dealing with copying and moving images in memory and so it is not surprising
that there is a negligible difference in the time required to process each image for either one
of the two networks. The disparity only becomes non-negligible when creating captions
for several thousands of images, on a sufficiently powerful machine.

Appl. Sci. 2021, 11, 11635 16 of 24

Memory usage: The graphs in Figure 3 show the memory usage of our best model (FC4)
compared to a variant that uses self-attention layers (FC-SA). From the Figure 3a it can
be observed that the feed-forward variant only uses slightly more memory as the batch
sized increase from 10 to 80. At a batch size of 100, there is a sharp change in the memory
usage of both models. FC4 shows a sharp decrease in memory usage while the usage
for FC-SA stops increasing rapidly, almost flattening out. This is particularly fascinating
since it contains about 70% more parameters than the self-attention based counterpart. We
think that the 100 batch size created ideal conditions for the GPU we used, wherein, the
batch size saturates the CUDA cores and the GPU performance is most efficient. This ideal
performance continues to the next tested batch size. The FC4 (feed-forward) variant benefits
most, using 25% less memory at that ideal batch size. This shows that the simplicity of the
proposed model, containing fewer components reduces on the computational complexity
of the setup.

Figure 3b contains a graph that shows the memory consumption of the two compared
models (FC4 and FC-SA) at different caption sequence lengths. As can be seen, as the
sequence length of the captions increases, the quadratic nature of the self-attention mecha-
nism starts manifesting itself. A repeated observation concerning the feed-forward variant
is that at some point, the GPU is able to efficiently represent the linear layers and this
results in a significant drop in memory consumption. The self-attention Q-K-V mechanism
is also made up of linear layers organized in a matrix form, which also benefits from the
GPU efficiency at that ideal sequence length, resulting in a reduction in its memory usage
too. This is can be interpreted from the less steep slope. Its quadratic nature still causes
it to continue increasing its memory consumption at a faster rate than its feed-forward
counterpart. A GPU is very adept at handling the matrix multiplications which constitute
most of the work done during the training process. The linear transformations in both
variants benefit greatly from this.

Non-masked caption embedding representation: One of the major changes to the network
architecture was the utilization of a non-masked fully connected layer to capture the
semantic information and token relationships of the caption embeddings in place of intra-
attention. In previous implementations of transformer-based text generation tasks, the
self-attention layer over the captions is masked so that the network only has access to
previous tokens when learning to predict a future token. We do not apply masking in the
proposed models and show that our model inference works properly and believe that the
model actually benefits from having current and previous information during training. In
language generation, the context of a word may not only depend on the words before it,
but also those that may come after it. Almost all supervised sequence generation deep
learning based models use teacher forcing, and not using masking as in our case is simply
an extreme case of teacher forcing. The concern that the deep learning models, which are
adept at finding and exploiting any patterns will simply learn to predict the next word in
the input distribution by looking at the next word in the sequence is not completely valid,
at least, not in our models. The model is still able to learn and capture the semantics in the
input representation well enough that it is able to predict the next word at inference time.
This is proven by the accurate and relevant captions that are auto-regressively generated
during inference, with deeper decoder feed-forward variants performing better at caption
generation because they are able to learn to create a better representation of the input
caption features. When we performed an explicit comparison between the performance of
the model with and without using the look-ahead mask, between our best model, FC4 and
its counterpart based on a self-attention mechanism (FC-SA), we discovered inconsistencies
between the results. While both models do actually operate with or without the look-ahead
mask, the difference was the level of variability between results, which seems to point
to the likelihood that using a look-ahead mask does also help reduce on the stochastic
nature of the model. Judged solely on the results of the CIDEr evaluation metric, based
on only four complete runs of the models (train + test) due to time and computational
restraints, there was an average of a 6% variance in the results for the FC-SA compared to

