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Abstract: In a connected vehicle environment based on vehicle-to-vehicle (V2V) technology, images
from front and ego vehicles are fused to augment a driver’s or autonomous system’s visual field,
which is helpful in avoiding road accidents by eliminating the blind point (the objects occluded by
vehicles), especially tailgating in urban areas. Realizing multi-view image fusion is a tough problem
without knowing the relative location of two sensors and the fusing object is occluded in some views.
Therefore, we propose an image geometric projection model and a new fusion method between
neighbor vehicles in a cooperative way. Based on a 3D inter-vehicle projection model, selected
feature matching points are adopted to estimate the geometric transformation parameters. By adding
deep information, our method also designs a new deep-affine transformation to realize fusing of
inter-vehicle images. Experimental results on KIITI (Karlsruhe Institute of Technology and Toyota
Technological Institute) datasets are shown to validate our algorithm. Compared with previous work,
our method improves the IoU index by 2~3 times. This algorithm can effectively enhance the visual
perception ability of intelligent vehicles, and it will help to promote the further development and
improvement of computer vision technology in the field of cooperative perception.

Keywords: cooperative perception; visual augmentation; image fusion; vehicle-to-vehicle (V2V)
technology; vehicle safety

1. Introduction

Citing the Global status report on road safety, 2021, 1.3 million people die each year as
a result of numerous road traffic crashes, and an estimated 50 million people suffer nonfatal
injuries [1]. The statistics from NHTSA show that 30~50% of traffic accidents are due
to rear-end collisions [2,3]. Such a scenario might occur when unforeseen circumstances
cause a leading vehicle to brake suddenly [4]. Because of the unawareness of the situation
ahead of the leading vehicles, drivers do not have enough time to react. Studies report
that an extra 0.5 s warning time can avoid collisions by 60% and it can be improved to
90% if an extra 1 s warning time can be given [2]. Hence, it is obvious that the risk can
be reduced if the forward vehicle’s images can be fused with the host vehicle’s images to
enhance the driver’s or auto-driving system’s visual perception ability. The cooperative
visual augmentation algorithm based on V2V will be a key part of the advanced driver
assistant systems supporting drivers (ADAS) or autonomous driving system to prevent
potential hazards.

To decrease the possibility of tailgating accidents, several works have focused on
implementation of ADAS or autopilot. In [5], binocular cameras equipped in vehicles
generate stereo images, which are used to calculate the distance between leading and
following vehicles combined with optical flow. The system monitors the distance and
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alerts drivers. In [6], as an alternative to equipping the vehicle with expensive sensors,
the binocular camera of smartphones or tablets can detect and track forward obstacles,
vehicles, and lanes. A further study [7] proposes a time-based collision avoidance warning
system (CSW) for lead vehicles in rear-end collisions. It directly quantifies the threat level
of the current dynamic situation using velocity, acceleration, and the gap between vehicles.
The authors of [8] propose a tailgating model used to monitor tailgating behavior of drivers.
The tailgating model calculates the minimum gap required considering relative speed,
driver’s perception reaction time, weather conditions, and brake efficiency in real time,
and alerts drivers with an audio or visual signal.

All the rear-end collision avoidance systems mentioned above only used information
obtained from sensors or cameras equipped in the host vehicles. Even the autonomous
vehicle system also relies solely on ego-vehicle sensors. Their method has limitations in
dealing with the collisions due to the presence of blind spots. If the blind spot can be
translucent, the drivers could realize the situation before the sudden break of the leading
vehicle occurred. Drivers can then have enough reaction time to avoid collision. Therefore,
the risk can be decreased by utilizing sensed information from neighboring vehicles though
vehicle-to-vehicle (V2V) communication [9]. Motivated by this deduction, we contribute
to research in the field by elaborating on the cooperative system, formed from forward
neighboring vehicles and the host vehicle, to augment the host vehicle driver’s visual
ability. Our method is valuable not only to the ADAS system but also to autonomous
vehicle systems, which can improve driving safety by extending the visual perception to
obstructed areas.

