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Abstract: While audio data play an increasingly central role in computer-based music production,
interaction with large sound collections in most available music creation and production environ-
ments is very often still limited to scrolling long lists of file names. This paper describes a general
framework for devising interactive applications based on the content-based visualization of sound
collections. The proposed framework allows for a modular combination of different techniques for
sound segmentation, analysis, and dimensionality reduction, using the reduced feature space for
interactive applications. We analyze several prototypes presented in the literature and describe their
limitations. We propose a more general framework that can be used flexibly to devise music creation
interfaces. The proposed approach includes several novel contributions with respect to previously
used pipelines, such as using unsupervised feature learning, content-based sound icons, and control
of the output space layout. We present an implementation of the framework using the SuperCollider
computer music language, and three example prototypes demonstrating its use for data-driven music
interfaces. Our results demonstrate the potential of unsupervised machine learning and visualization
for creative applications in computer music.

Keywords: data-driven music interfaces; dimensionality reduction; music visualization; sound
collections; sound visualization; machine learning

1. Introduction

Computers, in their many incarnations, are nowadays ubiquitous at different points
in most music creation and production workflows. One reason for this prevalence is the
convenience of digital storage: compared with analog storage media such as magnetic tape,
digital storage makes it much easier to access and manipulate large quantities of audio.
Another is the flexibility and easy access to all sorts of techniques for audio synthesis
and manipulation.

The audio recordings used in music creation and production can come from a diversity
of sources: from crafted loops, to field recordings, performances, commercial music releases,
or instrument samples. In many genres and practices, large collections of recordings play
an important role from the very early stages of the workflow.

However, most available software and hardware for music production are dominated
by traditional paradigms, often established in the analog era or the early days of digital
technology. While Digital Audio Workstations (DAW) offer many features beyond analog
hardware, their graphical interfaces are, in most cases, still modelled after mixing consoles
and tape recorders. Many software samplers feature skeuomorphic user interfaces that
emulate with surprising detail the interface of early hardware samplers and sampling
synthesizers. Computer music languages such as Max, Pure Data or SuperCollider [1,2],
mostly based on the Music N paradigm [3] (in turn inspired by analog modular synthesiz-
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ers) have also evolved relatively slowly. In these environments, it is still cumbersome to
manage large quantities of audio samples.

In recent years, advances in signal processing and machine learning have improved
our ability to interact with large quantities of digital information. Most research has focused
on supervised methodologies, where an algorithm learns from some known association
of digital data to labels. Supervised approaches are, however, of limited use in the early
stages of creative processes like music: in these stages, everything is subject to change,
and personal interpretations are often more relevant than established conventions. As
an example, a musician can easily create a database of recordings using one particular
instrument or device. A model pre-trained for conventional sound categories (say, different
musical instruments) would not apply to that situation. Contrastingly, unsupervised
algorithms such as data clustering or dimensionality reduction could be used to reveal
groupings of sounds that are particular to the distribution of audio features in those
recordings. While the groupings obtained with these techniques may not directly map
to the user’s expectations, they can be used to suggest new perspectives and creative
possibilities with respect to how the sounds in the recordings may relate to each other.

With respect to computer music applications, research on unsupervised machine
learning has mostly focused on interaction with feature spaces. This interaction may
be mediated by 2D or 3D visualization, or by different kinds of spatial queries such as
gestures in physical space, or audio input. Most often, research has progressed through
the development of experimental prototypes [4–8]. Such prototypes have demonstrated
the usefulness of unsupervised machine learning for music creation, but are often tied to
specific choices in descriptors, spatial mappings, or interaction designs.

In this article, we propose a general framework for devising common pipelines for
spatial interaction with sound collections. Our work seeks to enable creative practitioners
interested in devising their own interfaces based on unsupervised machine learning, in
the same way that open-ended creative coding environments such as Max, Pure Data or
SuperCollider have enabled the creative use of audio signal processing techniques beyond
packaged solutions. Our research thus seeks to answer the question of how to design a
modular framework that supports the development of custom interfaces for using large
collections of sounds in music creation workflows.

This article is organized as follows: first, we summarize the state of the art with respect
to content-based visualization of sound collections. In Section 3, we describe the proposed
framework for the modular design of visualization-based interfaces. We discuss how this
generalizes previous work focused on specific prototypes. In Section 4, we evaluate some
of the contributions of the framework with four audio datasets. In Section 5, we describe
an implementation, in the form of a library for the SuperCollider language, based on the
Fluid Corpus Manipulation Toolkit (FCMT) [9]. We present some examples of interfaces
developed with this library in Section 6, and discuss our findings and limitations of this
work in Section 7. We add some concluding remarks in Section 8.

2. Background

Creative stages of music production are typically driven by musical intuitions and
auditory cues. In this context, dealing with labels and file systems can be disruptive, which
hinders the use of large collections of sounds. Non-verbal interfaces for interacting with
large collections of sounds (from very short segments in the order of a hundred milliseconds
to longer audio recordings such as music loops) are valuable, although still rare.

