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Abstract: The presence of B-line artefacts, the main artefact reflecting lung abnormalities in dengue
patients, is often assessed using lung ultrasound (LUS) imaging. Inspired by human visual attention
that enables us to process videos efficiently by paying attention to where and when it is required,
we propose a spatiotemporal attention mechanism for B-line detection in LUS videos. The spatial
attention allows the model to focus on the most task relevant parts of the image by learning a saliency
map. The temporal attention generates an attention score for each attended frame to identify the most
relevant frames from an input video. Our model not only identifies videos where B-lines show, but
also localizes, within those videos, B-line related features both spatially and temporally, despite being
trained in a weakly-supervised manner. We evaluate our approach on a LUS video dataset collected
from severe dengue patients in a resource-limited hospital, assessing the B-line detection rate and
the model’s ability to localize discriminative B-line regions spatially and B-line frames temporally.
Experimental results demonstrate the efficacy of our approach for classifying B-line videos with an
F1 score of up to 83.2% and localizing the most salient B-line regions both spatially and temporally
with a correlation coefficient of 0.67 and an IoU of 69.7%, respectively.

Keywords: lung ultrasound (LUS) imaging; b-lines; spatiotemporal attention; classification; video
analysis

1. Introduction

Dengue is a viral disease that can transmit to humans through the bites of an infected
female Aedes genus mosquito [1]. Dengue can cause a wide range of symptoms from a
mild febrile illness through to severe and life threatening manifestations such as shock,
bleeding and organ dysfunction [2]. A hallmark feature of severe dengue is increased
capillary permeability causing plasma leakage, which manifests as intravascular volume
depletion and fluid accumulation such as pleural effusions, pulmonary edema and as-
cites [3]. Therefore, accurate and dynamic monitoring of fluid leak into the lungs of patients
with severe dengue admitted to ICU is critical for optimal care.

Lung ultrasound (LUS) imaging is a fast, portable and safe imaging technique, em-
ployed as a reference modality in intensive care units (ICU) for rapid real-time lung
assessment. Specifically, LUS imaging captures image artefacts such as B-lines, which are
caused by fluid, that indicate a pulmonary abnormality such as edema and effusions [4].

Appl. Sci. 2021, 11, 11697. https://doi.org/10.3390/app112411697 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2508-0900
https://orcid.org/0000-0002-2910-7819
https://orcid.org/0000-0002-7897-7589
https://doi.org/10.3390/app112411697
https://doi.org/10.3390/app112411697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411697
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411697?type=check_update&version=1


Appl. Sci. 2021, 11, 11697 2 of 14

To this end, LUS imaging can be used to assess fluid leakage into the lung through B-lines.
As shown in Figure 1, right, B-lines are bright lines expanding from the lung surface
distally following the direction of sound waves’ propagation. These lines appear and
disappear from the ultrasound images during the respiratory cycle, and are only found in
some regions of the affected lung [5]. Consequently, identification of these lines by visual
inspection is a challenging task. Even more so for less experienced sonographers, this
involves first identifying the frame where artefacts are visible, and second, determining
whether such artefacts are B-lines or not.

Figure 1. Sample LUS images. (Left): A healthy lung containing several A-line artefacts and, (Right):
A dengue patient’s lung showing a B-line artefact as a result of fluid leakage into the lung.

Recently, automatic image analysis using deep learning (DL) methods have shown
promise for various tasks such as the classification, reconstruction, and segmentation of
tissues in ultrasound images [6,7]. Applied to LUS, classification models could assist
automate problems such as B-line detection. Over the last few years, attention models have
been used for tasks where interpretation or explanation requires only a small portion of the
image [8], video [9] or sentence [10]. These models have also contributed to the model’s
interpretability, by visualizing regions that the model attends to solve a specific task. In
particular, in B-line detection from LUS videos, an attention mechanism can help localize
where and when in the video the B-line features are.