Although many groups have presented their research on collaborative approaches for
safe driving, finding an efficient way to enhance visual perception in order to guarantee
safe (automated) driving is still an open question. In [10,11], location information of
vehicles is exchanged periodically to prevent potential danger. The authors of [4] provided
a rear-end distance warning system based on images garnered from stereoscopic cameras
on rear vehicles and rear cameras on leading vehicles. These cooperative systems gave text
or digital information, such as a warning message, time gap between cars, and routing
data. It is still difficult for the drivers to sense the immediate danger because human
beings tend to believe what they can see. In [12,13], they proposed a collision avoidance
scheme based on an occupancy grid which is determined by combining light detection and
ranging (LiDAR) data. In [14], the authors also fused the features extracted from sparse
point clouds. Expensive sensors were used to make up the missing parts. In [15], vehicle
trajectory at intersections were estimated based on each vehicle’s velocity through V2V
communication. A system for cooperative collision avoidance for overtaking scenarios was
proposed in [16]. The authors of [9] designed a real-time multisource data fusion scheme
through cooperative V2V communications. Multiple confidences were fused based on the
Dempster–Shafer theory of evidence (DS).

There exist many studies on collision prediction or avoidance, but few works have
been conducted on visual augmentation in a cooperative way. Work [17] proposes a
transparent vehicle method based on V2V video streams in order to deal with passing
maneuvers. Their method needs accurate distance information gathered from radar sensors
to realize the object projection between two images. The work [18] uses linear constraints
to enable rear vehicle drivers to see through the front vehicle. However, this method only
make sense when the vehicles are both in the same lane. The authors of [19] introduced a
method which can “see through” the forward vehicle by adopting affine transformation
to fuse images from adjacent vehicles, no matter if they are in same lane or not. However,
deviation in the occluded object’s location and size always exists. The deviation might
cause incorrect judgement by drivers or an autonomous system.

Following this line, we propose the cooperative visual augmentation algorithm based
on V2V technology. Expensive sensors, such as LiDAR, are not needed here. An ordinary
camera, for example a driving recorder, can meet our requirement and there is no limitation
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on the location of the leading and host vehicles. The main contributions of this paper are
as follows:

(1) A new collaborative visual augmentation method to eliminate blind spots is proposed.
Our method can extend the visual perception ability of the driver or autonomous
driving system to the obstacle area by fusing images from forward vehicles.

(2) We also propose a deep-affine transformation to realize the visual fusing. Depth
information and geometric constrains are introduced to optimize the affine matrix
parameters.

(3) We improve the results of the visual augmented method by projecting occluded
objects onto host vehicle images. KITTI data are used as the evaluation dataset.

2. Architecture of Cooperative Visual Augmentation Algorithm

Because dedicated short range communications (DSRC) can support safety appli-
cations in high data rates [20,21], video information can be transmitted between nearby
vehicles in real time. By fusing the image information from neighbored vehicles, we can
possibly enhance the host vehicle driver’s or auto-driving system’s visual field. As shown
in Figure 1, the view of the host vehicle (Vehicle B in Figure 1) is blocked by other vehicles.
Vehicle B’s visual perception can be augmented by combing the visual images from leading
vehicles (Vehicle A in Figure 1). The fusing algorithm of inter-vehicle images is based
on the 3D inter-vehicle projection model and new deep-affine transformation. Similar to
Superman’s ability, our visual augmentation method can make occluded objects visible so
as to eliminate blind spots, and thus potential traffic accidents will be decreased sharply.
The locations of two cooperative vehicles and occluded objects can be more flexible. The
vehicles can drive in the same lane (Figure 1a) or in different lanes (Figure 1b).

Figure 1. Cooperative visual augmentation method of intelligent vehicle (host vehicle): (a) in the same lane and (b) in
different lanes.