A good deal of research has focused on automatic audio analysis for creating inter-
active systems based on 2D plots of sound collections. One basic strategy is to use two
perceptual sound descriptors (for example pitch and amplitude) as the two axes of the plot.
Several works have implemented this idea in interfaces that allow the user to choose the
descriptor for each axis [10,11]. These systems suffer from several limitations. First, the
direct use of sound descriptors often requires an understanding of concepts related with
signal processing and psychoacoustics. Moreover, there is no assurance that a given sound
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collection will have an interesting variation along a given set of descriptors. For example, a
pitch descriptor may be irrelevant for a collection obtained from drums or environmental
sounds. In general, each collection will most likely have its own sonic dimensions beyond
a particular choice of descriptors. Second, such descriptors are typically obtained from a
frame-level representation, which means they may vary significantly over time. A single
value (typically the average over a sequence of frames) is relevant for a very short sound,
but it will not be as useful for longer samples.

Automatic descriptors that can capture the diversity in sound collections typically span
more than two dimensions. At the same time, different sounds can be related on the basis
of non-linear functions of these descriptors. Thus, several works have explored non-linear
dimensionality reduction to create automatic low-dimensional maps of sound collections.

An early example of non-linear dimensionality reduction for sound can be found
in research on perception of musical instrument timbre [12], where Multi-Dimensional
Scaling (MDS) was used to find timbre spaces. The same concept has been more recently
implemented using Variational Autoencoders (VA) [13]. This concept is limited to the
view of timbre as a static quality of pitched sounds and thus not generally applicable to
sound collections.

Another early trend was the use of Self-Organizing Maps (SOM) for browsing collec-
tions of drum sounds [14] and sound effects [15]. SOMs have the property of naturally
producing grid layouts, but they are mostly interpreted as clusters, where multiple data
points can be assigned to the same output location.

Most modern non-linear dimensionality reduction approaches are based on neighbour
graphs. The IsoMap algorithm [16], based on applying MDS to distances derived from the
k-nearest neighbors (KNN) graph, was used in [17]. In [18], the algorithm was extended
using the Hungarian algorithm to map the results to grid layouts. More recently, several
works have focused on newer dimensionality reduction algorithms. t-distributed Stochastic
Network Embedding (t-SNE) [19] uses a probabilistic view of the distances in the original
high-dimensionality space to build the neighbourhood graph. This algorithm was used for
visualizing sounds from the Freesound database in [5], and for visualising textural sounds
in [7]. Uniform Manifold Approximation and Projection (UMAP) [20] is a similar algorithm
based on concepts from mathematical topology. The results are similar to t-SNE, but it is
significantly faster. It has been used in [6,21].

3. Proposed Framework

In this section, we present the proposed framework for visualization of large sound
collections. The framework can be seen as a conceptual abstraction of common data pro-
cessing pipelines used in music information retrieval (MIR) and general data science that
aims at facilitating experimentation by musicians. In previous work [9,22], we have pre-
sented basic signal processing and machine learning building blocks for creating arbitrary
creative workflows in creative coding environments (CCE). Here, our aim is to provide a
higher-level interface that allows intuitive operation by lowering the level of understanding
of signal processing and machine learning concepts required for musicians and sound
designers, while still retaining a modular interface. Our focus is thus constrained to inter-
action with spatial layouts of audio collections, with the goal of facilitating the creation of
custom musical interfaces. In our implementation, we leverage the abstraction capabilities
of the SuperCollider language to provide a high-level programming interface, so that most
of the signal processing and machine learning can be controlled through configuration,
and user code can be added for the interface.

3.1. Overview

The proposed framework allows devising custom subsets of the pipeline depicted in
Figure 1. The core elements encapsulate the functionality for feature extraction (Section 3.3)
and pooling (Section 3.4), dimensionality reduction (Section 3.5) and indexing (Section 3.7).
Optional steps include audio segmentation (Section 3.2), automatic generation of icons
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from audio features (Section 3.3.2), and layout mapping (Section 3.6). Each step can be
configured in different ways, depending on the creative application and the nature of the
sound collection. We now cover each of the steps in more detail, and conclude with a review
of prior work with respect to the dimensions of the proposed framework (Section 3.8).

Segmentation Feature
Learning

Feature
Extraction

Pooling

Dimensionality
Reduction

Indexing Layout

Interaction

Icon 
generation

Figure 1. Block diagram of the framework. Solid lines indicate core components, while dashed lines
indicate optional components.

3.2. Segmentation

For music creation applications, it is often convenient to work with short segments
(e.g., in the order of a few seconds or shorter). From a creative point of view, shorter sounds
afford more flexibility for recombination into new sounds or patterns. From a technical
point of view, the meaningful description of short time series using feature vectors is also
easier, while longer series may contain diverse events which may be more difficult to
summarize. Segmentation is thus an important step, unless the source material is already a
collection of sounds with a desired length. A common strategy is segmentation by onset
detection [23]. Onset detection techniques are very established in MIR and can be used
to detect either percussive events or pitch changes, based on different onset detection
functions (ODF). Hence they are mostly indicated for musical signals and sounds similarly
containing events or short-term spectral changes.

A more versatile strategy is to use Foote’s classic novelty algorithm [24]. This algo-
rithm computes a novelty function by convolving a distance matrix obtained from audio
descriptors with a two-dimensional checkerboard kernel representing change. Peaks in the
novelty function above a user-specified threshold result in segment boundaries. This means
that by choosing different input features, Foote’s novelty can be used to detect changes
in different aspects of the signal (like in the case of different ODFs for onset detection).
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However, unlike in the onset detection, the size of the kernel can also be adjusted, which
means that changes can be detected at different time scales. In this sense, Foote’s novelty
can be used as an onset detector but also for segmentation at other time scales.

Our implementation currently focuses on Foote’s novelty, with a choice of input
features between pitch, chroma features and mel frequency cepstral coefficients (MFCC).
The main segmentation parameters are then input feature, kernel size, novelty threshold,
and minimum slice length.