Contributions: In this paper, we propose a novel B-line classification and localization
method for a lung ultrasound (LUS) video B-line recognition to address the aforementioned
challenges. Our method uses a spatiotemporal attention mechanism that consists of a
spatial component and a temporal component as shown in Figure 2. This work extends
our previous work [11,12] on the temporal localization of B-lines. The novel contributions
of this work are four-fold: (1) A spatial attention mechanism for B-line region detection;
(2) A novel evaluation metric for B-line spatial localization; and (3) An investigation of the
effect of different LUS video lengths on model performance during the training and testing
phases; and finally, (4) we qualitatively and quantitatively show that our spatiotemporal
attention is able to localize B-line regions and frames, despite being trained in a weakly-
supervised manner.
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Figure 2. The proposed architecture for LUS B-line detection and spatiotemporal localization. This
model consists of a spatial feature extraction module (CNN layers), followed by a spatial attention
network, then a bidirectional LSTM, and a temporal attention module. The parameters of each layer
and module are detailed in the text.

2. Related Work

Being an artefact-focused application, LUS has historically received far less attention
than other ultrasound applications that focus on anatomical imaging. However, precisely
because human interpretation is difficult, and because LUS relies in the analysis of image
patterns, advances in deep learning which have achieved state-of-the-art performance in
many image detection and classification tasks [13] can be very useful for LUS. The recent
COVID-19 pandemic has motivated a significant increase in lung imaging research, and
most existing work in automated LUS analysis is related to COVID-19. Related work can
be broadly categorized in either detection of artefacts, such as B-lines or the localisation
and segmentation of lung lesions.

The first category involves techniques that address the classification of LUS frames into
B-line frames or not. Although most lung imaging studies use CT [14] and X-ray [15] images,
recently some studies applied ultrasound imaging to assist the automatic detection of lung
artefacts. For example, [16] employed a convolutional neural network (CNN) classifier
on LUS images with B-lines of different etiologies to accurately distinguish COVID-19
from similar pathology, reporting an F1 score of 0.8, 0.75 and 0.81 for COVID, no COVID
and HPE, respectively. Another study [6] proposed a method for the classification and
weakly-supervised localization of LUS B-lines in COVID-19 patients, to an accuracy in-vivo
of 0.83 to 0.89. Abnormalities in LUS images were recognised using a fully convolutional
network followed by class activation maps (CAMs) [17] to generate a weakly-supervised
segmentation of the images. Differently, a spatial transformer network was used by [18]
for weakly-supervised localization of COVID-19 related artefacts, reporting a maximum
F1 score of 0.71. Further, they predicted the presence of COVID-19 related artefacts and
disease severity using an ordinal regression. Kulhare et al. [19] employed a single-shot
CNN to predict bounding boxes for B-line artefacts, reporting a sensitivity/specificity
of 0.88/0.93. Because all the above techniques apply the processing task in individual
frames, they require prior retrieval of the relevant frame to be processed, either manually or
using a method to extract candidate frames. Applying the processing task to every single
frame to process an entire clip can be very sensitive to false positives. In our previous
work [11], of which this paper is an extension, we proposed a temporal attention-based
convolutional+LSTM model capable of detecting the B-line artefacts and localizing them
within LUS videos, allowing us to exploit spatiotemporal features to classify the video and
leveraging the temporal attention mechanism to identify the frame where the most salient
features are.
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The second category focuses on localising the image lesion, by using attention mech-
anisms and segmentation methods. Most of this work was carried out on lung images
acquired from other modalities such as CT and X-ray. Chen et al. [14] proposed a residual
attention U-Net for the multi-class segmentation of chest CT images from COVID-19 pa-
tients. A similar approach was employed for X-ray lung segmentation of pneumonia [15].
A 3D CNN network with online attention refinement and a dual-sampling strategy was
developed by [20] to differentiate COVID-19 artefacts from pneumonia in chest CT images.
Liu et al. [21] proposed a lesion-attention deep neural network (LA-DNN) that performs
binary classification of the presence of COVID-19 and, in addition, five lesion classification
with multi-label attention. Zhao et al. [22] proposed a dilated dual attention U-Net (D2A U-
Net) for COVID-19 lesion segmentation in CT images. The dilated convolution module in a
model decoder refines the decoding process and improves segmentation accuracy. Further,
a dual attention mechanism, which is inserted to the skip connection and model decoder is
utilized to refine feature maps and therefore reduce the semantic gap between different
levels of the model. A U-Net based COVID-19 CT images segmentation network using
an attention mechanism was proposed by [23]. They incorporated a spatial and a channel
attention mechanism to a U-Net architecture to capture rich contextual relationships for
better feature representation and, consequently, to enhance the network performance.

