
applied
sciences

Communication

Towards Continuous Deployment for Blockchain

Tomasz Górski

����������
�������

Citation: Górski, T. Towards

Continuous Deployment for

Blockchain. Appl. Sci. 2021, 11, 11745.

https://doi.org/10.3390/app112411745

Academic Editor: Jason K. Levy

Received: 17 November 2021

Accepted: 9 December 2021

Published: 10 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Polish Naval Academy of the Heroes of Westerplatte (PNA), Śmidowicza 69,
81-127 Gdynia, Poland; t.gorski@amw.gdynia.pl

Abstract: Ensuring a production-ready state of the application under development is the immanent
feature of the continuous delivery approach. In a blockchain network, nodes communicate, storing
data in a decentralized manner. Each node executes the same business application but operates in
a distinct execution environment. The literature lacks research, focusing on continuous practices
for blockchain and distributed ledger technology. In particular, such works with support for both
software development disciplines of design and deployment. Artifacts from considered disciplines
have been placed in the 1 + 5 architectural views model. The approach aims to ensure the continuous
deployment of containerized blockchain distributed applications. The solution has been divided
into two independent components: Delivery and deployment. They interact through Git distributed
version control. Dedicated GitHub repositories should store the business application and deployment
configurations for nodes. The delivery component has to ensure the deployment package in the
actual version of the business application with the node-specific up-to-date version of deployment
configuration files. The deployment component is responsible for providing running distributed
applications in containers for all blockchain nodes. The approach uses Jenkins and Kubernetes
frameworks. For the sake of verification, preliminary tests have been conducted for the Electricity
Consumption and Supply Management blockchain-based system for prosumers of renewable energy.

Keywords: blockchain; continuous deployment; 1 + 5 architectural views model; model-driven
development

1. Introduction

The primary principle of the Agile Manifesto underlines the importance of early and
continuous delivery of software that meets the customer needs [1]. Abbreviations have
been provided for the following notions: Continuous integration (CI), continuous deliv-
ery (CD), and continuous deployment (CDT). The first practice involves that software is
integrated continuously during development. The practice encompasses automation of
software builds and testing. The backbone of a CI is version control. The most popular
GitHub service ensures the distributed version control of source code using Git. The new or
changed code is incorporated into a build and checked by automated tests. Automation of
testing ensures checking that the application works correctly in case new commit is merged
with the release branch. The CD approach goes even further in software development
automation. It aims to enable on-demand software release. CD employs a set of stages,
including the acceptance tests and release process. Automated acceptance tests and the
release process allow on deployment of application under development on demand. Hum-
ble and Farley [2] present a comprehensive description of the continuous delivery process.
They have defined the notion of the deployment pipeline as an automated process of tasks,
which is responsible for producing a release. CD practice requires specific governance to
act properly, i.e., infrastructure, data, and configuration management. The CDT approach
elevates automation on an even higher level. It automatically deploys every release to users’
acceptance tests environments or even a production one. CDT is a push-based practice.
Conversely, CD approach is a pull-based one.

Appl. Sci. 2021, 11, 11745. https://doi.org/10.3390/app112411745 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8393-1585
https://doi.org/10.3390/app112411745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411745
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411745?type=check_update&version=1

Appl. Sci. 2021, 11, 11745 2 of 8

Figure 1 presents loop of steps in continuous integration and continuous delivery
approaches. The loop makes a complete CDT approach.

Figure 1. The Möbius strip in continuous software engineering.

The author has observed increasing interest in continuous approaches. Shahin et al. [3]
have found the following important topics: Reducing build and test time, automation of
tests, raising the scalability of deployment pipelines, and elevating the deployment process
reliability. They have also enumerated essential elements in implementing continuous
approaches. They have underlined suitable infrastructure, testing, highly skilled program-
mers, and a proven design process. Debroy and Miller [4] show actions to overcome
challenges in implementing continuous practices. They use custom images for building
agents to handle micro-service dependencies. They also apply orchestration to manage
resources in order to keep infrastructure costs low. Keeping build and release times short
requires employing an orchestrator, such as Kubernetes (K8s), to handle scaling. Recently,
IEEE Standard for DevOps has been approved and published [5]. The standard provides re-
quirements and guidance on the implementation of DevOps to define, control, and improve
software life cycle processes. It applies within an organization or a project for building
and deploying software reliably. The efficiency of the continuous integration process has
been improved by Abdalkareem et al. [6] through identifying commits that can be skipped.
The proposed prototype tool works with Git repositories. Continuous integration and
delivery tools have been analyzed by Prado Lima et al. [7] in the view of test case prioritiza-
tion. They have analyzed the following environments: BuildBot, GoCD, Integrity, Jenkins,
and Travis CI. For this work, GoCD and Jenkins were considered. Both are open-source,
written in Java, and integrate well with both K8s and GitHub. However, Jenkins offers
better support for continuous integration. These environments do not provide ready-made
functions for blockchain. However, they offer an application programming interface (API)
and thus the possibility of extending their functionality. A newly published paper by
Leite et al. [8] touches on continuous delivery practice. They have analyzed the structure
of DevOps teams and communication between them. So, the subject seems to be timely.