Appl. Sci. 2021, 11, 11635 17 of 24

2% for the FC4 model. Over the four runs, the CIDEr scores, without using a look-ahead
mask were 127.7, 128.8, 121.1, 123.0 and 122.0, 121.9 124.4, 124.2 for the FC-SA and the FC4
model, respectively. When a look-ahead mask was used, the score varied by less than 1%
for both, i.e., 128.7, 128.8, 128.7, 128.8 and 124.3, 124.4, 124.1, 124.4, for the FC-SA and the
FC4 model, respectively. These results show that the look-ahead mask is more important
in self-attention based mechanisms than it is in feed-forward based mechanisms. It further
shows that using it also improved on consistency between the results obtained. From
a practical point of view, in terms of captions generated, the difference is much smaller.
We believe that this is due to the beam search algorithm that we use, combined with the
sampling method that is based on a softmax probability distribution over a predetermined
vocabulary set, ensuring that the most appropriate token is chosen. This means that there
needs to be a much bigger difference between the evaluation metric scores for the quality
of the captions to start decreasing.

Stacked Layers: Increasing the number of layers is not a sure way to improve per-
formance and may be detrimental to the performance of transformer models as shown
by [49]. In image captioning, ref. [25] got their best performance when they stacked three
encoder and three decoder models, and showed a significant drop in performance when
they tried to stack more decoder layers. In our experiments using linear models we actually
had mixed results. The models usually performed better, the more modules we stacked,
up to a certain point where there was little to no improvement. Our best model was the
three-layer FC4 model, but the same model with six layers, performed about the same, in
fact marginally worse in some metrics. In the case of the base models (FC0, FC1, and FC2),
the six-layer model performed almost the same as the 12-layer model, but both performed
much better than the three-layer variant. We also observed the best performance in a
six-layer architecture, when we only cross interfaced the top three stacks, with the lower
three just processing and sending their outputs to the ones above them. We believe that
this is because this increased depth starts to cause optimization issues.

The models that first encoded the image features using deep encoders (FC3, FC5)
initially had high scores, especially in the BLEU-4 metrics before dropping. This is because
in the earlier stages of the training process, the deep fully connected nature of the model
allows it to easily map individual aspects of input features to the captions more efficiently,
but as the model gets more refined and the focus turns to mapping an understanding the
relationship between the individual feature and the captions, the deep nature becomes a
hindrance to image representation. It starts experiencing optimization issues. The captions
produced at this point, initially containing accurate but repetitive patterns, start becoming
syntactically inaccurate. It does eventually converge, but produces the worst captions.
Graphs highlighting the SPICE vs. BLEU-1 scores are shown in Figure A1c. It shows
that even with the high number of accurate unigrams generated (BLEU-1), the resulting
sentences did not correlate well with human generated captions (SPICE).

Comparison models: When FC4 is compared to the comparison models as in Table 3,
the results using the fully connected layers are higher than the compared models which
consist of state-of-the-art LSTM and CNN-based models. They are a few points behind the
performance of the best transformer models in many of the metrics, but almost at par with
them in the unigram-based BLEU scores. This shows that with some more optimization,
performance could be at par with the current best models that employ self-attention to
encode images and text. The lower performance in the other metrics especially the CIDEr
and SPICE scores correlates with the caption results which show that while the fully
connected models are able to pick up on the individual salient information available in
the images or text, they are not as capable as intra-attention networks in maintaining
long distance dependency and relevancy information. As a result, while the captions
generated are accurate, they are noticeably shorter, which leaves out some of the details.
To compensate for the reduction in the amount of context about the relationships between
each caption token and the other tokens, we implement a deeper neural network to capture
more of the “intra-caption” relevancy semantics. The results obtained by FC4, especially

Appl. Sci. 2021, 11, 11635 18 of 24

the SPICE scores show that this allowed much better captions to be generated as more
information was learned by the layers.