Previous work has used attention and CAMs to find the region in the image where the
lesion was. Our proposed method can localize B-line regions in LUS videos both spatially
and temporally despite being trained in a weakly-supervised fashion. We leverage temporal
analysis networks, and use spatiotemporal attention to find the most important frames (i.e.,
B-line frames) and localize B-line regions within a video. Indeed, the ability to detect B-line
frames in the LUS video is necessary for clinical application as B-line artefacts appear at
arbitrary frames within an LUS video. Furthermore, detecting B-line regions in the LUS
video along with the B-line frames would be the first step towards the quantification of the
severity of the disease.

3. Methods

Our model is a recurrent neural network (RNN) that aggregates a frame-based convolu-
tional feature extractor across the video to detect LUS B-line artefacts. As shown in Figure 2,
the model architecture has four components: (1) convolutional frame feature extraction
network (CNN); (2) spatial attention mechanism; (3) bidirectional long short-term memory
(LSTM) network; and (4) temporal attention mechanism. The convolutional features are
attended over both spatially, in each frame, and subsequently temporally for the entire
video sequence. Both employed attentions are soft attentions which means the effective
final representation at time t is a spatiotemporally weighted aggregation of convolutional
features across the video.

3.1. Convolutional Frame Feature Extraction Network

The input X to the model is a sequence of n frames, resized to 64 × 64 pixels,
X = (x0, ..., xn), X ∈ RD. This input is fed to the CNN part. The CNN architecture is
shown in Figure 3. This part consists of four layers of convolution with ReLU activation,
and two max-poolings. Each convolution filter uses 3× 3 kernels with unit stride, and 16
and 32 output channels, respectively. More accurate spatial feature extractors, for instance,
networks with more parameters such as ResNet-152 [24] and DenseNet [25], will likely
lead to a better overall performance. However, we keep the features relatively simple
because the primary purpose in this paper is to prove the efficacy of our spatiotemporal
attention mechanism.
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Figure 3. The CNN architecture of the proposed model. It consists of four convolution layers with
Relu activation function and; Maxpooling followed by the second and forth convolution layer.

3.2. Spatial Attention Mechanism

Spatial attention allows us to focus on regions of the frames that contribute to a higher
classification accuracy; in this case, to B-line classification, hence it should be able to focus
on B-line artefacts. The feature map output by the CNN network (explained in the previous
section) is passed as an input to our spatial attention module. Attention is achieved by
learning a map Mi that masks the image feature Xi of the ith frame to obtain attended
image features, as in [26]:

X̃i = Xi � Mi, (1)

where� denotes element-wise multiplication; for 1 ≤ i ≤ n, n is the number of frames, and
each entry of M lies in [0, 1]. This operation attenuates certain regions of the feature map
based on their estimated importance. Figure 4 illustrates the spatial attention mechanism.

¤CNN 

!Xi
Xi Mi

Spatial Attention 

GAP	

Figure 4. Spatial attention module. Several layers of convolutional networks (for details see Table 1) are
used to learn the importance mask Mi for the input image feature Xi, the output is the element-wise
multiplication X̃i = Xi �Mi. GAP: Global Average Pooling.

In order to learn the importance mask Mi, we apply three convolutional layers (archi-
tecture details are in Table 1) on the image feature Xi. Finally, the attended image feature
X̃i represents a region highlighted (or suppressed) version of Xi that is globally pooled,
hence delegating any ability to resolve features spatially to the attention mask.

Table 1. Details for spatial attention (N: number of output channels, K: kernel size, S: stride, P:
padding, BN: Batch Normalization).

