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Abstract: Facial expressions are one of the most powerful ways to depict specific patterns in human
behavior and describe the human emotional state. However, despite the impressive advances
of affective computing over the last decade, automatic video-based systems for facial expression
recognition still cannot correctly handle variations in facial expression among individuals as well as
cross-cultural and demographic aspects. Nevertheless, recognizing facial expressions is a difficult
task, even for humans. This paper investigates the suitability of state-of-the-art deep learning
architectures based on convolutional neural networks (CNNs) to deal with long video sequences
captured in the wild for continuous emotion recognition. For such an aim, several 2D CNN models
that were designed to model spatial information are extended to allow spatiotemporal representation
learning from videos, considering a complex and multi-dimensional emotion space, where continuous
values of valence and arousal must be predicted. We have developed and evaluated convolutional
recurrent neural networks, combining 2D CNNs and long short term-memory units and inflated
3D CNN models, which are built by inflating the weights of a pre-trained 2D CNN model during
fine-tuning, using application-specific videos. Experimental results on the challenging SEWA-DB
dataset have shown that these architectures can effectively be fine-tuned to encode spatiotemporal
information from successive raw pixel images and achieve state-of-the-art results on such a dataset.

Keywords: facial expression recognition; deep learning; convolutional recurrent neural networks;
inflated 3D CNNs; dimensional emotion representation; long short-term memory

1. Introduction

Facial expressions are the results of peculiar positions and movements of facial mus-
cles over time. According to previous studies, face images and videos provide an essential
source of information for representing the emotional state of an individual [1]. There-
fore, facial expression recognition (FER) has attracted a growing interest in recent years.
However, the detection of spontaneous facial expressions in the wild is a very challenging
task. The performance depends on several factors, such as variations among individuals,
the identity bias of subjects (e.g., gender, age, culture, and ethnicity), and the quality of
recordings (e.g., illumination, resolution, head pose, and capture conditions).

The fundamentals of human affect theory [2,3] inspired early research on FER systems.
Even if facial expressions can also be performed voluntarily, without any relationship to
the emotions that a person actually feels [4,5], FER systems assume that facial expressions
are associated with either discrete or multidimensional emotion models. Discrete models
are employed to classify facial images into discrete categories that can be recognizable
across cultures, such as anger, disgust, fear, happiness, sadness, and surprise. The limited
generalization capacity of these models has paved the way for multidimensional spaces
that can improve the representativeness and accuracy for describing emotions [6].

There are three levels for describing emotion: pleasantness, attention, and activation.
Specifically, emotion recognition datasets annotate emotional states with two values named
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valence and arousal. The former represents the level of pleasantness, and the latter repre-
sents the level of activation, each of these values lying in the [−1; 1] range. These values
can be used to project an individual emotional state into a 2D space called the circumplex
model, which is shown in Figure 1. The level of arousal is represented on the vertical axis,
whereas the valence level is represented on the horizontal axis.

Figure 1. The circumplex model. Adapted from [7].

Early FER systems relied on shallow approaches, which combined handcrafted fea-
tures, such as eigenfaces [8], Gabor wavelets [9], local binary patterns (LBP) [10,11] and
its variants (such as LBP-TOP [12] and LBP-SIP [13]), and Weber local descriptor [14] with
support vector machines (SVM). However, recent advances in deep learning (DL) and com-
puting technologies have led FER systems to learn discriminant representations directly
from face images. Previous studies first exploited static FER datasets, where subjects are
associated with discrete and mutually exclusive categories of emotions. State-of-the-art
performance on benchmarking datasets, such as FER2013 [15], TFD [16], and SFEW [17],
was achieved using CNN-based approaches [18–24].

Temporal information and dynamic facial components can play a crucial role in de-
scribing facial expressions [1]. By definition, people express emotions in a dynamic process,
and learning spatiotemporal structures has become the current trend. Recent studies have
proposed deep architectures for FER, which were trained on video data [25]. In the litera-
ture, video sequences are mostly processed using aggregation and concatenation of features
for each facial image into clips. Yet, they cannot leverage the temporal dependencies over a
video [26,27]. To circumvent this issue, convolutional recurrent neural networks (CRNN)
and 3D-CNN architectures have been proposed to encode spatiotemporal relations among
video frames [28,29].

This paper investigates and compares state-of-the-art DL models based on CNNs
for video-based emotion recognition, where affective states are represented as continuous
values in the bidimensional space of valence and arousal. The novelty of this paper is the
extension of state-of-the-art 2D CNN architectures to model spatiotemporal relations of
facial features in videos with the aim of improving the predictions for continuous values of
emotion. Starting from pre-trained 2D CNNs, two types of DL models are fine-tuned with
videos: (i) a 2D CNN combined with a long short-term memory (LSTM) structure; and (ii)
a 2D CNN inflated into a 3D CNN. These models predict emotions through regression of
valence and arousal values. Long video sequences are captured in the wild and split into
several clips to augment training data and isolate unique facial expressions. For proof-of-
concept, CNN architectures, such as VGG and ResNet, were pre-trained with ImageNet
and RAF-DB datasets and fine-tuned with multiple video sequences from the SEWA-DB
dataset to predict continuous values of valence and arousal. Experiments were conducted
over different clip lengths, overlapping ratios, and strategies for fusing annotations.

The main contributions of this paper are (i) spatiotemporal models, combining pre-
trained 2D CNNs and LSTM units for continuous emotion recognition that achieve state-
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of-the-art performance on SEWA-DB; (ii) a comparative study on the impact of the dataset
used for pre-training and level of fine-tuning on the accuracy of different CNN models for
discrete emotion recognition; and (iii) a novel spatiotemporal model based on an inflated
pre-trained 2D CNN for continuous emotion recognition.

This paper is organized as follows. Section 2 provides a review of DL models proposed
for emotion recognition in videos captured in the wild, focusing on models that allow
encoding the spatiotemporal relations in facial emotions. Section 3 presents an overview of
DL models that are proposed for continuous emotion recognition, including pre-processing
steps, model architectures, pre-training, fine-tuning procedures, and post-processing steps.
Section 4 describes the experimental methodology (e.g., protocol, datasets and performance
metrics) used to validate DL models for continuous emotion recognition, as well as the
experimental results. Section 5 presents a discussion and a comparison with the state of
the art. Conclusions are presented in the last section.