There are a number of other experiments that we carried out where we kept image
sequence length constant while varying the caption sequence length and vice-versa. These
experiments mostly showed very similar memory consumption, usually with the self-
attention variant only slightly better. This is particularly surprising observation given that
the fully connected feed-forward variant has about 70% more parameters and the saved
models 70% larger than the self-attention variant. Part of the surprisingly good performance
of the feed-forward model could be because it is quite similar to a convolutional neural
network. A feed-forward neural network can be seen as a special type of CNN with a single
channel and full receptive field. The similar performance of the two models in terms of
memory usage in spite of the feed-forward one having a lot more parameters implies that
the self-attention model actually has a worse performance per parameter. This means that
if the feed-forward algorithm is refined to decompose into fewer parameters, its memory
consumption can be significantly less than that of the self-attention mechanism.

From the experiments, we make some recommendations and guidelines for dealing
with fully connected layers in vision-language settings, specifically image captioning.

(i) Generally, more layers are better, up to a certain point. At some point, the trade-off will
not be worth it. There will be diminishing returns whereby the time and computational
resources required to train the models are so high for a meager improvement in
performance. This will especially be apparent during CIDEr-D optimization, whereby
you may be forced to significantly reduce batch sizes leading to an explosion in the
training time required.

(ii) If implementing a meshed architecture as in [25] you could benefit from meshing
just a few of the top layers, meshing all layers may lead to degradation in model
performance.

(iii) The GPU has a sweet spot where the batch size saturates the cores and your model
can benefit the most from using the GPU. Initial small experiments should be carried
out to find the ideal batch size.

6. Conclusions

We presented simple yet effective transformer-based image captioning models and
performed detailed analyses of the use of feed-forward layers to both encode the images
and text captions. Whereas we did not outperform the current state-of-the-art models, the
results obtained where only marginally lower than those obtained in fully attentive self-
attention-based image captioning models. We demonstrated that most of the transformer
self-attention layers could be replaced by fully connected feed-forward layers. In this setup,
the self-attention mechanism is really only required in the cross-attention sub-module.
While not explicitly stated, our experiments and results also provide an insight into the
significance of attention mechanisms in transformer models. The captions produced were
mostly as good as those produced by their self-attention counterparts, but did exhibit some
problems when it came to capturing the long-distance intra-sequence relations between
the caption tokens and the detected features. We also showed that in spite of being a
larger model with many more parameters than similar self-attention based models the
feed-forward models used only slightly more memory at lower batch sizes and less memory
at higher batch sizes that we tested. We demonstrated that there is need to revisit some
of the earlier algorithms, because they could provide alternative perspectives with which
to address current issues. This could lead to alternative research directions that would
greatly benefit from current hardware. As part of our future work, we plan to develop
much simpler models that can compete evenly with current more complex state-of-the-art
models. This would make deep learning research more easily available to researchers who
have no access to high-end hardware.

Appl. Sci. 2021, 11, 11635 19 of 24

Author Contributions: Conceptualization, R.I.O.; methodology, R.I.O.; software, R.I.O.; validation,
R.I.O., Z.Y. and J.L.; formal analysis, R.I.O., Z.Y. and J.L.; investigation, R.I.O.; resources, R.I.O. and
J.L.; data curation, R.I.O.; writing—original draft preparation, R.I.O.; writing—review and editing,
R.I.O., Z.Y. and J.L.; visualization, R.I.O.; supervision, J.L.; project administration, J.L.; funding
acquisition, J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant U2003208, in part by the Science and Technology Plan of Hunan under Grant No.
2016TP1003, and in part by the Key Technology R&D Program of Hunan Province under Grant No.
2018GK2052.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Additional Comparison Graphs

The graph in Figure A1a shows a comparison of the variants that had six or twelve
layers compared to the three-layer best model, i.e., FC4. The benefits of having more layers
are clearly visible including the fact that these benefits diminish the more layers we stack
on top of each other.