3.3. Feature Extraction

The main challenge for the feature extraction step is the potential variety of input
signals. In order to facilitate different representations, our framework affords the choice of
different features for computing both the location of a sound segment in the 2D space, and
the icon of the sound. Since many automatic descriptors have been developed for audio, it
is worth highlighting two main considerations with respect to their usefulness in different
steps and applications of the framework.

First, some audio features are directly inspired in human perception, which means
they may be more easily interpreted by a human listener. Two clear examples are pitch
and loudness. The use of interpretable features can be useful when the qualities of the
audio material are known and can be captured by these, which can be seen as a “top-down”
approach. On the other hand, other feature extraction approaches, such as feature learning,
can be used to adapt to the audio material. In this case, the relevant dimensions are not
known in advance, but the algorithm is used to learn them from the data, which can be
described as a “bottom-up” approach.

Second, an important aspect of audio descriptors is the dimensionality. Multi-dimensional
features can be naturally used to create feature spaces, while scalar features are particularly
useful for time series visualization. Groupings of scalar features can also be used to create
feature spaces, for example, by combining pitch, loudness and spectral centroid.

3.3.1. Position Features

The proposed framework allows visualising collections of sounds in two-dimensional
maps. This is based on dimensionality reduction of high-dimensional feature spaces.
Different sets of features may be used for top-down or bottom-up interfaces:

• Feature learning: automatically learnt features are by definition adaptive. They may
be interpretable, but their aim is to capture the main dimensions of the space spanned
by the data. We use the system proposed by [25] based on Principal Components
Analysis (PCA) and spherical k-means. These features have been applied to audio in
different works [26,27]. The underlying feature is the magnitude spectrum processed
by a Mel filterbank, so the algorithm can be seen as an adaptive version of MFCCs.

• Mel Frequency Cepstral Coefficients: MFCCs, computed as the cepstrum of the
output of a Mel filterbank, are a very established representation of the audio spectrum.
Their main characteristic is the ability to remove pitch by using less coefficients than
Mel bands, so they are particularly useful as a timbre descriptor, but they can also
be used as a compact description of the spectrum by using the full range. MFCCs
are hard to interpret, with the exception of the first coefficient which represents the
energy of the signal. Thus, they can be seen as a midpoint between feature learning
and perceptually inspired features.

• Chroma features: chroma features are histograms of the energy in the audio spectrum
where the bins are defined by notes in a musical scale. As such, they are particularly
useful for describing the harmonic aspects of tonal and polyphonic music signals. A
number of variants are available in the literature; our implementation is based on the
algorithm by Ellis [28].

• Spectral shape measures: spectral shape measures are a set of scalar descriptors that
measure the distribution of energy in the spectrum. They were popularized by the
MPEG-7 standard [29]. Our implementation includes some of the most established
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ones: spectral centroid, spread, skewness, kurtosis, rolloff, flatness and crest. As a
set, they can be comparable to MFCCs [30], but individually some of them have clear
perceptual interpretations. Thus, we use the whole set as a position feature, and the
most interpretable ones as icon feature (see below).

3.3.2. Icon Features

While very short sounds could have negligible variation, in general, sounds projected
in the map will contain some perceivable temporal change. Thus, it may be useful to
represent some information about the temporal evolution of each sound, in addition to the
statistics used to determine the position. In user interfaces, it is common to use graphical
icons to represent information about multiple objects. Here, we propose using scalar audio
features from each sound to create a graphical representation of the sound’s temporal
evolution. We call these features icon features. Our framework allows choosing among
several scalar features. We focus on features with a perceptual interpretation that can be
used to provide a visual cue of the contents of the sound. On this basis we propose the
following descriptors:

• Pitch: pitch is an obvious perceptual feature of musical instruments and human
and animal vocalizations. Thus, pitch envelopes can be used as a visual cue. Our
implementation is based on the YINFFT algorithm [31], which also provides pitch
salience measure.

• Pitch Salience: pitch salience envelopes can also be useful as visual cues, as many
sounds can have identifiable patterns. As an example, the attacks of clearly pitched
sounds are often noisy and thus have a low pitch salience.

• Loudness: loudness envelopes are perhaps the most obvious cues about audio content
and are used routinely for visual representation of audio signals.

• Spectral centroid: the spectral centroid gives an indication of the “center of gravity”
of energy in the spectrum. It is traditionally related to a perception of brightness [32].
We compute the spectral centroid, as well as the following measures, on a logarithmic
frequency scale, so the envelope is more consistent with human perception.

• Spectral spread: spectral spread is a measure of the bandwidth of the spectrum, so it
typically indicates whether sound is localized in frequency (e.g., monophonic sounds)
or occupies a wider frequency range (e.g., noise or polyphonic sounds).

• Spectral flatness: spectral flatness measures the flatness of the distribution of energy
in the spectrum. Since white noise has a flat spectrum, the envelope gives a cue of the
noisiness of the sound over time.