2. Related Works

A conventional approach for dealing with video frames is to aggregate features ex-
tracted from each frame into a clip before final emotion prediction Ding et al. [27]. In addi-
tion to feature aggregation, Bargal et al. [26] also aggregated the mean, variance, minimum
and maximum over a sequence of features, thus adding some statistical information. How-
ever, since feature aggregation cannot exploit inter-correlations between frames and cannot
depict temporal dependencies, this approach has substantial limitations. To circumvent
this issue, recurrent neural networks (RNN), such as LSTM or 3D CNN architectures, can
integrate data series as input, provided that data are sequentially ordered, and transitions
have a substantial potential for information. While LSTMs can deal with sequential data of
variable length in both directions, 3D CNNs exploit textured variations from a sequence
of images by extending convolutional kernels to a third dimension. Hence, 3D CNNs are
well suited to encode spatiotemporal information in video-based FER applications. For
example, Tran et al. [30] proposed a 3D CNN model for action recognition on the UCF101
dataset, which encompasses videos classified over 101 action categories. They showed that
3D CNNs can outperform 2D CNNs on different video analysis benchmarks and bring
efficient and compact features. Several recent studies [31–37] proposed approaches based
on 3D CNNs for FER. Nevertheless, all of them deal with discrete emotion prediction.

A popular approach for dealing with temporal sequences of frames is a cascaded net-
work in which architectures for representation learning and discrimination are stacked on
top of each other. Thus, various levels of features are learned by each block and processed
by the following until the final prediction. Notably, the combination of CNNs and LSTM
units has been shown to be effective in learning spatiotemporal representations [30,38]. For
instance, Ouyang et al. [37] used a VGG-16 CNN to extract a 16-frame sequence of features
and fed an LSTM unit to predict six emotion categories. They preprocessed video frames
with a multi-task cascade CNN (MTCNN) to detect faces and described each video by a
single 16-frame window. Similarly, Vielzeuf et al. [39] used a VGG-16 CNN and an LSTM
unit as part of an ensemble with a 3D-CNN and an audio network. Mainly, they used
the multi-instance learning (MIL) method to create bag-of-windows for each video with a
specific overlapping ratio. Each sequence was described by a single label and contributed
to the overall prediction of the matching video clip.

Since deep neural networks (DNNs) are highly data-dependent, there are strong
limitations for designing FER systems based on DNNs, even more since FER datasets are
often small and task-oriented [1]. Considering this fact, training deep models on FER
datasets usually leads to overfitting. In other words, end-to-end training is not feasible
if one may learn representation and a discriminant with deep architectures on images
with little pre-processing. In this way, some previous works showed that additional
task-oriented data for pre-training networks or fine-tuning on well-known pre-trained
models could greatly help in building better FER models [40,41]. Pre-training deep neural
networks is then essential for not leading DL models to overfit. In this way, several
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state-of-the-art models were developed and shared for research purposes. For example,
VGG-Face [42] is a CNN based on the VGG-16 architecture Simonyan and Zisserman [43]
to circumvent the lack of data by building an architecture for face identification and
verification and make it available for the research community. This CNN trained on about
three million images of 2600 subjects makes this architecture especially adapted for face and
emotion recognition. Recent works that have performed well in FER challenges, such as
EmotiW [44] or AVEC [45], are based on VGG-Face architecture. Wan et al. [46] combined
linear discriminant analysis and weighted principal component analysis with VGG-Face for
feature extraction and dimension reduction in a face recognition task. Knyazev et al. [47],
as part of the EmotiW challenge, fine-tuned a VGG-Face on the FER2013 dataset [15] and
aggregated frame features for classifying emotions on video sequences with a linear SVM.
Finally, Ding et al. [48] proposed peculiar fine-tuning techniques with VGG-Face. They
constrained their network to act like a VGG-Face network by transferring outputs from
late layers rather than transferring weights.

Recent works used 3D convolutional kernels for a spatiotemporal description of vi-
sual information. The first 3D-CNN models were developed for the action recognition
task [30,34,38]. Three-dimensional CNNs pre-trained on action recognition datasets were
then made available and transferred to affect computing research [32,33]. Ouyang et al. [37]
combined VGG-Face and LSTM, among other CNN-RNN and 3D CNN networks, to build
an ensemble network for multi-modality fusion (video+audio), which predicts seven cate-
gories of emotions. We believe no 3D CNN model has been evaluated so far for predicting
continuous emotions, and only a few approaches have been proposed for discrete emo-
tion prediction. This is mainly due to the lack of video datasets for FER, which allow
exploiting the temporal dimension. To circumvent this issue, Carreira and Zisserman [49]
developed the i3D network, which can learn 3D feature representations based on 2D
datasets. They inflated a 2D inception CNN to extend learned weights in 2D to a third
dimension. In this way, they developed several pre-trained networks based on the same
architecture with a combination of ImageNet and Kinetics datasets on images or optical
flow inputs. As demonstrated by Carneiro de Melo et al. [29], 3D CNNs for emotion recog-
nition and depression detection [32,33,37] have a lower capacity to produce discriminant
spatiotemporal features than i3D [49]. This is mainly because the i3D-CNN is deeper
and benefits from efficient neural connections through the inception module. In this way,
with inflated 2D networks, efficient 3D CNNs can be built from competitive 2D architec-
tures. Carneiro de Melo et al. [29] proposed a deep maximization-differentiation network
(MDN) and compared this architecture with i3D-CNN and T-3D CNN [50], showing that
i3D requires fewer parameters than other models and is computationally faster. Finally,
Praveen et al. [51,52] applied i3D networks in pain intensity estimation with ordinal re-
gression. Their approach achieved state-of-the-art results, notably by using deep weakly
supervised domain adaptation based on adversarial learning.