An overview of the cooperative augmentation procedure is shown in Figure 2. A
connected vehicle environment is considered so that sensor data (images) from forward
vehicles are available for acquirement. The algorithm process has been divided into two
main phrases: (1) geometric projection based on deep-affine and (2) object based fusion.
The first phase features two images, fa and fb, which are extracted separately. Matching
feature pairs (P̃A, P̃B) are selected based on two feature maps and those mismatches
are eliminated. Based on those filtered matching feature pairs (PA, PB), the parameters
of projection matrix H are computed. Our method adopts affine transformation as the
geometry projective transformation and the parameters of the matrix H are automatically
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optimized by integrating with the depth information. We name this optimized affine the
deep-affine transformation with new matrix Hnew. The optimizing part is described in
Section 3.4. The second phase is the fusion part which applies the deep-affine matrix Hnew
to improve the results of the visual augmentation. The fusion region is decided by merging
results from the object detection module. This step is detailed in Section 3.5.

Figure 2. Architecture of the cooperative visual augmentation algorithm.

3. Implementation

The key idea of the cooperative method is to share sensor data obtained from vehicles
in different locations via V2V communications. Here, video images of forward vehicles are
transmitted to host vehicles through DSRC technology, hence enhancing the ability of the
host vehicle to see the occluded objects. The implementation involves five steps: (1) create
3D projection model between front and back vehicle views; (2) select feature pairs from
paired images (front and rear vehicle image obtained synchronized); (3) obtain the depth
map of the rear vehicle (host vehicle); (4) calculate and optimize the parameters in the
affine transformation matrix; and (5) fuse images to augment the view of the host vehicle.
All steps are described in the following sections.

3.1. The 3D Inter-Vehicle Projection Model

The key step to realize cooperative augmentation is to model the geometric projective
relation between two view images. As shown in Figure 3, the same object will map in a
different location, scale, and shape in the front vehicle (vehicle A) and host vehicle (vehicle
B) images. It is obvious that the object’s points in image plane A and B are according to
some geometric projective constrains. We suppose that the view angle between the two
cameras is limited, and thus, the shape deformation will be ignored here. Therefore, the
mapping relation between two image planes satisfies some linear geometric transformation.
In our model, affine transformation, a non-singular linear transformation [22], is adopted
here. It has the matrix representation in block form:

PB = HPA =

[
A T
0T 1

]
PA (1)
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with A a 2 × 2 non-singular matrix, T a translation 2-vector, and 0T a null 2-vector. PA and
PB represent points sets in image plane A and B.

Figure 3. 3D Inter-Vehicle Projection Model.

Our geometric projection model is shown in Figure 3. Oa and Ob denote the optical
centers of the two cameras, and Πa and Πb are the correspondence image planes. Points
v and t represent 3-space points of vehicle and tree, respectively, in the Euclidean world
frame. Applying projective geometry, 3D point v in <3 (three-dimensional Euclidean space)
is mapped to points va ∈ PA and vb ∈ PB in <2 (two-dimensional Euclidean space) in
image planes Πa and Πb. Similarly, ta ∈ PA and tb ∈ PB are the mapping points of the 3D
point t in <3. Here, the tree can be seen by both vehicles (vehicle A and B); however, the
red vehicle is visible to vehicle A and is occluded to vehicle B. Illustrated in Figure 3, va
is the known image point and vb is the unknown point that needs to be estimated. The
estimation process based on this model is as follows:

(1) Suppose we have n points Ti ∈ <3 (i = 1, · · · , n) seen by both vehicles, matching pair
points (ti

a, ti
b), ti

a ∈ PA, ti
b ∈ PB will be obtained correspondingly.

(2) The projection matrix, geometric transformation parameters, H are estimated based
on the n matching points pair (ti

a, ti
b).

(3) Through H and va, the occluded point vb can be calculated.

There is an assumption that if the space points v and t are coplanar then there exists a
precise projective transformation. However, in fact, they are usually at different depths
which will cause a deviation in projection. This situation will result in an inaccurate esti-
mation of point vb. In order to obtain a more accurate result, depth information is adopted
here to improve the mapping results. We propose a new deep-affine transformation to
solve this problem. This part is detailed in Section 3.4 of implementation.