Our framework currently offers a choice between basic shapes and waveform repre-
sentations. Basic shapes can be either circles or squares, while waveform representations
are downsampled versions of the feature time series. In both cases, the average of one icon
feature is mapped to the color of the icon. Waveforms may be optionally filled. We found
plain waveforms are useful in some cases (e.g., overlaying other interface elements) while
filled waveforms work better for smaller icons. Figure 2 shows an example of both types
of waveform icons using the different icon features. Note that here the same sound was
used for all the examples, and the color corresponds to the average spectral centroid for
the whole sound. Since there is only one color per icon, the mapping is only useful in the
context of a collection plot.
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(a) Loudness (b) Pitch (c) Pitch salience (d) Spectral centroid (e) Spectral spread (f) Spectral flatness

Figure 2. Icon representations of the sound of a dog’s bark using different icon features. Each subfigure represents a
different shape feature (a–f). The icon style of the top row uses the fill style, whilst the icon style of the bottom row uses the
wave style.

3.4. Pooling

In order to locate different sounds in a common space, the time series of the position
features need to be summarized into a common space. Our system currently uses basic
statistics (mean, standard deviation, minimum and maximum), which are applied to both
the raw features and their first derivative. For example, for thirteen dimensions in the
frame-level feature, this renders a vector of 104 dimensions.

3.5. Dimensionality Reduction

The two-dimensional visualization of sound collections is typically accomplished
through the dimensionality reduction of the position features. Many algorithms have been
used in the literature for audio collections (see [33] for a review). Here, we focus on three
algorithms: Principal Components Analysis (PCA), Multi-Dimensional Scaling (MDS) and
Uniform Manifold Approximation and Projection (UMAP).

3.5.1. PCA

PCA is the most popular algorithm for linear dimensionality reduction. Its goal is to
find a subspace of the data that preserves as much of the variance in the original data as
possible. The dimensions of this subspace are the principal components (PC), and they are
found via eigenvalue decomposition of the covariance matrix of the data. PCA can be used
as a fast method for visualization by selecting the first two PCs, although it is limited to
linear projections of the data. Since the PCs are ranked by importance, it can also be used
as a pre-processing step to reduce some noise and redundancy in the dimensions obtained
by feature extraction.

3.5.2. MDS

MDS introduces the goal of preserving a distance metric between the points in the
data. One of the most classic algorithms for MDS performs an eigenvalue decomposition of
a matrix derived from a distance matrix. Thus, it can be used to experiment with different
distances, although due to the computational cost of computing the distance matrix, it
is not suited for very large collections. The algorithm could also be applied to distance
matrices generated from user input.

3.5.3. UMAP

Finally, UMAP is one of the most established algorithms for non-linear dimensionality
reduction. Like many modern algorithms for this problem, it can be seen as an optimization
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of a system of attractive and repulsive forces computed over a nearest-neighbors graph.
In UMAP, the graph is weighted following a probabilistic interpretation with roots in
mathematical topology, which results in very good quality visualizations. The algorithm is
also significantly faster than other popular algorithms such as t-SNE.

3.6. Layout

One particular affordance of dimensionality reduction algorithms is how they can help
reveal clusters of similar points in 2D space. At the same time, this may make it difficult to
display sound icons without overlaps, as the points may be arbitrarily close together. One
solution to this problem is to map the result of the dimensionality reduction algorithm to a
regular grid of points. The mapping of the points from the reduced space to the points in
the grid can be seen as an assignment problem and solved using the Hungarian algorithm.
In [18], this was applied to the output of the IsoMap algorithm, and an application to audio
samples was demonstrated among other examples.

Following this idea, we propose the use of oversampled grids (similarly to [34]) for
mapping the output of dimensionality reduction. If the generated grid has many more
points than the number of points in the plot (here, the sounds), it will be much easier for
the assignment algorithm to find a mapping that respects the original shapes in the plot.
On the other hand, if the grid has approximately the same number of points as the original
plot, the shapes formed by the points will be distorted, but the available space will be
uniformly covered by the points. Our algorithm generates a rectangle spanning the limits
of the plot generated by dimensionality reduction. We then generate a grid with at least the
same number of points as the original (depending on the oversampling factor). Finally, we
use the Jonker–Volgenant variant of the Hungarian algorithm [35] to assign each point to a
point in the grid. This allows us to obtain a predictable minimum distance between points,
which allows drawing icons, as opposed to colored dots. At the same time, depending
on the oversampling factor, we can interpolate between the shapes resulting from the
dimensionality reduction step, and a more regular grid that can be used to optimize the
available space. Figure 3 illustrates the process using synthetic data (random RGB colors as
features) and the UMAP algorithm. The oversampling factor controls the balance between
a regular grid and a more clustered plot. At 5× oversampling, the result is very close to
the original.

3.7. Indexing

A final step in the data processing pipeline is indexing the data for interactive appli-
cations. We normalize the 2D plot and fit a KD-tree algorithm [36] to facilitate nearest-
neighbors queries. In this step, we also compute the global statistics for normalization of
icon features.
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original

1x 2x 3x 

4x 5x 

Figure 3. Synthetic example of the grid layout algorithm showing values of oversampling from 1 to 5.

3.8. Relation to Prior Work

As described in earlier sections, our aim is to generalize previous work on the visual-
ization of sound collections. In this section, we analyze previous work in relation to the
dimensions of the framework presented in the previous section. Our analysis is presented
in Table 1. Our focus is on the potential of visualization for creative applications. For this
reason, we have selected works where a working prototype that can be used in this context
is presented. We describe 10 relevant systems ranging from 2007 until present:

1. Mused, an interactive scatter plot system for browsing a large database of sounds by
Coleman [10].

2. SoundTorch, a virtual flashlight system for browsing large collections of audio by
Heise et al. [15].

3. A study on interactive navigation-based search in large sound databases by
Schwarz et al. [37].

4. A visualization approach to represent the perceptual qualities of large collections of
textural sounds based on tile maps by Grill and Flexer [7].