Most of the previous studies on FER are based on the categorical representation of
emotion. Still, some studies have also dealt with continuous representations, which have
proven effective on both image and video datasets. Discrete models are a straightforward
representation of emotion, and for instance, they do not generalize well across cultures. For
example, smiles can be attributed to happiness, fearfulness, or disgust, depending on the
context. On the other hand, dimensional models can distinguish emotions upon a better
basis, which are levels of arousal and valence [53]. These two values, widely used in the
psychology field, can assign a broader range of emotional states. Researchers have shown
that low- and high-level features complement each other. Their combination could shrink
the affective gap, defined as the concordance between signal properties or features and
the desired output values. For instance, Simonyan and Zisserman [54] and Kim et al. [55]
built feed-forward networks combining color features, texture features (LBP), and shape
features (SIFT descriptors). Other works focused on emotion recognition at the group
level by studying not only facial expressions, but also body posture or context [56], as well
as by exploring various physiological signals, such as electrocardiogram and respiration
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volume [53,57]. Kollias and Zafeiriou [58] compared and used exhaustive variations of
CNN–RNN models for valence and arousal prediction on the Aff-Wild dataset [59]. Past
studies have particularly worked on full-length short video clips to predict a unique cate-
gorical label [44,45]. However, with current datasets and dimensional models, almost every
frame is annotated, and several peaks of emotions can be distinguished [60]. Therefore,
a unique label cannot be attributed to a single video clip. The straightforward approach
is to split videos into several clips and average the predictions on consecutive frames of
the sequence to come out at a unique continuous value. Nevertheless, the duration of
emotion is not standardized, and it is almost totally dependent on random events, such
as environmental context or subject identity. In this way, windowing video clips is chal-
lenging since detecting the most significant sequence for a single unity of emotion is not
straightforward. Therefore, fixing arbitrary sequence lengths could bring significant biases
in emotion prediction and lead to information loss.

3. Spatiotemporal Models for Continuous Emotion Recognition

This paper proposes a two-step approach for continuous emotion prediction. In the
first step, to circumvent the lack of sequences of continuous labeled videos, three source
datasets, namely ImageNet, VGG-Face, and RAF-DB, are employed to initialize the 2D
CNN architectures. ImageNet and VGG-Face datasets, which contain generic object images
and face images, respectively, are used for pre-training three 2D CNN architectures: VGG-
11, VGG-16, and ResNet50. These architectures were retained because they presented a
state-of-the-art performance on discrete emotion recognition [42,46,47,61,62]. The RAF-DB
dataset is closer to the target dataset since it contains face images annotated with discrete
(categorical) emotions, and it is used for fine-tuning the 2D CNN architectures previously
trained on ImageNet and VGG-Face datasets, as illustrated in Figure 2. Such 2D CNNs
will be used as baseline models with the target dataset.

Figure 2. Overview of pre-training and fine-tuning of 2D CNN architectures for discrete emotion
prediction.

In the second step, such baseline models are extended to handle spatiotemporal
information and perform continuous emotion recognition. Furthermore, such extended
models are fine-tuned on a target dataset. There are two strategies to model the sequential
information of videos, as shown in Figure 3: (i) a cascade approach, where an LSTM unit
is added after the last convolutional layer of the 2D CNNs to form a 2D CNN–LSTM; (ii)
inflating the 2D convolutional layers of the 2D CNNs to a third dimension to build an
i3D CNN. This second step also includes the pre-processing of video frames, as well as
post-processing predictions.
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Figure 3. Overview of the two used deep architectures for depicting spatiotemporal features on
video sequences: a cascaded network 2D CNN–LSTM and an i3D CNN.

The rest of this section provides additional information on the pre-training and fine-
tuning of 2D CNN models, the pre-processing steps to locate face images within video
frames and build sequences of frames to feed spatiotemporal models, the DL models for
continuous emotion recognition, and post-processing of the emotion predictions.

3.1. Pre-Training and Fine-Tuning of 2D CNNs

Training CNNs on small datasets systematically leads to overfitting. To circumvent
this issue, CNNs can be pre-trained or fine-tuned on datasets that are similar or not to
the target task [40,41]. Well-known CNN architectures, such as AlexNet [63], VGG [43],
and GoogleNet, form an important set of baselines for a large number of tasks; in par-
ticular, pre-training such networks on the ImageNet dataset constitutes a powerful tool
for representation learning. However, recent FER studies have shown that VGG-Face
architectures, which are trained on a huge dataset of face images, overwhelms architectures
trained on ImageNet for FER applications [64]. Furthermore, Li and Deng [1] showed that
multi-stage fine-tuning can provide even better performance. Particularly, FER2013 [15],
TFD [16] or, more recently, RAF-DB [65,66] datasets are good sources of additional data
for FER tasks. Tannugi et al. [67] and Li and Deng [68] pursued interesting work on
cross-dataset generalization tasks by switching in turn source and target FER datasets and
evaluating the performance of FER models. Li and Deng [68] showed that datasets are
strongly biased, and they developed a novel architecture that can learn domain-invariant
and discriminative features.

Globally, this study considers using three different data sources for double transfer
learning [69]: VGG-Face, ImageNet, and RAF-DB. There are already three architectures
(VGG-11, VGG-16, and ResNet50) pre-trained on the first two datasets. However, such
architectures had to be fully trained on the RAF-DB dataset. Several configurations were
evaluated for training and fine-tuning different 2D CNN architectures on the RAF-DB
dataset to determine how multi-stage fine-tuning can be well performed. The 2D CNN
architectures were fine-tuned by freezing the weights of specific early layers while opti-
mizing deeper ones. Since the three architectures have several convolutional blocks, the
weights were frozen sequentially according to these blocks. The proposed architecture
keeps convolutional blocks, while discriminant layers (i.e., fully connected layers) were
replaced by a stack of two fully connected layers with 512 and 128 units, respectively,
and an output layer with 7 units, since there are seven discrete emotion categories in the
RAF-DB dataset: surprise, fear, disgust, happiness, sadness, anger, and neutral.

3.2. Pre-Processing

Face images are usually affected by background variations, such as illumination, head
pose, and face patterns linked to identity bias. In this way, alignment and normalization are
the two most commonly used preprocessing methods in face recognition, which may aid
in learning discriminant features. For instance, the RAF-DB dataset contains aligned faces,
while the subjects in the SEWA-DB dataset naturally face a web camera. Therefore, face
alignment is not an important issue for this study. Furthermore, normalization only consists
of scale pixel values between 0 and 1 to standardize input dimensions. Furthermore, faces
were resized to 100 × 80 pixels, the average dimension of faces found in the target dataset.
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The details of other essential steps for facial expression recognition in video sequences,
such as frame and face extraction and window bagging, are presented as follows.

3.2.1. Frame and Face Extraction

The videos of the target dataset (SEWA-DB) were recorded at 50 frames per second
(fps). On the other hand, the valence and arousal annotations are available at an interval
of 10 ms, corresponding to 10 fps. Therefore, it is necessary to replicate annotations for
non-labeled frames when using 50 fps.