The underlying technology for blockchain is distributed ledger. Xu et al. [9] provide
the following definition of a distributed ledger: “A distributed ledger is an append-only
store of transactions which is distributed across many machines.” A consensus algorithm
is a fundamental component of a distributed ledger and blockchain that ensures synchro-
nization among multiple peers. There are two main well-established consensus algorithms:
Proof-of-work (PoW), and proof-of-stake (PoS). The author would like to draw attention to
the fact that there are works on alternative approaches [10,11]. Blockchain is a disruptive
technology. Casino et al. [12] have done a thorough literature review of blockchain-based
applications. They enumerate many uses, but emphasize the vast opportunities in the
energy sector. Researchers and practitioners use various blockchain frameworks. An ex-
tensive comparison of permissioned (private) and permissionless (public) blockchain
frameworks have been done by Chowdhury et al. [13]. They have chosen, e.g., Hyper-
ledger Fabric, Ethereum, IOTA, Multichain, and R3 Corda. The latter is a private ledger
where consensus involves two DLT nodes that participate in the transaction, which is
signed by the Notary node. It has a vast impact on scalability. In the ledger, there is
also a Network Map node and Oracle nodes. In a transaction, two DLT nodes and one

Appl. Sci. 2021, 11, 11745 3 of 8

Notary node take part. The R3 Corda’s block creation time is 0.5–2.0 [s], which places the
framework among the fastest. Moreover, the usage of energy by the framework is almost
negligible. A DLT node hosts distributed applications (CorDapps) and services. The main
services are oracle, notary, network map, and permissioning. A Corda network is a fully
connected graph. The communication among DLT nodes and the Notary node is done
via an Advanced Message Queuing Protocol over Transport Layer Security (AMQP/TLS).
Moreover, it uses a Hypertext Transfer Protocol Secure (HTTPS) for the communication
of DLT nodes with the Network Map and Oracle nodes. In the case of energy systems,
permissioned blockchain networks fit best. They fulfill privacy requirements and can
facilitate peer-to-peer energy exchange. The approach uses the R3 Corda blockchain-based
Electricity Consumption and Supply Management System (ECSM) that enables energy
exchange between prosumers.

The contribution is the continuous deployment approach for generating complete
node deployment packages for blockchain nodes and running the blockchain network in a
containerized environment. Figure 2 shows a scheme of the solution.

Figure 2. The approach overview.

Blockchain introduces an additional level of difficulty for continuous practices. In ad-
dition to ensuring the proper functioning of the business application, there are a variety
of deployment configurations for blockchain nodes. Ozkaya et al. [14] have found that
the functional and information views are the most popular ones in software architecture
modeling. Zou et al. [15] have conducted an analysis to discover the actual obstacles that
developers have to overcome while developing smart contracts. Results revealed that the
source code of smart contracts is compromised as far as security is concerned. Besides,
they claim that the development support of blockchain applications in existing tools is
still incomplete. The approach offers design support for the Deployment view and uses the
Unified Modeling Language (UML) Profile for Distributed Ledger Deployment. The key
element in a blockchain is a smart contract. The approach offers a unique Contracts view
to describe smart contracts within the 1 + 5 architectural views model. Górski in [16] has
shown the Smart Contract Design Pattern that offers a flexible manner for designing smart
contracts in a permissioned distributed ledger. The pattern has been incorporated into
the delivery component. That component uses the Visual Paradigm modeling tool and
automates build release tasks with the Jenkins server. The continuous deployment compo-
nent, still under design, uses the Kubernetes platform for automating the deployment of
blockchain distributed applications in containers.

The following part of the communication is arranged as follows. Section 2 outlines
the design of the delivery component. Section 3 discusses the preliminary design of the
deployment component. Section 4 introduces the method of validation of the delivery com-
ponent that allows for checking the consistency between generated deployment scripts and
UML models. The section also presents the validation method of the business application.
Section 5 concludes the work done and shows already planned tasks.