We use the METEOR scores in Figure A1b to highlight the superior performance of
the models that directly used the image features, reduced to the model dimension and for-
warded to the position wise feed-forward network compared to those where it was attempted,
unsuccessfully, to get a better representation of the input image features. Figure A1c focuses
on the correlation between the BLEU-1 and the SPICE scores. The model was largely
capable of extracting individual associations between image and region features, which
resulted in decent BLEU-1 scores, but had a few issues with long-term dependencies and
thus the lower SPICE and BLEU-4 metrics as further highlighted in Figure A1d. It can be
observed that the poorly performing model based on the SPICE scores actually has a good
performance in the BLEU-1 scores.

(a). 3 (FC0), 6 (FC1) and 12 (FC2) layer
stacked variants compared.

(b). METEOR scores of the best model
compared against the deep encoder
models.

Figure A1. Cont.

Appl. Sci. 2021, 11, 11635 20 of 24

(c). BLEU-1 vs. SPICE scores for select
models. (d). BLEU-4 vs. SPICE.

Figure A1. Graphs highlighting a comparison between specific metrics. The model name suffixes
“-S”, ”-B1”, and “-B4” denote the SPICE, BLEU-1 and BLEU-4 curve lines respectively. (a) Shows a
comparison between the 3-, 6- or 12-layer variants to highlight the effect of stacking more layers.
(b) Shows a comparison between the METEOR scores of the best model compared against select
deep encoder models, (c) Shows a comparison between the SPICE and the BLEU-1 metrics for select
models., and (d) Shows a comparison between the BLEU-4 and the SPICE metrics for select models.

Appendix A.2. Sample Captions

Tables A1 and A2 show captions from selected models. Among the captions are
the hits, misses, near misses and at times, total hallucinations. There have been a lot of
improvements in the quality of the captions generated, but even the state-of-the-art models
show that they are nowhere near production-ready.

Table A1. Sample captions generated by the models. GT = Ground Truth, FC0, FC1, FC6, FC4 are
model variants as described in Section 4.3.

GT: a couple of young women sitting on the ground next to
each other.
FC0: two women sitting on the grass looking at her phone.
FC1: two women sitting on a blanket looking at their cell
phones.
FC6: two women sitting on a blanket on her cell phones.
FC4: two women sitting on the grass looking at their cell
phones.

GT: a large semi truck pulling a blue tractor behind it.
FC0: a large truck is driving down a traffic light.
FC1: a large dump truck driving down a traffic light.
FC6: a construction truck carrying a crane on the road.
FC4: a construction truck driving down a traffic light on the
road.

Appl. Sci. 2021, 11, 11635 21 of 24

Table A1. Cont.

GT: group of adults and children at beach playing with vari-
ous types of surfboards.
FC0: a group of people holding surfboards on the beach.
FC1: a group of people carrying surfboards on the beach
with.
FC6: a group of people standing on the beach.
FC4: a group of people standing on the beach with surf-
boards.

GT: lit up night traffic is zooming by a clock tower.
FC0: the big ben clock tower towering over the city of london.
FC1: the big ben clock tower towering over the street at night.
FC6: the big ben clock tower towering over the city of london.
FC4: the big ben clock tower towering over the city of london.

GT: three girls walking in front of a parking meter.
FC0: two women walking past a sidewalk next to a parking
meter.
FC1: two women standing next to a parking meter on the.
FC6: two women with red hair standing next to each other.
FC4: three women standing next to a parking meter on the
street.

GT: a group of kids that are standing in the grass.
FC0: a group of people playing baseball in a field.
FC1: a group of people playing baseball in a baseball field.
FC6: a group of people playing baseball in a field.
FC4: a group of children playing baseball on a baseball field.

Table A2. Sample captions generated by the models.

GT: people standing near a train that is blowing smoke.
FC0: a man standing next to a train on the tracks.
FC1: two people standing next to a black train on the.
FC6: a man standing next to a train on the tracks.
FC4: two people standing next to a black train on the tracks.

Appl. Sci. 2021, 11, 11635 22 of 24

Table A2. Cont.