For locating and extracting faces from the frames of the SEWA-DB videos, it is em-
ployed a multi-task cascaded CNN (MTCNN) [70], which has shown excellent efficiency in
electing the best bounding box candidates showing a whole face within the image. The
MTCNN employs three CNNs sequentially to decide which bounding box must be kept
according to particular criteria learned by deep learning. The face extractor network out-
puts box coordinates and five facial landmarks: eyes, nose, and mouth extremities. Once
faces are located, they are cropped using the corresponding bounding box. An overview
of MTCNN architecture is shown in Figure 4. Only frames showing whole faces are kept,
while other frames are discarded.

Figure 4. Exhaustive MTCNN architecture composed of a stack of CNNs. A single meaningful
bounding box and five facial landmarks are extracted from face images. Adapted from [70].

3.2.2. Sequence Learning

The target dataset contains long video sequences showing a variety of emotions along
with records of facial expressions from single subjects. The duration of emotions is not
clearly established, and it varies for each individual. Several studies were previously
carried out to obtain expression intensity variations by pointing peak and non-peak expres-
sions along with sequences. However, while whole video sequences represent multiple
annotations at a specific sampling rate and not a single label to describe a succession of
diverse emotional states, the video sequences are split into several clips of fixed length with
a specific overlapping ratio. This has two main advantages: (i) it increases the amount of
data for training CNNs; (ii) it allows the investigation of which window settings are better
for training spatiotemporal CNNs to learn from long sequences of valence and arousal
annotations. Based on an exploratory study, two sequence lengths (16 and 64 consecutive
frames of a single video) and three overlapping ratios for each sequence length (0.2, 0.5,
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and 0.8) were chosen. Thus, for instance, a window of 16 consecutive frames with an
overlap of 0.5 contains the last eight frames of the previous window.

It is also important to check the integrity of contiguous video frames. Indeed, some
frames were discarded because no face was detected within them, damaging the continuity
of the temporal information of emotion between them. Furthermore, the proposed strategy
to divide videos into clips may introduce critical temporal gaps between two consecutive
frames. Therefore, a tolerance (a temporal difference between close frames) was applied to
select clips that give sense to a unique emotion unit. Globally, the MTCNN can detect faces
in videoclips, and on average, 90% of the frames are kept, depending on the sequence length,
overlapping ratio, and frame rate. Figure 5 presents the number of clips available in training,
validation, and test sets, according to such parameters. Finally, the last preprocessing step
is to fuse annotations of multiple frames in one clip to obtain a single emotion label for each
window. For such an aim, either the average or the extremum value of the labels is used to
obtain a single label for each continuous emotion (single valence and arousal values).

Figure 5. Evolution of the number of sequences for training, validation and test sets for different
configurations: 10 and 50 fps; sequence length of 16, 32 and 64 frames; overlapping ratio of 20%, 50%
and 80%.

3.3. Spatiotemporal Models

Two spatiotemporal models were developed: (i) a cascaded network based on a VGG-
16 network pre-trained on VGG-Face that can be fine-tuned or not on the RAF-DB dataset;
and (ii) an inflated network based on either VGG-11, VGG-16, or ResNet50 architectures
pre-trained on different datasets (VGG-Face, RAF-DB, ImageNet).

3.3.1. Cascaded Networks (2D CNN–LSTM)

Long short-term memory units (LSTMs) are a special kind of RNN, capable of learning
order dependence that may be found in a sequence of frames from a video. The core of
LSTMs is a cell state, which adds or removes information depending on the input, output,
and forget gates. The cell state remembers values over arbitrary time intervals, and the
gates regulate the flow of input and output information of the cell.

The architecture of the proposed cascade network combines the 2D convolutional
layers of VGG-16 for representation learning with an LSTM to support sequence prediction,
as shown in Figure 6. Video frames are fed to the VGG-16-LSTM and then accumulated
to form a feature vector representing one clip. After going through the LSTM unit for
modeling temporal information between frames, the fully connected (FC) layers perform
valence and arousal values regression. The LSTM has a single layer with 1024 units, with
random and uniform distribution initialization to extract temporal features from the face
features learned by the 2D CNN. In addition, some dropout (20%) and recurrent dropout
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(20%) were added on LSTM units to avoid overfitting. There are also three fully connected
layers stacked after the LSTM to improve the expressiveness and accuracy of the model.

The VGG-16-LSTM architecture is pre-trained considering two different strategies: (i) VGG-
16 pre-trained on the VGG-Face dataset; and (ii) VGG-16 pre-trained on the VGG-Face dataset
and fine-tuned on the RAF-DB dataset. The former strategy adds extra information to the
models, such as the classification of discrete emotions with RAF-DB, which could help to
improve the performance on the regression task.

Figure 6. The architecture of the VGG-16-LSTM. A 3 × 3 kernel is used in each convolutional layer.
The numbers of filters and units in LSTM and FC layers are also indicated.

3.3.2. Inflated 3D CNN (i3D CNN)

The need to analyze a sequence of frames led us to the use of 3D CNNs. Three-
dimensional CNNs produce activation maps that allow analyzing data where temporal
information is relevant. The main advantage of 3D CNNs is to learn representation from
clips that can strengthen the spatiotemporal relationship between frames. Different from
2D CNNs, 3D CNNs are directly trained on batches of frame sequences rather than batches
of frames. On the other hand, adding a third dimension to the CNN architecture increases
the number of parameters of the model, and that requires much larger training datasets
than those needed by 2D models. The main downside of using such an architecture for
FER tasks is the lack of pre-trained models. Besides that, it is difficult to train 3D CNN
architectures end to end for continuous emotion recognition, due to the limited amount
of training data. Therefore, a feasible solution is to resort to weight inflation of 2D CNN
pre-trained models [49]. Inflating a 2D CNN minimizes the need for large amounts of data
for training a 3D CNN properly, as the inflation process reuses the weights of the 2D CNNs.
Figure 7 shows that the weight inflation consists of enlarging kernels of each convolution
filter by one dimension.

Figure 7. Representation of the inflation method for a single convolutional filter. The 2D convolutional
kernels are replicated along a new dimension (temporal dimension) to obtain 3D convolutional
kernels. Basically, n× n kernels are made cubic to obtain n× n× n kernels. This process is applied
to every convolutional filter to transform 2D convolutional layers into 3D convolutional layers.
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Our target task implies extending each neuron’s receptive field to the time dimension
(i.e., a sequence of frames). The 2D convolutional kernels are replicated to fit the third
dimension and form a 3D convolutional kernel. At first glance, pre-trained weights are just
copied through the time dimension and provide a better approximation for initialization
than randomness. However, they do not constitute an adequate distribution for the time
dimension yet. With this in mind, the next issue is finding a method that best fits the
transfer learning to the time dimension with weight inflation by varying some parameters,
such as initialization, masking, multiplier, and dilation.