Index Operation

(1) Conv (N = 16, K = 3, S = 1, P = 1, BN, Relu)
(2) Conv (N = 8, K = 3, S = 1, P = 1, BN, Relu)
(3) Conv (N = 1, K = 3, S = 1, P = 1, Sigmoid)



Appl. Sci. 2021, 11, 11697 6 of 14

3.3. Bidirectional LSTM and Temporal Attention

The LSTM and temporal attention parts are taken from our previous work in [11].
For completeness, a summary is presented here but the interested reader can refer to the
original paper for further details.

The spatial attention output, a 1× 1 feature map with 32 channels, is passed as an
input to the LSTM to extract temporal information. The generated LSTM outputs are then
sent over to the temporal attention network to produce the attention score for each attended
frame in the LUS video.

The temporal attention mechanism proposed for neural machine translation [27]
was adapted to our application as described in [11]. Essentially, frame-wise importance
attention weights are used to multiply the LSTM feature vector output; therefore, effectively
learning which frame of the LUS video to pay attention to. The temporal feature vector,
which is attention-weighted, is now averaged over time and used by a fully connected
layer for LUS video classification. The code we used to train and evaluate our models is
available at https://github.com/hamidehkerdegari/Spatiotemporal-Attention-for-B-line-
Detection (accessed on 1 December 2021).

4. Materials and Experimental Setup
4.1. Data Collection and Annotation

The LUS scans were performed using a Sonosite M-Turbo machine (Fujifilm Sonosite,
Inc., Bothell, WA, USA) with a low–medium frequency (3.5–5 MHz) convex probe by quali-
fied sonographers. A standardised operating procedure based on the Kigali ARDS proto-
col [28] (assessment for B-lines [29,30], consolidation and pleural effusion) was performed
at six points on each side of the chest (two anterior, two lateral and two posterolateral).

Data were collected from 60 Dengue patients at the Hospital of Tropical Diseases
(HTD) in Ho Chi Minh City, Vietnam. All patients were recruited following approved
institutional ethics and after informed consent, and in agreement with the Declaration of
Helsinki. This LUS video dataset contains approximately five hours B-line and non-B-line
video data with video resolution of 640 × 480 pixels and a frame rate of 30 fps. Then, each
four-second clip was saved in Audio Video Interleave (AVI) format, fully anonymised
through masking, and cropped to a square-shaped region around the ultrasound frustum,
as shown in Figure 5.

Figure 5. Examples of B-line regions annotation used for spatial attention task. A straight yellow
line was drawn on the B-line region extending from the surface of the lung distally following the
direction of propagation of the sound waves.

These anonymised LUS video clips were annotated by a qualified clinician using the
VGG annotation tool [31]. During the annotation procedure, a label that is either B-line or
non-B-line was assigned to each video clip. Then, the B-line frames in the B-line videos
were annotated for the temporal localization task using the proposed temporal attention
mechanism. Furthermore, the B-line regions were annotated using a straight line as shown
in Figure 5 for the spatial localization task with our spatial attention mechanism. The

https://github.com/hamidehkerdegari/Spatiotemporal-Attention-for-B-line-Detection
https://github.com/hamidehkerdegari/Spatiotemporal-Attention-for-B-line-Detection
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annotation outputs were saved in Java Script Object Notation (JSON): https://www.json.
org/ (accessed on 1 December 2021) format to be used as ground truth.

For training the model, we converted each four-second video clip into shorter clips of
one second with 20% overlap between consecutive frames in the video. The overview of
our LUS video dataset is presented in Table 2.

Table 2. Overview of our LUS video dataset properties.

Resolution Frame Rate Video Length No Patient Annotation

640 * 480 30
About 5 h in total

(avg 5 min per patient) 60
Frame-level &
line annotation

4.2. Implementation Details

Our model was implemented in Python, using Keras with Tensorflow. The model
was trained using an Adam optimizer, with a learning rate set to 10−6 and a batch size of
25. Dropout layers with a probability of 0.2 were also used to help regularize the training
process. Input videos were resampled to 64× 64 pixels during the training stage. We
augmented our dataset by adding horizontally-flipped frames to the training data. We
carried out 5-fold cross validation and trained the network for 150 epochs, after all models
had converged.