3.2. Feature Pair Selection

In order to obtain the projection matrix H, the selection of more trustful and accurate
matching point pairs of images plays a key role. To perform trustful matching, the feature
descriptor of points in images should be representative and stable. Matching pairs selection
includes feature detection, feature matching, and mismatched elimination.

(1) Feature detection: Lowe’s SIFT method [23] is used to realize feature selection and
description. It uses a 128-element-long feature vector descriptor to characterize the
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gradient pattern in a properly oriented neighborhood surrounding a SIFT feature.
The features are invariant to incidental environmental changes in lighting, viewpoint,
and scale.

(2) Feature matching: By searching the most similar descriptors, SIFT features in front
and back images are matched. Brute-force algorithm [23] is adopted here to match
feature pairs. The Euclidean distance, used as the matching score, was computed
between feature vectors. The selected matching point pairs (also named feature pairs
in the following) need to satisfy Equation (1).

ratio =
max(dis( fa, fb))

max_ sec(dis( fa, fb))
> 0.8 (2)

(pa, pb) is a pair of corresponding points in image A and image B. fa and fb represent
feature descriptor of pa ∈ PA and pb ∈ PB.max(dis( fa, fb)) means the best matching
pair and max_ sec(dis( fa, fb)) is the second best one. Figure 7a in experiment part
displays the matching result, and it is obvious that error matching pairs exist only
based on similarity.

(3) Mismatched elimination: To achieve more accurate feature pairs, we use the RANSAC
algorithm [24] to eliminate mismatched feature pairs. Randomly selected n small
subsets “seed” (n pairs of matching points), and the calculation of fundamental matrix
F is repeated n times. The value of |paFpb| calls the residual error, which is ideally
supposed to be zero. F will be computed by those outlier-free seeds and will produce
small residual errors in |paFpb| for mostly inlier matching pairs. We preserve those
seeds that produce the minimum median |paFpb| residual errors, so that error pairs
are filtered. Figure 7b in experiment part displays the result of features after the
RANSAC procedure, and most error feature pairs are eliminated.

3.3. Acquisition of Depth Map

Depth information is critical to improve the geometric projection results. In this
section, we use a neural network called monocular residual matching (monoResMatch)
network to infer accurate and dense depth estimation in a self-supervised manner from a
single image [25]. As shown in Figure 4, first, a multi-scale feature extractor takes a single
raw image as input and computes deep learnable representations at different scales from
quarter resolution F2

L to full-resolution F0
L in order to toughen the network to ambiguities in

photometric appearance. Second, deep high-dimensional features at input image resolution
are processed to estimate, through an hourglass structure with skip-connections, multi-
scale inverse depth (i.e., disparity) maps aligned with the input and a virtual right view
learned during training so as to make the network learn to emulate a binocular setup;
thus, allowing further processing in the stereo domain. Third, a disparity refinement stage
estimates residual corrections to the initial disparity. In particular, deep features from the
first stage and back-warped features of the virtual right image are used to construct a cost
volume that stores the stereo matching costs using a correlation layer. Finally, the depth
map can be obtained according to the theory of binocular matching.

Figure 4. Illustration of monoResMatch architecture [25].
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3.4. Deep-Affine Transformation

Selected feature pairs are used to calculate the geometric transformation parameters
which are used to map occluded objects from the front image plane Πa to the host image
plane Πb. Here, we suppose the geometric transformation as the affine transformation.
It has the matrix representation as Equation (1). (pa, pb) represents a matching point
pair set in two image planes: pa = (xa, ya), pb = (xb, yb). H is the affine matrix and the
homogeneous formula is as follows: xb

yb
1

 =

 a11 a12 t1
a21 a22 t2
0 0 1

 xa
ya
1

 (3)

a11, a12, a21, a22, t1, and t2 are six parameters in the H matrix. In our situation, two vehicles
are running in the same direction and it is reasonable to assume that there is no rotation
transformation and shear transformation. So, the parameters a12 and a21 normally approach
0. The parameters a11 and a22 mean the scale factor of the horizontal and vertical coordinate.
It could be computed as:

a11 = a22 =
hb
ha

=
lb
la

a11 =
lb
la

=
lb
L
la
L

=

db
(dta+dab)

da
dta

a11 =
db
da
× dta

(dta + dab)
(4)