Appl. Sci. 2021, 11, 11745 4 of 8

2. The Design of the Delivery Component

Various architectural principles have been applied to the design of the continuous
delivery component. Firstly, there have been imposed Modularity and Separation of responsi-
bility principles on the approach design. The following layers have been identified: Design
& Development, Version control, and Build automation pipelines. The Design & Develop-
ment layer consists of the UML Deployment model of the distributed ledger solution and
the model-to-code transformation. The model uses the UML Profile for Distributed Ledger
Deployment profile. The second module is the Java distributed application, which realizes
a smart contract. The first module is designed in Visual Paradigm whereas the second
one is developed in IntelliJ IDEA. Both tools have a community edition. The IntelliJ IDEA
works smoothly with GitHub repositories. Java has been chosen for portability reasons
but has two uses. It has been used to implement a distributed blockchain application.
Moreover, it is the language of developing the transformation application and plug-in for
Visual Paradigm. The Version control layer comprises Git repositories. The first one encom-
passes the source code of the smart contract application and Corda execution environment.
The second repository consists of deployment configuration files for DLT nodes. The Build
automation pipelines layer encompasses both Jenkins pipelines. The first one automates
the generation of the smart contract application and Corda runtime JAR files. The second
pipeline automates the generation of the complete ZIP file that consists of the application,
Corda runtime, and deployment configuration files for nodes. Deployment packages for
nodes are stored by the open source Jenkins automation server. The delivery component
is still under construction. Figure 3 depicts the overview of the delivery component for
generating blockchain deployment packages.

Figure 3. The delivery component overview.

2.1. UML Profile for DLT Deployment

The approach concentrates on the Platform Specific Model (PSM) to express the pre-
cise deployment configuration of the R3 Corda framework in version 4.6. Stereotypes and
tagged values have been used for defining the profile with the needed semantic enrichment

Appl. Sci. 2021, 11, 11745 5 of 8

for Deployment view modeling. Stereotypes have been applied to represent nodes, services,
and communication protocols. Tagged values have been used to define deployment configura-
tion parameters for nodes. First, tagged values have been identified that describe parameters
common for all types of nodes and placed in the�CordaNode� stereotype. Then, there
have also been defined tagged values for the notary node and placed in the�NotaryNode�
stereotype. In the current version of the profile, the deployment parameters of the notary node
operating in the high availability mode has been taken into account [16,17]. All stereotypes
for Corda network nodes have a common set of tagged values because they inherit from the
�CordaNode� stereotype.

2.2. The Model-to-Code Transformation

The delivery component incorporates model-to-code transformation for generating
blockchain deployment scripts [18]. The source of the transformation is a UML Deployment
model. The current version of the UML profile has been used. The second vital change
in the design of the transformation is the ability to store generated deployment scripts at
GitHub under Git version control. The transformation ensures consistency of the UML
Deployment model with deployment configuration files of blockchain nodes.

2.3. Delivery Pipelines

The open-source Jenkins automation server has been used. The main notion in the
Jenkins automation server is a pipeline. A pipeline can be described as an automated
process of generating a releasable package on the basis of software stored under version
control. A pipeline defines your entire build process, which typically includes stages.
A stage block defines a conceptually distinct subset of tasks. A single task tells Jenkins
what to do at a particular step in the process. Correct node deployment package involves
both business logic and deployment configuration details. Thus two Jenkins pipelines have
been introduced. The Build node deployment package pipeline is responsible for completing
the full node deployment package using CorAapps jar files and deployment configuration
scripts. The Build Cordapps jar files pipeline is responsible for building an up-to-date
version of CorDapps JAR files and is triggered when a new source code of business logic
appears in the repository. After finishing execution, the pipeline triggers the Build node
deployment package pipeline. Such division allows for the separation of the Java source
code of business logic from the node deployment configuration. The pipeline Build node
deployment package is triggered when a new deployment configuration is generated from
the UML Deployment model.

Figure 4 depicts the UML activity diagram with designed pipelines.

Figure 4. Pipelines of the delivery component.

Both elements, the redesigned model-to-code transformation and delivery pipelines
are still under construction. Figure 5 shows results of the single execution of the Build
Cordapps jar files pipeline. The Jenkins automation server collects values of the following

Appl. Sci. 2021, 11, 11745 6 of 8

metrics: Average stage time and average full run time. The pipeline execution time for the
blockchain network of 5 business nodes is under 50 [s]. It looks promising in view of
processing larger networks.

Figure 5. Results of the pipeline execution.

The Jenkins server with implemented pipelines has been exposed in the domain of
the statutory project: model.amw.gdynia.pl.