4.3. Evaluation Metrics

As an evaluation metric for the B-line classification task, we used the harmonic mean
of precision and recall expressed as the F1 score in percentages.

F1 = 2× Precision× Recall
Precision + Recall

× 100. (2)

Intersection Over Union (IoU) of the predicted and ground truth temporal labels was
used as the temporal attention mechanism error metric.

The Pearson correlation coefficient [32] was applied as a metric for the B-line spatial
localization task. The Pearson correlation coefficient, r, is a measure of the linear correlation
between two datasets which are B-line region annotation (shown in Figure 5) and generated
attention map (shown in Figure 6). This measure was calculated as follows:

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
. (3)

This equation shows how much the two datasets, x = [x1x2...xn] and y = [y1y2...yn],
vary together compared to how much they vary separately. The magnitude of the correla-
tion coefficient indicates the strength of the correlation and the sign indicates whether the
correlation is positive or negative.

https://www.json.org/
https://www.json.org/
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r=0.62 

r=0.59 

r=0.67 

r=0.75 

r=0.69 

r=0.68 

Figure 6. Examples of spatial attention map for B-line localization task. Our spatial attention module
can automatically highlight B-line regions (red areas) and avoid irrelevant regions corresponding to
no-B-line regions or background. Yellow straight lines represent ground truth. Correlation coefficient
values (r) are presented at the bottom of each attention map.

5. Experiment Results

We carried out five types of experiments: first, experiments to evaluate our proposed
method on the B-line classification task using the LUS video dataset described earlier;
second, experiments to evaluate the spatial attention mechanism on the B-line spatial
localization task; third, experiments to evaluate the temporal attention mechanism on the
B-line temporal localization task; fourth, experiments to investigate the effect of different
video lengths on model performance during the training and testing phase; and fifth,
several ablation experiments were conducted to evaluate the performance of components
presented in our model. Each of these experiments is described in turn.

5.1. B-Line Classification

We compared three model architectures to investigate the potential benefit of using
temporal information in the B-line detection task. Our baseline model (C2D+S+T) has
2D convolutions in the initial CNN subnet followed by spatial and temporal attention
modules without LSTM. The second model (C3D+S+T) is a model with 3D convolutions in
the CNN subnet followed by spatial and temporal attention and no LSTM. The last model
(C2D+S+LSTM+T) has 2D CNN followed by spatial attention, LSTM and temporal attention.

Table 3 shows the classification results on our LUS video dataset. The performance of
the C2D+S+T model is least (59.9%), because without the LSTM model it cannot model the
temporal part of the video. With the C3D+S+T model, the performance improves (78.3%),
which indicates the ability of the C3D network for modelling the data temporal aspect but
with a shorter context span over time compared to LSTM. However, when LSTM is added
to the C2D model in C2D+S+LSTM+T, the F1 score increases (83.2%), which indicates the
importance of the LSTM model for the B-line classification as it considers long temporal
progression of the LUS video data.

Table 3. B-line classification performance. All the values are in percentages.

Model Precision Recall F1

C2D+S+T 58.1 61.9 59.9

C3D+S+T 74.1 83.2 78.3

C2D+S+LSTM+T 77.2 90.3 83.2
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5.2. Spatial B-Line Localization

The spatial localization mechanism highlights regions in LUS frames, which contribute
most to the detection task. Here, we verify the hypothesis that such regions are indeed the
location of B-lines.

Evaluating spatial localization is a challenging task that heavily depends on the
available annotations. For instance, Meng et al. [33] applied thresholding on the saliency
mask for activity recognition in videos with bounding box annotations. The tightest
bounding box that contains the thresholded saliency map is considered the predicted
localization bounding box for each frame. Then, the predicted localization boxes were
compared with the ground truth bounding boxes at different intersection over union (IoU)
levels. Differently, in our study, B-line regions were annotated with a straight line as shown
in Figure 5. Further, we noticed that our attention maps tend to highlight the beginning of
the B-line as shown in Figure 6, which may correlate with the lung structure generating
the B-line, yielding a correct localization even if the attention does not span over the entire
length of the artefact. As a result, thresholding and IoU were not suitable for our evaluation.