Figure 5 represents the geometric constrains of affine transformation and depth in-
formation. Take object T as an example, la and ha are the length and width of the Ta
bounding box in image plane Πa. Similarly, lb and hb represent the length and width of the
Tb bounding box in image plane Πb. As illustrated in Figure 5, dta means the distance from
object T to camera optical center Oa, and dab is the distance between two cameras.

Figure 5. Geometric constraints of the two-vehicle camera model.
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Depending on the matched feature pairs of object T, the parameters of matrix H could
be calculated. However, object T and occluded object V may have different depths to
a camera, which will lead to inaccurate mapping and fusing of object V in image plane
Πb (shown in Figure 5) based on the 3D inter-vehicle projection model (in Section 3.1).
Here, we introduce the depth information to adjust the parameters in affine matrix H. In
the depth map, the value of the pixel represents the depth distance, so we can obtain the
distance ratio γ of object T and the occluded object V relative to the camera optics.

γ =
dta

dva
(5)

Suppose the new deep-affine transformation matrix is Hnew. According to Equation (3),
the parameter a11new of Hnew could be computed as:

a11new =
db
da
× dta

dta + dab
(6)

dva is the distance from occluded object V to camera optical center Oa. Because dab and dva
are unknown, Equations (3)–(5) are brought into (6).

a11new =
a11 × db

a11 × da + γ× db − γ× a11 × da
(7)

Here, we suppose da = db because of two reasons: (1) the value of focal length is much
smaller than the distance and (2) our method uses the KITTI dataset which employs the
same camera. Equation (7) can be simplified to:

a11new =
a11

a11 + γ− γ× a11
(8)

The same processing procedure is applied to the parameter a22new. As for the parame-
ters t1new and t2new, their value are related to image size and parameters a11new, a22new with
the center remains unchanged. The equation of t1new and t2new is as follows:

t1new =
L
2
× α + t1 , α =|a11 − a11new|

t2new =
W
2
× β + t2 , β =|a22 − a22new|

where L and W are the length and width of image, and α, β are the adjustment factors. The
new deep-affine transformation results in the following matrix representation:

Hnew =

 a11new 0 t1new
0 a22new t2new
0 0 1

 (9)

3.5. Object-Based Image Fusion

To achieve visual augmentation here, we need to fuse multiview sensor images from
adjacent vehicles. This section estimates fusion region and functional form necessary for
achieving image fusion. In order to realize mapping objects from forward vehicle image A
to host image B, firstly, we need to figure out some information related to the geometric
configuration. The information includes size, shape, and location of the fusion region. All
detected street objects’ bounding boxes in image A will be the candidate fusion objects.
Only those objects occluded by vehicle A will merge to the fusion regions in image B.
Epipolar ea and eb can be used to eliminate those objects that are not occluded by vehicle
A. Here, the fusion region in image B is a circle area (rectangle and other shapes are also
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available). The center and radius of the circle depends on the location and size of the
detected vehicle region (vehicle A).

Secondly, we need to estimate a functional form to map pixels from the front image to
the back one. The mapping matrix Hnew between two images is estimated in Section 3.4.
The affine transformation regarded as the mapping relationship has the following matrix
representation:

PB = HnewPA (10)

The fusing location will certainly be determined by affine mapping. The blending
method is similar to [18]. The blending weight is adjusted to use more color from the front,
image B, close to fusion center and more color from the back, image A, away from the
center which is toward the edge of the circle. The transparency parameter controls the
mixture of two images.