3. The Design of the Deployment Component

Containers have a lot in common with virtual machines. They are considered lightweight
because they use the same operating system layer. The purpose of the deployment component
is to provide a fully working container infrastructure for the business application. The compo-
nent is designed in form model-to-code transformation. It uses the UML Deployment model
and generates YAML files. To be specific, the transformation uses XML files of UML models
created in Visual Paradigm. The transformation creates the internal data model of the Kuber-
netes application and processes it into the working set of YAML files. That set can be further
sent to the K8s cluster. The transformation is written in the JavaScript programming language
for Node.JS runtime. It has no system-level dependencies, thus it can be run on hosts with
various operating systems, e.g., Windows, Linux, and macOS. Moreover, the transformation
can be run directly in the K8s Pod as an application/service. Figure 6 depicts a model of K8s
application. The deployment component is still under construction.

Figure 6. The UML class diagram that shows a model of the K8s application.

Appl. Sci. 2021, 11, 11745 7 of 8

4. Validation

Validation determines whether a system or component satisfies requirements specified
by the user. Validation of such a solution includes two stages: Delivery and deployment.
At both stages, the tests must concern the business application and deployment configura-
tions of the blockchain network nodes. At the delivery stage, unit tests are designed for
individual methods in the business application and integration tests verify the operation of
the business application in blockchain nodes running on the test environment. The same
set of tests must be passed by the business application at containerized environments e.g.,
user acceptance tests and staging.

As far as deployment configurations are concerned, the consistency of deployment
scripts with the UML Deployment model should be verified. A single deployment configu-
ration file and the corresponding UML node are considered. The UML node comprises
tagged values, t ∈ T. The script contains deployment configuration parameters, d ∈ D.
Intersection of two sets D and T is denoted by D ∩ T, and is the set containing all elements
of D that also belong to T or similarly, all elements of T that also belong to D. It means
checking that the intersection meets the following Equation (1):

D ∩ T = D = T. (1)

The cardinality of both sets should be the same. The deployment configuration
parameter d is an ordered pair, d = (nd, vd), where: nd is the name, and vd is the value of d.
The tagged value t is an ordered pair, t = (nt, vt), where: nt is the name, and vt is the value
of t. For each d ∈ D, there must be t ∈ T with the same name and value (2).∧

d∈D

∨
t∈T

(nd = nt) ∧ (vd = vt). (2)

Similarly, for each t ∈ T, there must be d ∈ D with the same name and value (3).∧
t∈T

∨
d∈D

(nt = nd) ∧ (vt = vd). (3)

Apart from verifying deployment configuration files, there are designed tests for the
business application. A dedicated test class has been designed for testing verification rules
in the smart contract. Figure 7 depicts the test case for one of the smart contract verification
rules. The preliminary tests have been conducted for the ECSM system [19].

Figure 7. The source code of the positive test case.

Tests have confirmed that the delivery component works correctly.

5. Conclusions

The paper introduces the continuous deployment framework for generating the dis-
tributed application for blockchain nodes. Nodes are deployed and operated in containers.
By applying the Loosely coupling architectural rule, it is possible to implement both com-
ponents independently. The delivery component offers UML modeling support for the

Appl. Sci. 2021, 11, 11745 8 of 8

deployment architectural view. The component also delivers flexibly designed smart con-
tracts in distributed blockchain applications. The Jenkins pipelines read smart contract
applications and deployment configuration files stored in Git repositories and provide
complete deployment packages. The deployment component reads the UML deployment
model and generates YAML files needed to run the distributed application in contain-
ers. Containerized environments ensure the reconfigurability of the blockchain network.
But each permissioned blockchain community should be deployed and operated on a
separate physical machine. Another goal is to elevate the design level of smart contracts
and deployment configurations. The research also encompasses security algorithms for
registering a new node in the blockchain network and making transactions. The main aim
is to achieve automation of the deployment of reconfigurable blockchain networks with
updatable and extensible smart contracts at runtime.

Funding: The research has been conducted within the Architectural views model of cooperating IT systems
project, financed by the statutory funds of the Department of Computer Science, PNA.

Conflicts of Interest: No conflict of interest to declare.