Instead, we focused on the aspects of localization that were useful in the clinical
context. B-lines normally extend from the top to the bottom of the image following a
radial direction, hence the relevant parameter is the angular position of the B-line. As
a result, we assessed spatial localization by comparing the angle at which maximum
attention was learned to the ground truth angle from expert annotators. To that end, images
were converted to polar coordinates as shown in Figure 7, top. In polar representation,
the mean attention over depth was computed for each angle, yielding a 1D attention
vector that indicated which angle received more attention from the network, as shown in
Figure 7, bottom.

Then we employed the Pearson correlation coefficient [32] between the 1D attention
vector and their related ground truth data, exemplified in Figure 7, centre row. This analysis
showed that 1D attention vectors and their related ground truths are positively correlated,
r = 0.67, p < 0.0001. Another example is shown in Figure 8, where both spatial and temporal
(further evaluated in the next section) attentions are shown together.

To help interpret the quality of this correlation, Figure 6 shows an illustration of typical
attention maps and the ground truth B-line location overlaid, suggesting that our spatial
attention effectively attends to the B-line regions. These maps confirm the existence of
more dominant features closer to the lung surface, where B-lines are generated.

5.3. Temporal B-Line Localization

The temporal localization is designed to find the B-line frames in the LUS video by
predicting the importance of each frame for the classification task. We already showed
that the temporal information improved the classification accuracy (Table 3). Additionally,
temporal attention can discriminate frames that contain B-lines. To this end, Table 4 shows
the IoU between the predicted B-line frames (using different thresholds) and the ground
truth annotations, with an accuracy up to 69.7%. The calculation of the IoU is illustrated in
Figure 8, top. To put the average accuracy into context, the example in the figure had an
IoU of 78%. Furthermore, spatial attention maps are visualized for two B-line frames in
the figure showing the ability of the model to localize B-line artefacts spatially and totally,
being able to spatiotemporally localize B-line artefacts.
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Figure 7. Top: An example of polar coordinates applied to a sample B-line frame; the red cross shows
the beam source. Center: The generated 1-dimensional diagram showing it’s related ground truth
(green line, the black line is normal distribution), and Bottom: attention map values (red line) across
the coordinates. In this example, the correlation coefficient value is r = 0.71.

At
te
nt
io
n	
W
ei
gh
t	

Frames	

r=0.79 r=0.71 

Figure 8. Generated temporal (horizontal axis) and spatial (heatmap overlaid onto B-Mode B-line
frames) attentions estimated by our model on an example of an LUS video that includes both B-
line and non-B-line frames. The top graph shows the temporal attention weights (in blue) and the
corresponding ground truth annotations (in green). Spatial attention maps are visualized for B-line
frames (for example frames 16 and 22): the yellow lines show the manual B-line annotations and, the
correlation coefficient values (r), computed as described in the text, are presented at the bottom of
each frame for illustration.

Additionally, a frame with the highest attention weight that is a representative frame
with B-lines was identified on the test set with an accuracy of 88.6%. This could be useful to
automatically provide clinicians with an exemplar frame to support the classification result.
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Table 4. B-line localization performance at different IoU α’s. All the values are in percentages.

IoU α = 0.1 α = 0.2 α = 0.3

C2D+S+T 37.7 32.4 27.6

C3D+S+T 65.1 62.3 52.5

C2D+S+LSTM+T 69.7 64.1 53.9

5.4. Effect of Video Length on B-Line Classification Performance

Our B-line classification model (C2D+S+LSTM+T) was trained on the video lengths of
one-second and was tested on the same video lengths with a performance over 80%. In a
real clinical setting, however, the duration of the clips may vary (typically between 1 and
4 s). Additionally, the ability to use shorter videos can enable a more efficient translation to
real time imaging. Therefore, we investigate the effect of various LUS video lengths on the
model performance during the training and testing phases of the model.