4. Experiment Results
4.1. Datasets

Experiments were performed on the KITTI dataset. The KITTI stereo dataset [26] is a
collection of rectified stereo pairs made up of 61 scenes (containing about 42,382 stereo frames)
mainly concerned with driving scenarios. The predominant image size is 1242 × 375 pixels.
Here, only image frames from the left camera (so as the right camera) are used as the
testing data in our method. Instead of obtaining images from the front vehicle and host
vehicle simultaneously, we use two frames (with interval ∆t) in the video to imitate the
cooperation of the front and back vehicles. ∆t is a random value within 3~20. To simulate
the occlusion situation, we selected some vehicles in the picture as the blind spot, and
blocked these objects with the white panel in the picture of the back vehicle (shown in
Figure 6d).

Figure 6. How to use the KITTI data to simulate the cooperative situation: (a) image frame 0300, (b) image frame 0285,
(c) front vehicle image, and (d) host vehicle image (white panel).

Figure 6 gives an example of how to use images of KITTI datasets to simulate V2V in
reality. In the left column, (a) and (b), two images in KITTI with an interval of 15 frames are
chosen. In the right column, (c) and (d), these two images are pretended to be images from
the front and host vehicle, respectively. The vehicle with the red rectangle is supposed to
be the occluded object. The bottom host image is processed by using a white panel to block
the vehicle. We used these image couples to test our method’s effectiveness and flexibility.

4.2. Feature Pair Selection Results

Feature matching and matching optimizing results are shown in Figure 7. Results in
column (a) are the matching results after pursuing the brute-force algorithm and results
in column (b) show the matching results after being optimized by adopting the RANSAC
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algorithm. The experiment results reveal the optimized results, in which error matches
are deleted.

Figure 7. Matching feature pairs between front and back vehicles: (a) matching pairs based on similarity, and (b) matching
pairs after RANSAC.

4.3. Depth Map Acquisition Results

We adopt the monoResMatch network to generate the monocular depth map. This
network can obtain a high accuracy of up to 90% in the depth map on the KITTI data. The
results of the depth map are shown in Figure 8. The top image is the colored depth map
and the bottom image is their corresponding images.

Figure 8. KITTI images and their monocular depth map images.

4.4. Deep-Affine Transformation Results

Based on the above analysis, we assume that the corresponding relationship between
the two vehicle images roughly accord with an affine transformation. To remove the non-
coplanar problem, our method adopts deep information. The deep-affine matrix is used to
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estimate the occluded objects’ points in the host vehicle’s images, which is mapping from
the same objects’ points in the front vehicle’s image. To fully test the geometric projection
effect of deep-affine projection, more than 200 images in KITTI were selected as testing
data. The results are shown in Figure 9.

In Figure 9, the image (a) represents the front vehicle image and the image (b) is
the processed host vehicle image by adding the white panel. The picture (c) shows the
ground truth. Images (d) and (e) give the results of transformed front images based on
affine transformation and deep-affine transformation. Compared with image (d), im-
age (e) is more approximate to ground truth both in size and location. The outstand-
ing results indicate that adding depth information is effective to improve the results of
transformed images.

Moreover, quantitative evaluation is used to measure the performance of deep-affine
transformation. Figure 10 gives the IoU (intersection over union) results. The average IoU
and IoU statistical data are shown in Table 1 and Figure 11. The IoU can be computed as:

IoU =
ObjectBox ∩ GroundTruth
ObjectBox ∪ GroundTruth

Table 1. The IoU value results of 10 random groups from testing data.

Method 1 2 3 4 5 6 7 8 9 10

Affine in [19] 0.232 0.329 0.556 0.420 0.447 0.618 0.329 0.428 0.278 0.461
Deep-Affine 0.687 0.818 0.601 0.462 0.845 0.676 0.512 0.575 0.425 0.738

Figure 9. Cont.
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Figure 9. Comparison results of affine and deep-affine transformation: (a) front vehicle image, (b) back vehicle image
with occlusion, (c) ground truth image, (d) results of affine transformation, (e) results of deep-affine transformation,
(f) front vehicle image, (g) back vehicle image with occlusion, (h) ground truth image, (i) results of affine transformation, and
(j) results of deep-affine transformation.
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Figure 10. IoU results of affine and deep-affine transformation.