5. AudioQuilt, a system that flexibly arranges audio clips on a layout based on the user
taste by Fried et al. [38].

6. AudioMetro, a system that organizes sounds on an evenly distributed grid by
Frisson et al. [39].

7. Floop, a system based on rhythm and timbre analysis for exploring loops in the
Freesound database by Roma and Serra [8].

8. Freesound Explorer, a visual interface system for exploring sounds from Freesound
based on their timbral properties by Font and Bandiera [5].
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9. A study on visualization methods based on perceptual representations of timbre
suitable for large libraries of sound samples by Richan and Ruat [21].

10. AudioStellar, a system that enables the generation of interactive visualizations based
on large collections of sounds by Garber et al. [6].

Table 1. Comparison of research prototypes for visualization of sound collections.

Authors Segmentation Audio Descriptor/s Reduction Algorithm Output Layout Icon Style Icon Feature

Coleman (2007) [10] Onset Spectral centroid – – – –Temporal centroid

Heise et al. (2008) [15] – MFCCs SOM – – –

Schwarz et al. (2009) [37] Onset MPEG-7 Hybrid MDS – Color Descriptor

Grill and Flexer (2012) [7] – Several scalar t-SNE – Texture Custom

Fried et al. (2014) [38] – MFCCs – Metric learning + Color Isomap/ClusteringTemporal centroid Kernelized sorting

Frisson et al. (2014) [39] – MFCCs PCA+t-SNE Proximity grid Color Perceptual sharpnessSpectral flatness Shape

Roma and Serra (2015) [8] – Beat spectrum Force directed layout – Spectrogram –MFCCs

Font and Bandiera (2017) [5] – Chroma t-SNE – Color TristimulusMFCCs

Richan and Ruat (2020) [21] –
Amplitude envelope

PCA+UMAP –
Color Position

Roughness envelope Shape Amplitude envelope
Spectral envelope Texture Supervised learning

Garber et al. (2021) [6] –

Chroma

– Color Clustering
FFT PCA

MFCCs t-SNE
RMS UMAP

Spectral centroid

It can be seen from Table 1 that some features are notably rare. For example, most
systems do not include segmentation as part of the pipeline. However, in our view, adding
segmentation opens up the possibilities for using longer recordings. While segmentation
can be carried out with other tools, integrating it into the same framework allows interactive
adjustment of the parameters while seeing the resulting visualization. Thus, we consider
the lack of segmentation an important limiting factor of most prior work.

Controlling the layout is also relatively rare. This is necessary to avoid overlaps
when icons are used. In [7], the sounds are mapped to a tiled grid, but it is unclear if
an automatic algorithm was used, so we would assume the mapping was carried out
manually. Fried et al. [38] specifically addressed this issue, but using a significantly expen-
sive method (e.g., they mention the process taking 30 min for 176 samples). They later
applied IsoMatch [18] to the same problem, which presumably is faster. We use the same
approach as IsoMatch although with different dimensionality reduction algorithms. In [39],
an algorithm named Proximity Grid is used [40].

Although the work in [21] is more focused on the evaluation than on the prototype,
we included it here because they assess the use of icons, which again is rare among the
compared systems. However, their prototype was mostly focused on this experiment and
included only 30 samples, so they do not address the issue of overlaps. In addition to this
work, only [7,39] feature visualizations for the sound beyond color . The system by the first
author in [8] used spectrogram images from the Freesound database, but this approach
would be difficult to scale to many sounds due to the complexity of the images. The
system in [39] added a unique capability of synthesizing image texture using supervised
learning. Our system focuses on waveforms derived from descriptors, which is similar to
their mapping to shape, but we allow using different descriptors. The shapes used in [7]
were again based on a manual approach.

Finally, an important feature of our framework is the ability to choose between differ-
ent sets of features for the high-dimensional space that is later projected to the visualization.
Most systems use fixed sets of descriptors. Notably, Ref. [6] allows several options, includ-
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ing MFCCs and Chroma. It is also worth noting that AudioStellar [6] and CataRT [37] are
available to musicians, whereas other systems can be mostly considered research proto-
types. However, like [10], the current public version of CataRT uses scalar features as axes
of the 2D visualization.

4. Experiments

Beyond the modularity and generality, the proposed framework introduces several
novel elements with respect to previous work. In this section, we assess their usefulness
through several experiments. First, we assess unsupervised feature learning (Section 4.2),
which can be useful for obtaining the feature space without introducing signal processing
concepts in user interfaces. We compare the spherical k-means algorithm to traditional
audio features. Second, we compare dimensionality reduction algorithms (Section 4.3),
with a focus on UMAP. This relatively recent algorithm has been used in some previous
works, but has not been evaluated with audio datasets. Finally, we analyze the effect of the
grid layout with different oversampling factors (Section 4.4). Like in the case of UMAP,
to the best of our knowledge this analysis has not been reported with audio data. Some
aspects of the proposed framework, such as the usefulness of icon features, would need to
be asessed via user studies, which we leave as future work.

4.1. Methodology

We now describe the methodology using four datasets and three metrics.

4.1.1. Datasets

We used four datasets of audio samples:

• Drums: a collection of 750 drum samples collected from different commercial sam-
plers, with labels for 5 instrument classes: clap, hi-hat, kick drum, ride and snare.