The maximum length of our LUS videos is four seconds. As a result, we divided these
four-second videos into shorter videos of length l = {1, 2, 3, 4} s. Results are presented in
Table 5. Interestingly, when the model was trained on longer videos and then tested on
shorter videos (For example, training = 4 s, and testing = 1 s), the performance decreased
which means it needs more times for learning the video features. In contrast, training with
shorter video lengths and testing with longer video lengths (For example, training = 1 s,
and testing = 4 s) showed that one second of the four-second videos is enough for the
model to find meaningful features during the testing. Further, when the same video length
is used during the training and testing, the model performance is, in all cases, >83%.

Table 5. B-line classification performance (F1) using different video length l during training and
testing phases. All values are presented in percentages.

Testing

Length l (s) 1 2 3 4

Training

1 83.2 83.0 82.8 82.6

2 81.1 83.0 82.5 82.2

3 79.7 80.1 83.6 83.8

4 78.6 79.2 80.4 83.5

5.5. Ablation Study

We performed an ablation study to investigate the contribution of the spatial and
temporal attention mechanisms. The results are shown in Table 6.

As a baseline, we used the model without attentions, that is, a CNN feature extractor
followed by an LSTM C2D+LSTM, with a performance (F1) of 79.7%. Adding spatial
attention (C2D+S+LSTM) improved performance to 80.5%. The baseline with only tem-
poral attention (C2D+LSTM+T) further improved performance to 81.0%, suggesting that
temporal localization contributes more to performance than spatial localization. The spa-
tiotemporal attention model (C2D+S+LSTM+T) outperformed all the others, with a top
performance of 83.2%.

We also analyzed the performance with the spatial attention layer inserted after the
first (C2D+S+LSTM+T*) or the second maxpool (C2D+S+LSTM+T), obtaining, respectively,
82.7% and 83.2% F1 scores, and suggesting that attention contributes more to classification
accuracy when added later.
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Table 6. Ablation experiments of the proposed model (C2D+S+LSTM+T). All the reported values are
in percentages.

Model Precision Recall F1

C2D+LSTM 75.1 85.0 79.7

C2D+S+LSTM 75.7 86.1 80.5

C2D+LSTM+T 76.1 86.8 81.0

C2D+S+LSTM+T* 76.8 89.8 82.7

C2D+S+LSTM+T 77.2 90.3 83.2

6. Discussion and Conclusions

We have proposed a spatiotemporal attention based convolutional+LSTM model
capable of detecting the B-line artefacts and localizing them both spatially and temporally
within LUS videos. Besides boosting the B-line classification accuracy, our spatiotemporal
mechanism can increase the model interpretability, by suggesting when and where B-
line artefacts are found. This localization ability was demonstrated quantitatively and
qualitatively, despite being trained in a weakly-supervised manner. The model showed
a B-line classification F1 score of 83.2% and a B-line spatial and temporal localization
accuracy of r = 0.67% and IoU = 69.7%, respectively. These results are consistent with
qualitative analysis via visual inspection of the resulting attention maps, which highlight
frames and regions with the most salient B-lines in the video. In the context of competing
methods, as outlined in Section 2, our method achieves state-of-the-art accuracy, and
additionally can identify the most relevant frame. Furthermore, compared to a study by
Gullet et al. [34], which investigated the agreement between physicians for assessing B-line
presence on ultrasound in emergency patients and found intraclass correlation coefficients
(ICC) agreement of 0.729, the results of our study for B-line classification (F1 score of 83.2%)
is promising for a correct diagnosis.

A limitation of this study is that we focused on B-line artefacts only. Although
this is the most important artefact in lung assessment, a complete lung examination
including other features, such as pleural effusion, consolidation and confluent B-lines,
will be incorporated in future work.

Our proposed model is a first step towards bringing automated LUS analysis to
the ICU, particularly for the management of dengue patients in low and middle income
countries where operator expertise is limited.
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