Figure 11. Statistical results of IoU for affine and deep-affine transformation.

In Figure 10, red boxes are the ground truth bounding box, yellow boxes show the
result of affine transformation, and the green box represents the result of our deep-affine
transformation. The higher the value of IoU is, the closer the result is to the ground
truth. The proposed method can achieve good performance and it shows good robustness
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with regard to the changes in different views and variable distance, as well as excellent
environment adaptability with regard to illumination variations and differing backgrounds.

Table 1 illuminates the average IoU on different groups. A total of 10 groups
(10 images in a group) are randomly selected from KITTI data and the IoU average value
results are listed in Table 1. By adding the depth information to adjust affine transformation,
the IoU value can be improved remarkably.

Statistical data of IoU value are shown in Figure 11. The value of IoU ranges from 0 to
1 and is divided into five intervals. The pie chart gives the statistical information of each
interval. The deep-affine transformation performs better than the normal affine transfor-
mation, largely due to the effective fusion of deep features. As shown in Figure 10, the IoU
values of affine projection are mainly concentrated between 0 and 0.2. By comparison, the
results of deep-affine transformation mainly fall in (0.4, 0.6) and (0.6, 0.8).

4.5. Cooperative Visual Augmentation Results Based on Fusion

Figure 11 shows the final visual augmentation results: the left column are the fusion
results based on affine transformation and the right column shows the results on deep-
affine transformation. If the front vehicle detected the object on the street, it will send its
image data to the host vehicle to realize fusion. After being filtered, the occluded objects
are fused with the fusion region in the host image. The fusion process blends the pixel
colors in the back vehicle image with the corresponding pixels in the occluded objects’ area
in the front vehicle image. The fusion region is a circle. As described in Section 4.5, the
blending weight is adjusted to use more color of the pixels from the front image close to
the center and retain more pixel color from the host image away from the center.

As shown in Figure 12, the left column images show the final fusion results by using
the original affine matrix in [19] and the right column images are the results of the new deep-
affine matrix in our method. The top three rows of images give the real occluded situation,
showing that the occluded vehicles are blocked by other vehicles in road. However, in
the bottom three rows of images, the vehicles are artificially blocked by a white panel to
simulate occlusion. In either situation, the occluded vehicles can be visually perceived by
drivers or autonomous systems of ego vehicles. Furthermore, the fusing size and location
of the blind spots are closer to the ground truth after adding the depth information.

Figure 12. Cont.
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Figure 12. Visual augmentation results based on multiview image fusion.

Certainly, our method fails to obtain accurate infused images in some cases. As shown
in Figure 13, for example, the existence of many mismatched and sparse feature pairs
between the inter-vehicle images result in incorrect fusion and terrible IoU performance.
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Figure 13. False results in some case.

5. Conclusions

In this paper, we propose a cooperative visual augmentation algorithm for occluded
objects in connected vehicle environments. In our situation, front and host vehicle images
are used cooperatively to enhance the visual perception of the host vehicle if occluded ob-
jects exist in front of the leading vehicle. To gain correct size and location of the transformed
occluded objects, this algorithm optimizes the parameters of the geometric transformation
matrix by combing the depth information and adopting the geometric constraints of the
camera model. The KITTI dataset are conducted to evaluate the effectiveness and scalability
of our algorithm. The results have shown that IoU values are greatly improved (2~3 times
higher than the previous method) and the fusion objects are approaching the ground truth.
The limitation of this method is that the influence of the view angle is ignored which will
cause size deviation in some situations. Furthermore, the results do not perform well
when few feature pairs are matched. In spite of this, our cooperative visual enhancement
algorithm can still effectively eliminate blind spots to avoid accidents in urban areas.
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