Initialization: When replicating kernels for weight inflation, it is possible to copy
the weights n times (n being the dimension of the time axis) or to center the weights.
Centering means copying once the weights of a 2D kernel and initializing the weights of the
surrounding kernels that form the 3D filter either randomly (with a uniform distribution) or
with zeros. Assuming that pre-trained 2D kernels have a good capacity for generalization
for images, giving sufficiently distant distribution for all but one 2D kernel from the copied
2D kernel could positively impact model convergence.

Masking: Assuming that copied 2D kernels are pre-trained properly considering a
very similar task and that they perform well on images, the idea of masking is to train
adequately inflated weights on the time dimension. Therefore, to disseminate the spatial
representation learned from pre-trained weights to inflated weights, centered weights are
not modified during training.

Multiplier: The distribution of CNN weights and the range of targeted values for
regression are closely related. Since values of valence and arousal range from −1 to 1
and standard values of the weights often take values between 10−3 and 10−1, then rising
targeted values by a factor could allow to scale up the distribution space and improve
convergence.

Dilation: Dilated convolutions are used in our models, as suggested by Yu and Koltun [71].
The dilation was performed only on the time dimension.The architectures were divided into
four blocks with increasing dilation levels, from 1 (no dilation) to 2, 4, and 8 for top convolu-
tional layers. Dilated convolution consists of receptive fields larger than conventional ones.
In other words, neuron connections of one convolutional layer are spread among neurons
of previous layers. Notably, such a kind of implementation showed good performance for
segmentation and object recognition tasks.

Figure 8 shows the architecture of the proposed i3D CNN, which is based on the
inflation of 2D convolutional kernels of a pre-trained VGG-16 CNN. Video clips are fed
to the i3D CNN, then spatiotemporal face features are extracted, and two fully connected
(FC) layers perform the regression of valence and arousal values. Such an i3D CNN is then
fine-tuned on a target dataset to perform the regression of valence and arousal values with
a sequence of fully connected layers.

Figure 8. The proposed i3D CNN based on the inflation of the 2D convolutional kernels of a pre-
trained VGG-16 CNN. For each convolutional layer, a 3 × 3 × 3 kernel is used. The numbers of filters
and units in FC layers are also indicated.
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3.4. Post-Processing

The post-processing aims to improve the quality of the prediction by using some sta-
tistical information of the target dataset to reduce variance among datasets [72]. However,
due to data imbalance in the training set, some valence and arousal values are difficult
to reach. For instance, in the target dataset, neutral emotions, which imply valence and
arousal levels close to zero, are much more frequent in the training set than extreme valence
and arousal values (close to 1). Therefore, three post-processing steps are used to reduce
the variance: scale normalization, mean filtering, and time delay.

Scale normalization consists in normalizing the predictions according to the distribu-
tion of the labels in the training set. Valence and arousal predictions (y′) are normalized by
the mean (yltr ) and the standard deviation (σltr ) of the labels of the training set as:

ysn =
y′ − yltr

σltr
(1)

Mean filtering consists of centering predictions around mean values, increasing the
linear relationship, and labeling correspondence. Valence and arousal predictions (y′) are
centered by subtracting the mean value of the labels (yltr ) of the training set and by adding
the mean value of the predictions (y′tr) on the training set as:

ym f = y′ − yltr + y′tr (2)

Finally, a time delay is used to compensate for some offset between labels and pre-
dictions due to the reaction lag of annotators. Valence and arousal predictions (y′( f )) at
frame f are shifted over t frames (precedent or subsequent) in order to align predictions
and labels temporally as:

ytd = y′( f + t) (3)

where t is an integer in [−10, 10].

4. Experimental Results

This section briefly describes the two FER datasets used in the experiments: RAF-
DB and SEWA-DB. Next, it presents the performance measures and summarizes our
experimental setting and the results achieved by the proposed 2D CNN-LSTM and i3D
CNN models

4.1. Facial Expression Datasets

The Real World Affective Faces Database (RAF-DB) is a real-world dataset that con-
tains 29,672 images downloaded from the internet [65]. Around 40 annotators have labeled
each image. The dataset has two types of annotation: 7 classes of basic emotions and
12 classes of compound emotions. Only the seven basic emotions (face images and labels)
were used. Other metadata, such as facial landmarks, bounding box, and identity bias
(e.g., age, gender, and race) are also provided, but they were not used in any step of the
proposed approach. RAF-DB was used to fine-tune the pre-trained 2D CNNs.

SEWA-DB is a large and richly annotated dataset consisting of six groups of subjects
(around 30 people per group) from six different cultural backgrounds (British, German,
Hungarian, Greek, Serbian, and Chinese) divided into pairs of subjects [60]. Each pair of
subjects discussed their emotional state and sentiment toward four previously watched
adverts. The dataset consists of 64 videos (around 1525 minutes of audiovisual data) split
into three folders (34 training, 14 validation, and 16 test). Since the labels are not provided
for the test set due to its use in FER challenges, the validation set was used as the test set,
and the training set was split into training (28 videos) and validation (6 videos) sets. In
addition, annotations are given for valence, arousal, and levels of liking. Only valence and
arousal annotations were used since previous studies indicated that the liking level is not
well related to facial expressions.
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4.2. Performance Metrics

The standard performance metrics used in continuous emotion recognition are the
mean absolute error (MAE), the mean absolute percentage error (MAPE), Pearson corre-
lation coefficient (PCC), and concordance correlation coefficient (CCC). PCC assesses the
distance between target values and predictions, and CCC establishes the strength of a
linear relationship between two variables. The range of possible values lies in the interval
[−1; 1], where −1 or 1 means strong relation and 0 means no relation at all. The MAE for a
set of labels y and predictions y′ is given by:

MAE =
1
n

n

∑
i=1
|y′i − yi| (4)

The MAPE for a set of labels y and predictions y′ is given by:

MAPE =
1
n

n

∑
i=1

|y′i − yi|
yi

(5)

The PCC is given as:

ρ =
∑n

i=1(yi − y)
(
y′ i − y′

)√
n

∑
i=1

(yi − y)2

√
n

∑
i=1

(
y′ i − y′

)2
(6)

where n is the number of samples, yi is the i-th label, y′ i is the i-th prediction, and y and
y′ are the mean of labels and mean of predictions, respectively. It is important to notice
that these performance metrics are computed for each labeled video frame. Therefore, n
represents the total number of video frames in a test dataset.