• SOL: a subset of 1500 sounds from the OrchideaSOL database used for computer-
aided orchestration [41], with labels for main instrument families: brass, keyboards,
plucked strings, strings, winds.

• Urban sounds: a subset of 804 sounds from the Urban sounds dataset [42] focusing
on 4 classes: car horn, dog bark, drilling and gun shot.

• Gaver: a collection of 1579 sounds (previously used in [43]) labelled according to
Gaver’s ecological acoustics taxonomy [44]: impact, rolling, scraping, deformation, drip,
pour, ripple, splash, woosh, explosion, wind.

4.1.2. Metrics

Following [4,45] we used three metrics to assess the plots obtained from dimensionality
reduction: Trustworthiness, Continuity and KNN classification error.

• Trustworthiness: this metric measures the rank of points in a neighborhood of a given
point in the reduced space which are not really neighbors in the feature space:

T(k) = 1− 2
Nk(2N − 3k− 1)

N

∑
i=1

∑
j∈U(k)

i

(r(i, j)− k), (1)

where k is the number of points in the neighborhood, N is the number of points, and
r(i, j) is the rank of point j with respect to i according to their distance in the 2D space.
U(k)

i indicates the set of points that are among the k-nearest neighbors of i in the 2D
plot but not in the original feature space. Trustworthiness can be related to the idea of
precision in information retrieval evaluation. If the plot is trustworthy, sounds that
were originally distant should not appear close in the 2D plot.
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• Continuity: this metric measures the complementary case, which can be related to
recall in information retrieval. Points that are originally close should also be close in
the 2D plot:

C(k) = 1− 2
Nk(2N − 3k− 1)

N

∑
i=1

∑
j∈V(k)

i

(r̂(i, j)− k), (2)

where r̂(i, j) is the rank of point j with respect to i according to their distance in the
original feature space, and V(k)

i indicates the set of points that are among the k-nearest
neighbors of i in the feature space but not in the 2D plot.

• KNN classification error: the performance of a K-Nearest Neighbors (KNN) classifier
in the 2D space (according to the labels of each dataset) also gives an indication of
the quality of the plot. Sounds of the same class should appear close in the plot and
thus a KNN classifier should be able to generalize from some training samples. We
measured the accuracy of a 2-nearest neighbors classifier when varying the fraction
of points used for training. In all cases, we used a random partition to label the data,
and averaged the results over 10 runs.

4.2. Feature Learning
4.2.1. Settings

We compared MFCCs to feature learning with the spherical k-means algorithm. In
this case, we only measured KNN classification error, since the feature spaces are different,
which would affect the comparison of continuity and trustworthiness. In both cases, we
used windows of 1024 samples (∼20 ms) with hops of 512 samples (∼10 ms). In each case,
we selected the best performing parameters when relevant. MFCCs were computed using
40 bands and 13 coefficients. For the spherical k-means features, we used 40 bands and
1024 clusters. We concatenated every consecutive pair of frames into a single frame (a
technique often known as shingling). Larger numbers significantly impacted performance
but would not improve results (a value of 2 did provide an improvement). With respect to
pooling, the best results for MFCCs were obtained using mean, standard deviation, min
and max for the original time series and first derivative. For spherical k-means features,
we used only mean and standard deviation of the raw features.

4.2.2. Results

Figure 4 shows the KNN classification error using MFCC vs. feature learning in each
of the dataset. The feature learning algorithm works better for environmental sounds
(Urban and Gaver), while MFCCs work better for classical instrument sounds (SOL). The
latter sounds are characterized by stable configurations of partials, which is well suited for
the classic MFCCs with 13 coefficients. The former sounds are generally less consistent and
noisy. Interestingly, there is little difference for the Drums dataset, which has a mixture of
noisy and tonal sounds. The environmental sounds datasets generally contain more variety.
Thus, it can be expected that feature learning would be a good strategy for noisier and less
controlled datasets, while MFCCs would still be better for traditional instrument sounds.
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Figure 4. KNN results for different datasets. From top-left to bottom-right: Urban, Gaver, Drums and SOL.

4.3. Dimensionality Reduction
4.3.1. Settings

We compared several dimensionality reduction algorithms with respect to KNN
classification error, trustworthiness and continuity. The algorithms are PCA, MDS, Isomap,
t-SNE and UMAP. We used the implementations available in the scikit-learn library [46]
and the “official” distribution for UMAP [47]. We set the number of neighbors of the UMAP
algorithm to 10. For the rest of algorithms, we used default parameters (perplexity = 30
for t-SNE). In all cases, we used MFCCs as features.

4.3.2. Results

The results for the comparison of dimensionality reduction algorithms is shown in
Figures 5–7. It can be seen that t-SNE and UMAP have generally similar performance and
work better than the rest. The only exception is continuity, where all four algorithms score
similarly high. This shows that t-SNE and UMAP produce more clustered plots, which
include only relevant neighbors for each point (trustworthiness), whereas all four algo-
rithms tend to preserve all neighbors in the feature space as neighbors in the reduced space
(continuity). In terms of speed, our experience with the Python/NumPy implementations
matches the reported improvement of UMAP over t-SNE [48]. Thus, we would consider
UMAP to be better suited for music creation applications.
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Figure 5. Trustworthiness results with different dimensionality reduction algorithm for each datasets. From top-left to
bottom-right: Urban, Gaver, Drums and SOL.
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4.4. Effect of Layout
4.4.1. Settings

We analyzed the effect of the grid layout and oversampling on trustworthiness, con-
tinuity and classification rate in a final experiment. As seen in the previous experiment,
these metrics are relatively stable with respect to the fraction of labelled data (classification
error) or number of neighbors (trustworthiness and continuity). For this experiment, we
fixed these parameters and analyzed each measure when the data are projected to a grid
layout with a varying oversampling factor. The grid layout was applied to the output of
the UMAP algorithm with MFCC features.