GT: two cute girls with a scooter and tennis raquet.
FC0: two little girls standing between two tennis racket.
FC1: two young girls holding tennis rackets on a tennis court.
FC6: a little girl standing next to a tennis racket.
FC4: two little girls holding a tennis racket on a tennis court.

GT: two men riding snowboards in a snow storm down a
slope.
FC0: two snowboarders are snowboarding down a snow cov-
ered slope.
FC1: two people are snowboarding down a snow covered
slope.
FC6: a couple of men riding snowboards in the snow.
FC4: two snowboarders are on snowboards in the snow cov-
ered slope.

GT: an old car outside near a harbor of some sort.
FC0: a yellow car parked in front of a gas station.
FC1: a yellow truck parked in front of a fire hydrant.
FC6: a yellow car parked in front of a building.
FC4: a yellow truck parked in front of a yellow fire hydrant.

GT: a row of girls holding umbrellas pose for a picture.
FC0: a group of women walking down a street with umbrel-
las.
FC1: a group of women walking down the street with um-
brellas.
FC6: a group of women holding umbrellas on the street.
FC4: a group of women walking down a street holding um-
brellas.

GT: a man in front of a christmas tree with his dog.
FC0: a man wearing a christmas tree with a christmas tree.
FC1: a dog wearing a santa hat standing in the.
FC6: a white dog standing in front of a christmas tree.
FC4: a man wearing a santa hat standing in front of a christ-
mas tree.

References
1. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Technical Report; California

University San Diego La Jolla Institute for Cognitive Science: San Diego, CA, USA, 1985.
2. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
3. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten

zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1162/neco.1989.1.4.541

Appl. Sci. 2021, 11, 11635 23 of 24

4. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30,
pp. 5998–6008.

5. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

6. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.

7. Lee-Thorp, J.; Ainslie, J.; Eckstein, I.; Ontanon, S. FNet: Mixing Tokens with Fourier Transforms. arXiv 2021, arXiv:2105.03824.
8. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3156–3164.
9. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption

generation with visual attention. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July
2015; Volume 30, pp. 2048–2057.

10. Biten, A.F.; Gomez, L.; Rusinol, M.; Karatzas, D. Good News, Everyone! Context driven entity-aware captioning for news images.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp.
12466–12475.

11. Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-up and top-down attention for image
captioning and visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 6077–6086.

12. Karpathy, A.; Fei, L. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3128–3137.

13. Karpathy, A.; Joulin, A.; Fei-Fei, L.F. Deep fragment embeddings for bidirectional image sentence mapping. In Proceedings of the
Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 1889–1897.

14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

15. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
16. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

17. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

18. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
19. Wang, Q.; Chan, A.B. Cnn+ cnn: Convolutional decoders for image captioning. arXiv 2018, arXiv:1805.09019.
20. Aneja, J.; Deshpande, A.; Schwing, A.G. Convolutional image captioning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5561–5570.
21. Huang, L.; Wang, W.; Chen, J.; Wei, X.Y. Attention on attention for image captioning. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 4634–4643.
22. Li, X.; Yin, X.; Li, C.; Zhang, P.; Hu, X.; Zhang, L.; Wang, L.; Hu, H.; Dong, L.; Wei, F.; et al. Oscar: Object-semantics aligned

pre-training for vision-language tasks. In European Conference on Computer Vision; Springer: New York, NY, USA, 2020; pp.
121–137.

23. Zhou, L.; Palangi, H.; Zhang, L.; Hu, H.; Corso, J.; Gao, J. Unified vision-language pre-training for image captioning and vqa.
In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp.
13041–13049.