The CCC combines the PCC with the squared difference between the mean of predic-
tions y′ and the mean of the labels y. CCC shows the degree of correspondence between
the label and prediction distributions based on the covariance and correspondence. The
CCC between a set of labels y and predictions y′ is given by:

ρc =
2ρsysy′

s2
y + s2

y′ +
(
y− y′

)2 (7)

where s2
y and s2

y′ are the variance of y and y′ respectively.

4.3. Training and Fine-Tuning 2D CNNs

Our first task is to specialize the three pre-trained CNN architectures (VGG-11, VGG-
16, and ResNet50) for emotion recognition by fine-tuning them with the RAF-DB dataset.
These three architectures were pre-trained either on the VGG-Face or ImageNet datasets.
For fine-tuning the pre-trained 2D CNNs on the RAF-DB dataset, video frames were
resized to 100 × 80 × 3, which is the mean dimension of video frames of the target dataset
(SEWA-DB). The learning rate was fixed to 1× 10−5 and batches of size 16. Optimization
was performed with the Adam optimizer. Different weights were assigned to each class
according to the number of samples to deal with the data imbalance found in the RAF-DB
dataset. This allows classes with few samples to affect the model’s weights to the same
extent as classes with many more samples. Moreover, low-level data augmentation, such as
rotation, flipping, and highlight variations, can also help improve performance. Although
data augmentation cannot bring important information for emotion recognition, it can
prevent overfitting on a single sample and improve the model distributions.

Table 1 presents the performance achieved by the 2D CNNs after fine-tuning on
the RAF-DB dataset, where the suffix BN refers to batch normalization layers added to
the original architectures after each convolutional layer to improve model convergence
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and reduce overfitting. Furthermore, it is indicated for each architecture the dataset
used for pre-training and the convolution block (2_1 to 5_1) where fine-tuning starts. In
general, most fine-tuned models achieved an accuracy higher than the baseline models [62].
Jyoti et al. [62] developed two 2D CNNs to analyze action units’ detection efficiency on
three datasets, including the RAF-DB dataset. The first CNN was based on residual
connections with densely connected blocks (ResNet), and the second architecture was a 2D
CNN consisting of four convolution layers and three fully connected layers. Such baselines
achieved 76.54% and 78.23% accuracies on the RAF-DB test set, respectively. On the other
hand, the proposed VGG-16 CNN model pre-trained with VGG-Face achieved 79.90%
accuracy on the same test set.

Table 1. Results of the fine-tuning of VGG and ResNet50 models on RAF-DB. Convolution block
denotes the initial level of fine-tuning of each model. Full denotes that all layers were fine-tuned.

Dataset for Convolution Accuracy
Reference Model Pre-Training Block (%)

Proposed

VGG-11 ImageNet

Full
Conv_2_1
Conv_3_1
Conv_4_1
Conv_5_1

75.6
75.9
75.9
75.9
70.3

VGG-11-BN ImageNet Full 77.8

VGG-16 VGG-Face

Full
Conv_2_1
Conv_3_1
Conv_4_1
Conv_5_1

78.5
78.5
79.1
79.9
74.4

VGG-16-BN VGG-Face Full 78.4

ResNet50 VGG-Face
Full
Conv_4_1
Conv_5_1

79.7
78.0
65.1

Jyoti et al. [62] RCNN NA NA 76.5
CNN NA NA 78.2

Li et al. [73] ACNN ImageNet NA 85.1
Wang et al. [74] CNN+RAN MS-Celeb-1M NA 86.9

The level of schooling refers to the mothers of all schoolchildren, who are used as a proxy for socio-economic status.

Other recent works, which employed attention networks, achieved better
performance [73,74]. However, the proposed approach did not consider two common
problems in face analysis in real-world scenarios: occlusions and pose variations. On the
contrary, Wang et al. [74] and Li et al. [73] addressed these problems using region-based
attention networks. Attention modules are used to extract compact face representations
based on several regions cropped from the face, and they adaptively adjust the importance
of facial parts. Therefore, these models learn to discriminate occluded and non-occluded
faces while improving emotion detection in both cases.

4.4. 2D CNN–LSTM Architecture

After specializing the three pre-trained CNN architectures (VGG-11, VGG-16, and
ResNet50) for emotion recognition by fine-tuning them on the RAF-DB dataset, we de-
veloped cascaded networks based on such architectures for spatiotemporal continuous
emotion recognition. Two 2D CNN–LSTM models were developed: (i) one based on the
VGG-16 architecture pre-trained on the VGG-Face dataset and fine-tuned on the RAF-DB
dataset because such an architecture achieved the best results on the RAF-DB test set; and
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(ii) a second one without fine-tuning on the RAF-DB dataset. The 2D CNN sequentially
provides spatial features for each input frame, and the LSTM unit models the temporal
information from a single clip. Different configurations were evaluated by varying the
length of sequences, the overlapping ratio, and the strategy to fuse the labels within a clip.
The architectures were fine-tuned on the development set of SEWA-DB, and the mean
squared error (MSE) was used as a cost function. Some other works also considered CCC
as a cost function [72] since it provides information about correspondence and correlation
between predictions and annotations. However, a better convergence is observed while
using the MSE.

Table 2 shows the results in terms of PCC and CCC, considering different frames
rates (fps), sequence lengths (SL), overlapping ratios (OR), and fusion modes (FM). In
general, both extremum and mean fusion performed well, and the best results for both
valence and arousal were achieved for sequences of 64 frames at 10 fps. The VGG-16
architecture benefited from fine-tuning on the RAF-DB, and it achieved CCC values of
0.625 for valence and 0.557 for arousal on the validation set of SEWA-DB. In addition to
the correlation metrics, the proposed 2D CNN–LSTM achieved an overall MAE of 0.06
(among 2D CNN–LSTM models), indicating a good correspondence between predictions
and annotations. Since the best performance was obtained with post-processing steps, thus
remodeling our set of predictions and annotations, MAPE was also computed to evaluate
the error ratio between predictions and annotations.