4.4.2. Results

The results were very similar for all four datasets. Figure 8 shows the results for the
Drums dataset. The value for each measure for the output of dimensionality reduction
(before the grid assignment) is shown in a dashed black line. It can be seen that the three
metrics are already close to that value with no oversampling, and approach it quickly
when oversampling is used. The continuity measure is already very close with only 2×
oversampling. The classification rate benefits from higher oversampling factors, and so
does trustworthiness.
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Figure 8. Results for the three metrics when varying the oversampling factor with the Drums dataset. From top-left to
bottom-right: trustworthiness, continuity, and classification error.

As seen in Figure 3, the distortion due to the grid assignment draws points that were
more distant in the reduced space closer together. This means that we can no longer
completely trust that near points will be similar, but at the same time, the grid layout has
interesting applications for graphical interfaces. The results show that oversampling the
grid is a useful compromise when high precision is desired, at the expense of the optimal
usage of the available space, while still allowing for non-overlaping shapes and icons.

5. Implementation

The framework described in the earlier sections was designed with the aim to enable
custom interfaces and instruments based on large sound collections. In order to test this in
practice, we implemented the framework in Fluid Corpus Map, a SuperCollider library on
top of FCMT.

Self-made instruments and interfaces are common in computer music thanks to
the different available CCEs and languages. However, dealing with large quantities of
information and machine learning algorithms can be difficult in this context. As a class-
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based object-oriented language, SuperCollider makes it easy to create abstractions that
address these difficulties while retaining the modularity. At the same time, it offers a wide
range of tools for playing and manipulating audio buffers in combination with different
synthesis techniques, as well as creating custom interfaces and graphics.

We designed the library to be configurable for all the options described in the frame-
work. All the settings are in one file, so they can be modified globally in the code, or they
can be set at run-time for a given project. This includes segmentation parameters, selection
of position and icon features, general analysis parameters (short-time Fourier Transform
parameters, number of dimensions and derivatives), icon shape, choice of dimensionality
reduction algorithm (as well as number of output dimensions and number of neighbors for
UMAP), using the grid and oversample factor, and optionally choosing a specific number
of rows or columns for the grid.

One important issue with respect to SuperCollider is that, since the objects in FCMT are
implemented as plugins (which run in a separate process in SuperCollider), all interactions
with data are asynchronous. This can lead to very complex code. Fluid Corpus Map
simplifies this by implementing a job queue and a method chaining interface inspired by
the D3 visualization library [49]. Figure 9 shows an example code listing and the resulting
plot using the Gaver dataset. The code for the Fluid Corpus Map library is available from
https://github.com/flucoma/FluidCorpusMap2 (accessed on 1 November 2021).

(
var win = Window . new( " " , Rect ( 0 , 0 , 800 , 800) ) ;
var fcm = FCM. new ( ) ;
var p l o t ;

fcm . s e t t i n g s . a n a l y s i s . p o s i t i o n F t r = \mfcc ;
fcm . s e t t i n g s . a n a l y s i s . shapeFtr = \loudness ;
fcm . s e t t i n g s . a n a l y s i s . c o l o r F t r = \ s p e c t r a l _ c e n t r o i d ;
fcm . s e t t i n g s . reduct ion . useGrid = true ;
fcm . s e t t i n g s . reduct ion . gridSample = 4 ;
fcm . s e t t i n g s . display . i c o n S i z e = 1 0 ;
fcm . s e t t i n g s . display . i c o n S t y l e = \ f i l l ;

fcm . addFolder ( " gaver_events/" )
. makeIndex ( )
. run {

p l o t = FCMPlotView . new( win , win . bounds , fcm ) ;
win . f r o n t ;

} )

Figure 9. An example script using the library, and the resulting plot.

6. Examples

In the previous sections, we presented a modular framework for combining segmen-
tation algorithms, audio descriptors and dimensionality reduction algorithms to create
visualizations of sound collections. We have shown an implementation as a SuperCollider
library that allows producing such visualization in a few lines of code. This opens up many
possibilities for novel interfaces, particularly by making use of other features available
in the SuperCollider environment (in prior work [33], we presented a similar set of ap-
plications using a combination of Python, SuperCollider and web interfaces. The current
version of the library runs purely on the SuperCollider language and server, leveraging
our implementation of the described algorithms in FCMT [9]).

We now describe three example interfaces for musical interaction with sound col-
lections using the library. Demonstration videos for each example can be found in the
companion website of this article: https://www.flucoma.org/APPLSCI/ (accessed on 1
November 2021).

https://github.com/flucoma/FluidCorpusMap2
https://github.com/flucoma/FluidCorpusMap2
https://www.flucoma.org/APPLSCI/
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6.1. Grids of Slices

The first example allows mapping slices to colored squares in a 8 × 8 grid. Grids of
buttons with RGB leds of this size are currently widely used in computer-based music
creation. This example makes it easy to map portions of a longer recording (such as, for
example, drum patterns or music fragments containing multiple sound events) to squares
in the grid, using both position and color as cues of the content of the slices. Two additional
sliders allow adjusting segmentation threshold and minimum slice length. The 64 longest
slices are selected. A screenshot is shown in Figure 10, using chroma as position features
and pitch as color feature, for a rhythmic chord progression. When using this prototype
we found that, thanks to the combination of the grid layout, the color mapping, and
the possibility of adjusting the segmentation parameters, we could very quickly obtain
intuitively playable surfaces out of a wide variety of sound materials.