24. Liu, W.; Chen, S.; Guo, L.; Zhu, X.; Liu, J. Cptr: Full transformer network for image captioning. arXiv 2021, arXiv:2101.10804.
25. Cornia, M.; Stefanini, M.; Baraldi, L.; Cucchiara, R. Meshed-Memory Transformer for Image Captioning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10578–10587.
26. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
27. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015,

arXiv:1506.01497.
28. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
29. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
30. Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015,

arXiv:1508.04025.
31. Rush, A.M.; Chopra, S.; Weston, J. A neural attention model for abstractive sentence summarization. arXiv 2015, arXiv:1509.00685.
32. See, A.; Liu, P.J.; Manning, C.D. Get to the point: Summarization with pointer-generator networks. arXiv 2017, arXiv:1704.04368.
33. Osolo, R.I.; Yang, Z.; Long, J. An Attentive Fourier-Augmented Image-Captioning Transformer. Appl. Sci. 2021, 11, 8354. [CrossRef]

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.3390/app11188354

Appl. Sci. 2021, 11, 11635 24 of 24

34. Lu, J.; Batra, D.; Parikh, D.; Lee, S. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks.
arXiv 2019, arXiv:1908.02265.

35. Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zitnick, C.L.; Parikh, D. Vqa: Visual question answering. In Proceedings of
the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2425–2433.

36. Yu, Z.; Yu, J.; Cui, Y.; Tao, D.; Tian, Q. Deep modular co-attention networks for visual question answering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 6281–6290.

37. Lu, J.; Yang, J.; Batra, D.; Parikh, D. Hierarchical question-image co-attention for visual question answering. Adv. Neural Inf.
Process. Syst. 2016, 29, 289–297.

38. Zheng, Z.; Wang, W.; Qi, S.; Zhu, S.C. Reasoning visual dialogs with structural and partial observations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 6669–6678.

39. Wang, H.; Wang, W.; Shu, T.; Liang, W.; Shen, J. Active visual information gathering for vision-language navigation. In European
Conference on Computer Vision; Springer: New York, NY, USA, 2020; pp. 307–322.

40. Brownlee, J. Deep Learning for Natural Language Processing: Develop Deep Learning Models for Your Natural Language Problems;
Machine Learning Mastery: San Juan, Puerto Rico 2017.

41. Rennie, S.J.; Marcheret, E.; Mroueh, Y.; Ross, J.; Goel, V. Self-critical sequence training for image captioning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7008–7024.

42. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In European Conference on Computer Vision; Springer: New York, NY, USA, 2014; pp. 740–755.

43. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics, Philadelphia,
PA, USA, 7–12 July 2002; pp. 311–318.

44. Vedantam, R.; Lawrence Zitnick, C.; Parikh, D. Cider: Consensus-based image description evaluation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4566–4575.

45. Lin, C.Y. Rouge: A package for automatic evaluation of summaries. In Text Summarization Branches Out; Association for
Computational Linguistics: Barcelona, Spain, 2004; pp. 74–81.

46. Banerjee, S.; Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In
Proceedings of the Acl Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization,
Ann Arbor, MI, USA, 29 June 2005; pp. 65–72.

47. Anderson, P.; Fernando, B.; Johnson, M.; Gould, S. Spice: Semantic propositional image caption evaluation. In European Conference
on Computer Vision; Springer: New York, NY, USA, 2016; pp. 382–398.

48. Jiang, W.; Ma, L.; Jiang, Y.G.; Liu, W.; Zhang, T. Recurrent fusion network for image captioning. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 499–515.

49. Bapna, A.; Chen, M.X.; Firat, O.; Cao, Y.; Wu, Y. Training deeper neural machine translation models with transparent attention.
arXiv 2018, arXiv:1808.07561.

	Introduction
	Background
	Algorithms in Deep Learning
	Image Captioning
	Masking in Transformer Decoders

	Method
	MLP
	MLPs in Image Captioning

	Experiments and Results
	Materials: Dataset and Evaluation Metrics
	Settings Implementation
	Evaluation Studies
	Comparison with Other Models

	Results Discussion
	Conclusions
	
	Additional Comparison Graphs
	Sample Captions

	References