4.5. i3D CNN Architecture

Another alternative for spatiotemporal modeling is to use the i3D CNN. In this way,
strong spatiotemporal correlations between frames are directly learned from video clips by
a single network. Thanks to weight inflation, the pre-trained 2D CNNs can be used to build
i3D CNN architectures. The inflation method allows us to transpose learned information
from various static tasks to dynamic ones, performing the essential transfer learning for
learning spatiotemporal features. With this in mind, the 2D CNN architectures shown
in Table 1 are reused, and their convolutional layers are expanded to build i3D CNNs
considering two configurations, denoted as C1 and C2 in Table 3.

Table 2. Performance of the 2D CNN–LSTM based on the VGG-16 architecture on the SEWA-DB
dataset. The best results for valence and arousal are in boldface.

Dataset for Configuration

Initialization fps Label (SL, OR, FM) PCC↑ CCC↑ MAPE(%)↓

VGG-Face
10 Valence 16, 0.2, extremum 0.590 0.560 3.8

Arousal 16, 0.2, mean 0.549 0.542 8.7

50 Valence 64, 0.2, mean 0.541 0.511 6.8
Arousal 64, 0.2, extremum 0.495 0.492 3.4

RAF-DB
10 Valence 64, 0.8, mean 0.631 0.625 3.7

Arousal 64, 0.8, extremum 0.558 0.557 9.4

50 Valence 64, 0.2, mean 0.582 0.568 8.2
Arousal 64, 0.2, extremum 0.517 0.517 4.4

SL: sequence length (in frames), OR: overlapping ratio, FM: fusion mode.

Due to the high number of trainable parameters, i3D CNNs are particularly time
consuming to train. Therefore, some basic hyperparameters had a fixed value instead of
performing exploratory experiments to set them. Consequently, we evaluated only the best
configuration found for the 2D CNN–LSTM, as shown in Table 1, which uses a batch of
size 8, a sequence length of 64 frames, overlapping ratio of 0.8, and frame rate of 10 fps.
This is the main downside of our approach based on i3D CNNs. The number of trainable
parameters of i3D CNNs is three times greater than the counterpart 2D CNNs.
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Table 3. Hyperparameters of i3D CNN architectures and their possible values.

Parameters C1 C2

Inflation Centered Copied
Weight Initialization Random Zero
Masking No Yes

Dilation

Bloc1: 1
Bloc2: 1
Bloc3: 1
Bloc4: 1

Bloc1: 1
Bloc2: 2
Bloc3: 4
Bloc4: 8

Multiplier ×1 ×100

Tables 4 and 5 show only the best configurations of each architecture for valence and
arousal prediction, respectively. These configuration were obtained from an exhaustive
combination of the parameters’ values shown in Table 3 for each base model and con-
sidering different datasets for initializing such base models. Globally, different inflation
types, masking, and dilation values do not impact the results achieved by i3D models.
Table 6 shows the best performance obtained for each architecture for valence and arousal
in terms of PCC and CCC values. Inflated 3D CNNs for regression seem sensitive to some
training configurations regarding the range of results achieved by different base models
and datasets used in their initialization. In these conditions, it is difficult to state the
effect of a single parameter for inflation. VGG-16 with batch normalization and ResNet50
achieved the best results for valence and arousal and showed a good ability to predict
these values, compared to other base models. Surprisingly, the VGG-16 pre-trained on
ImageNet achieved higher PCC and CCC for both valence and arousal than those base
models pre-trained on VGG-Face and RAF-DB, which are source datasets closer to the
target one.

On the other hand, ResNet50 benefited from initialization with VGG-Face. In summary,
the best results ranged from 0.313 to 0.406 for PCC and from 0.253 to 0.326 for CCC. The
performance still shows a poor correlation between predictions and annotations. Still,
it is comparable to the performance achieved by other studies on continuous emotion
prediction that used the SEWA-DB dataset.

Table 4. The i3D CNN model configurations according to the best performance for predicting valence.

Parameters

Base Dataset for Models Initialization
Models Initialization Inflation Dilation Masking Centered Weights Mult

VGG-11-BN RAF-DB Centered I No Zero ×1
ImageNet Copied I No Zero ×100

VGG-16
VGG-Face Centered I No Random ×1
RAF-DB Copied I No Random ×1
ImageNet Centered I No Random ×1

VGG-16-BN
VGG-Face Centered I No Random ×1
RAF-DB Copied I Yes Random ×1
ImageNet Copied I No Random ×1

ResNet50
VGG-Face Centered I Yes Zero ×100
RAF-DB Copied VIII No Zero ×1
ImageNet Centered VIII Yes Zero ×1
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Table 5. The i3D CNN model configurations according to the best performance for predicting arousal.

Parameters

Base Dataset for Initialization
Models Initialization Inflation Dilation Masking Centered Weights Mult

VGG-11-BN RAF-DB Centered I No Random ×1
ImageNet Centered VIII No Zero ×1

VGG-16
VGG-Face Centered I No Random ×1
RAF-DB Copied I Yes Random ×100
ImageNet Centered I No Random ×1

VGG-16-BN
VGG-Face Centered I Yes Random ×1
RAF-DB Copied I No Random ×1
ImageNet Centered I No Zero ×1

ResNet50
VGG-Face Copied I Yes Zero ×100
RAF-DB Centered VIII Yes Zero ×1
ImageNet Centered I No Zero ×1

Table 6. Best performance of i3D CNNs for predicting valence and arousal in terms of PCC and CCC
values and MAPE according to different models and their initialization. The higher values of PCC
and CCC are in boldface.

Base Dataset for Valence Arousal

Models Initialization PCC↑ CCC↑ MAPE(%)↓ PCC↑ CCC↑ MAPE(%)↓

VGG-11-BN RAF-DB 0.035 0.018 2.9 0.359 0.348 8.1
ImageNet 0.040 0.025 4.2 0.342 0.203 3.0

VGG-16
VGG-Face 0.119 0.071 3.0 0.220 0.166 5.2
RAF-DB 0.036 0.028 3.5 0.242 0.119 4.6
ImageNet 0.209 0.190 2.4 0.391 0.189 3.8

VGG-16-BN
VGG-Face 0.203 0.105 3.6 0.347 0.304 5.3
RAF-DB 0.123 0.101 3.2 0.284 0.165 3.3
ImageNet 0.346 0.304 5.6 0.382 0.326 5.3

ResNet50
VGG-Face 0.313 0.253 3.5 0.406 0.273 4.9
RAF-DB 0.113 0.063 2.9 0.262 0.207 4.9
ImageNet 0.183 0.164 6.0 0.323 0.256 4.7

5. Discussion

The experiments carried out on SEWA-DB showed that the 2D CNN–LSTM architec-
tures (Table 2) achieved better results than i3D CNN architectures (Table 6). Notably, for
the former, valence was better predicted than arousal in terms of CCC. On the contrary, for
the latter, arousal was better predicted than valence, also in terms of CCC. Previous works
raised the fact that, intuitively, face textures on video sequences are the primary source of
information for describing the level of positivity in emotions, hence the valence values. In
contrast, arousal is better predicted with voice frequencies and audio signals. However,
our work with inflated networks suggests that simultaneous learning of spatiotemporal
face features benefits the prediction of arousal values.