References
1. The Agile Manifesto. Principles behind the Agile Manifesto. Available online: agilemanifesto.org/principles.html (accessed on

7 November 2021).
2. Humble, J.; Farley, D. Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, 1st ed.;

Addison-Wesley Professional: Crawfordsville, IN, USA, 2010.
3. Shahin, M.; Babar, M.A.; Zhu, L. Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools,

Challenges and Practices. IEEE Access 2017, 5, 3909–3943. [CrossRef]
4. Debroy, V.; Miller, S. Overcoming Challenges with Continuous Integration and Deployment Pipelines: An Experience Report

From a Small Company. IEEE Softw. 2020, 37, 21–29. [CrossRef]
5. Std 2675-2021, IEEE Standard for DevOps: Building Reliable and Secure Systems Including Application Build, Package, and

Deployment, 16 April 2021; pp. 1–91. Available online: https://ieeexplore.ieee.org/servlet/opac?punumber=9415474 (accessed
on 7 November 2021). [CrossRef]

6. Abdalkareem, R.; Mujahid, S.; Shihab, E.; Rilling, J. Which Commits Can Be CI Skipped? IEEE Trans. Softw. Eng. 2021, 47, 448–463.
[CrossRef]

7. Lima, J.A.P.; Vergilio, S.R. Test Case Prioritization in Continuous Integration environments: A systematic mapping study. Inf. Softw.
Technol. 2020, 121, 106268. [CrossRef]

8. Leite, L.; Pinto, G.; Kon, F.; Meirelles, P. The organization of software teams in the quest for continuous delivery: A grounded
theory approach. Inf. Softw. Technol. 2021, 139, 106672. [CrossRef]

9. Xu, X.; Weber, I.; Staples, M. Architecture for Blockchain Applications; Springer: Cham, Switzerland, 2019; pp. 5–7. [CrossRef]
10. Oyinloye, D.P.; Damilare, P.; Teh, J.S.; Jamil, N.; Moatsum, A.M. Blockchain Consensus: An Overview of Alternative Protocols.

Symmetry 2021, 13, 1363. [CrossRef]
11. Ma, J.; Jo, Y.; Park, C. PeerBFT: Making Hyperledger Fabric’s Ordering Service Withstand Byzantine Faults. IEEE Access 2020, 8,

217255–217267. [CrossRef]
12. Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification

and open issues. Telemat. Inform. 2019, 36, 55–81. [CrossRef]
13. Chowdhury, M.J.M.; Ferdous, M.S.; Biswas, K.; Chowdhury, N.; Kayes, A.S.M.; Alazab, M.; Watters, P. A Comparative Analysis

of Distributed Ledger Technology Platforms. IEEE Access 2019, 7, 167930–167943. [CrossRef]
14. Ozkaya, M.; Erata, F. A survey on the practical use of UML for different software architecture viewpoints. Inf. Softw. Technol.

2020, 121, 106275. [CrossRef]
15. Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and

Opportunities. IEEE Trans. Softw. Eng. 2021, 47, 2084–2106. [CrossRef]
16. Górski, T. The 1 + 5 Architectural Views Model in Designing Blockchain and IT System Integration Solutions. Symmetry 2021 , 13,

2000. [CrossRef]
17. GitHub Repository with the UML Profile for Distributed Ledger Deployment. Available online: https://github.com/drGorski/

UMLProfileForDLT (accessed on 7 November 2021).
18. Górski, T.; Bednarski, J. Applying Model-Driven Engineering to Distributed Ledger Deployment. IEEE Access 2020, 8, 118245–118261.

[CrossRef]
19. GitHub Repository with the ECSM Implementation. Available online: https://github.com/drGorski/renewableEnergyBlockchain

(accessed on 7 November 2021).

agilemanifesto.org/principles.html
http://doi.org/10.1109/ACCESS.2017.2685629
http://dx.doi.org/10.1109/MS.2019.2947004
https://ieeexplore.ieee.org/servlet/opac?punumber=9415474
http://dx.doi.org/10.1109/IEEESTD.2021.9415476
http://dx.doi.org/10.1109/TSE.2019.2897300
http://dx.doi.org/10.1016/j.infsof.2020.106268
http://dx.doi.org/10.1016/j.infsof.2021.106672
http://dx.doi.org/10.1007/978-3-030-03035-3
http://dx.doi.org/10.3390/sym13081363
http://dx.doi.org/10.1109/ACCESS.2020.3040443
http://dx.doi.org/10.1016/j.tele.2018.11.006
http://dx.doi.org/10.1109/ACCESS.2019.2953729
http://dx.doi.org/10.1016/j.infsof.2020.106275
http://dx.doi.org/10.1109/TSE.2019.2942301
http://dx.doi.org/10.3390/sym13112000
https://github.com/drGorski/UMLProfileForDLT
https://github.com/drGorski/UMLProfileForDLT
http://dx.doi.org/10.1109/ACCESS.2020.3005519
https://github.com/drGorski/renewableEnergyBlockchain

	Introduction
	The Design of the Delivery Component
	UML Profile for DLT Deployment
	The Model-to-Code Transformation
	Delivery Pipelines

	The Design of the Deployment Component
	Validation
	Conclusions
	References