Regarding the complexity of the two proposed approaches for continuous emotion
recognition, we had to make some trade-off that certainly impacted the quality of the
results provided by i3D CNN architectures. On the other hand, high sensitivity in training
this type of architecture was also observed according to various configurations. This
implies that i3D CNN architectures are very flexible, and further improvement could lie
in better initialization and tuning of the number and quality of parameters regarding the
potential of this model. Furthermore, inflated weights provided good initialization for
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action recognition tasks, suggesting that this method could also be utilized for emotion
recognition. However, the main difference is that researchers had hundreds of short videos
for a classification task for action recognition.

In contrast, we had relatively long videos of a few subjects for the regression task.
Nevertheless, the experimental results showed great potential for further improvement if
more data are available for fine-tuning the i3D models. On the other hand, the performance
of 2D CNN–LSTM architectures was very satisfying, and this type of architecture is still a
good choice for FER applications.

Table 7 shows the best results achieved by the proposed 2D CNN–LSTM and i3D CNN
models and compares them with the baseline models proposed by Kossaifi et al. [60]. For
ResNet18, they evaluated root mean squared error (RMSE) and CCC as loss functions. The
CCCs achieved by the i3D CNN are slightly higher than those achieved by all models of
Kossaifi et al. [60]. On the other hand, the CCC values achieved by the 2D CNN–LSTM are
almost twice the best results achieved by the best model (ResNet18) of Kossaifi et al. [60].
Table 7 also shows the results achieved by [75,76], which are not directly comparable
since both used a subset of SEWA-DB, encompassing only three cultures. They optimized
emotion detection for two cultures (Hungarian and German) to perform well on the third
one (Chinese). Notably, Ref. [75] proposed a combination of 2D CNN and 1D CNN, which
has fewer parameters than 3D CNNs, and a spatiotemporal graph convolution network
(ST-GCN) to extract appearance features from facial landmarks sequences. Ref. [76] used a
VGG-style CNN and a DenseNet-style CNN to learn cross-culture face features, which were
used to predict two adversarial targets: one for emotion prediction, another for culture
classification. In conclusion, these two methodologies achieved state-of-the-art results on
cross-cultural emotion prediction tasks.

Table 7. Comparison of the best results achieved by the proposed models and the state-of-the-art for
the SEWA-DB dataset. The best results for valence and arousal are in boldface.

Valence Arousal

Reference Model PCC↑ CCC↑ PCC↑ CCC↑

Proposed 2D-CNN-LSTM 1 0.631 0.625 0.558 0.557
i3D-CNN 2 0.346 0.304 0.382 0.326

Kossaifi et al. [60]

SVR 0.321 0.312 0.182 0.202
RF 0.268 0.207 0.181 0.123
LSTM 0.322 0.281 0.173 0.115
ResNet18 (RMSE) 0.290 0.270 0.130 0.110
ResNet18 (CCC) 0.350 0.350 0.350 0.290

Chen et al. [75] ? ST-GCN NA 0.540 NA 0.581
Zhao et al. [76] ? DenseNet-style CNN NA 0.580 NA 0.594

1 VGG-16 fine-tuned with RAF-DB. 2 Inflated VGG-16-BN, initialized with ImageNet. NA: Not Available. ? Results
are reported for a subset of SEWA-DB encompassing only three cultures (Hungarian, German, Chinese).

6. Conclusions

This paper presented two CNN architectures for continuous emotion prediction in the
wild. The first architecture is a combination of a fine-tuned VGG-16 CNN and an LSTM
unit. This architecture achieved state-of-the-art results on the SEWA-DB dataset, producing
CCC values of 0.625 and 0.557 for valence and arousal, respectively. The second architecture
is based on the concept of inflation, which transfers knowledge from pre-trained 2D CNN
models into a 3D one to model temporal features. The best proposed i3D CNN architecture
achieved CCC values of 0.304 and 0.326 for valence and arousal prediction, respectively.
These values are far below those achieved by the 2D CNN–LSTM. Due to the high number
of parameters of i3D CNNs (barely three times greater than 2D CNNs), fine-tuning and
hyperparameter tuning of such architectures require a substantial computational effort
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and massive datasets. Unfortunately, facial expression datasets for continuous emotion
recognition are relatively small to accomplish such a task.

We also showed that a double transfer learning strategy over VGG and ResNet archi-
tectures with ImageNet and RAF-DB datasets can improve the accuracy of the baseline
models. However, subjects mostly faced the camera with a relatively clear view of the
whole face in this work. To some extent, this could imply some bias in the results when
presenting diverse real-world scenarios. Moreover, the complexity of the i3D CNN ar-
chitecture could, at this time, be a drag for live applications. Finally, to the best of our
knowledge, it was the first time that 3D CNNs were used in regression applications for
predicting valence and arousal values for emotion recognition.

There are some promising directions to expand the approaches proposed in this
paper. For example, one could take advantage of the development of vast and complex
cross-cultural datasets, such as the Aff-Wild dataset, to exploit occlusion cases, pose
variations, or even scene breaks. We believe that i3D CNN architectures can deal with these
specific cases, as they can learn discriminant spatiotemporal features that may improve
separability. Furthermore, the recent Aff-Wild2 dataset, the largest existing in-the-wild
video dataset, could also be used for pre-training the 2D CNNs on the same task (valence-
arousal estimation) instead of using the RAF-DB dataset, which contains annotations for
discrete emotion classification. Finally, the Aff-Wild2 dataset could also be used to train
and evaluate the proposed 2D CNN–LTSM and i3D CNN architectures.

Finally, we showed a peculiar and flexible way of fine-tuning inflated CNNs; maybe
this strategy could also be transferred to other applications, such as object and action
recognition on video sequences.
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