Figure 10. Example of the slicer interface.

6.2. Data-Driven Multislider

The second example was ported to SuperCollider from the one presented previously
in [33]. We experimented using dimensionality reduction to create a four-dimensional
space instead of a 2D plot, and mapped each of the resulting axes to a slider. Thus,
in this case we implemented some graphics code beyond the 2D plots provided by the
framework. For each slider we represent the histogram of points along the corresponding
dimension using color. We used this interface to create a drone instrument, using a granular
synthesizer and a dataset of 500 sounds labelled with the same note from the SOL database.
A screenshot is shown in Figure 11. As noted in [33], the four dimensions are not very
intuitive, but the prototype works as a creative search interface, and it is easy to memorize
and transition between different configurations.
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Figure 11. Example of the multislider interface.

6.3. Playing Trajectories

Our last example focuses on playing trajectories in the reduced descriptor space. Here,
an oversampled grid layout was used along with waveform-based icons to display the
sound collection. MFCCs were used as position features. Loudness was used for the icons,
and the spectral centroid was used for color. The interface allows recording and triggering
trajectories in the 2D plot. A recorded trajectory is made of a sequence of points in the
2D space. An associated player follows the trajectory and plays the closest sound to each
point. A screenshot is shown in Figure 12. Recording envelopes of different parameters is a
common feature of digital synthesizers. We found that applying this idea to visualizations
of large sound collections allows to easily create phrases that combine movements of
timbre with complex temporal dynamics. This capability of triggering sonic trajectories
from discrete controls could also be useful to create interfaces for motion-impaired users.

Figure 12. Example of the trajectories interface with three recorded active trajectories.
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7. Discussion

In the previous sections, we proposed a modular approach to the dimensionality
reduction pipeline as applied to interfaces for interacting with sound collection. We have
presented a framework that generalizes previous approaches in terms of features and
potential for combinations. In comparison with previous approaches using scatterplots of
two scalar descriptors, dimensionality reduction can be used to automate the selection of
the axes, freeing users (often musicians and sound designers) from having to decide on
the basis of signal processing concepts represented by the descriptors. By introducing a
configuration option for position features, we introduce this choice again, although in this
context the decision would be mainly to focus either on tonality (using chroma) or timbre
(using MFCCs or MPEG7 features), as opposed to picking scalar descriptors. We have
introduced the idea of feature learning, which again can be used to automate the choice
of features.

In our experiments, we have found that the feature learning algorithm based on spher-
ical k-means can adapt better to sounds with more noise and variability than instrument
sounds, such as environmental sounds. However, we have not investigated whether it
could be used for tonal material. We hope that future work will contribute towards further
automation of the analysis process, with the aim of obtaining intuitive parameters and
choices from data.

We have also introduced more flexibility for mapping descriptors to color. Prior work,
such as [6], has used data clustering on the 2D plot to provide colors. This could be seen
as redundant, since the clusters are already visible in the plot without colors. However,
in our experience, it is still important that the color is related to the spatial distribution.
While a formal evaluation would be needed to characterize this problem, our experiences
so far indicate that it is hard to make sense of plots where color is completely unrelated
to position. Again this presents another promising direction for automating the feature
selection and extraction process.

We have proposed and evaluated the introduction of grid layouts through the Hungar-
ian algorithm. We have shown that this has two separate advantages. On the one hand, it
allows introducing more information about each sound through icons, as it avoids overlaps.
On the other hand, the grid can be used to provide more compact layouts that make a more
efficient use of screen real estate. As we have shown, oversampling the grid can be used to
recover the clusterings of the plots obtained via dimensionality reduction, as reflected in
the trustworthiness and classification error measures, while preserving the regularity of
the layout that allows representing icons.

With respect to the icons, our approach is deliberately simple. Recent efforts to
assess the usefulness of sound icons in visualizations [21] have been inconclusive. In
our experience, using simple waveform representations of well-known descriptors is
encouraging. In this sense, the creation of meaningful icons from audio features is an
interesting design problem by itself that deserves further research. It is worth mentioning
that, in early work, we experimented with mapping color to the time series of audio
features in the sound icons (as is done for example in the Freesound database). However
as mentioned above, we found that when color is decoupled from position, the plot can be
hard to interpret, so the combination of two scalar features for the waveform (derived from
the time series) and a solid color (derived from the statistic of the time series) provided a
good compromise. In early experiments with waveform icons, we also realized that, while
it may be tempting to normalize the waveform locally to optimize the space allocated for
the icon, global normalization was crucial to be able to understand the icons in the context
of the plot. A formal user study would help confirm these findings.

8. Conclusions

Combining audio analysis and dimensionality reduction is a promising approach
for designing novel music creation interfaces. For this purpose, we have introduced a
general framework for modular combination of segmentation, analysis and projection to
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two-dimensional spaces, including the representation of sound segments as icons. We have
validated experimentally the potential of feature learning, the suitability of the UMAP
algorithm, and the usefulness of the Hungarian algorithm to create grid layouts. Further
evaluation is needed for several aspects, notably the use of icons and color.

We have implemented the framework in a SuperCollider library that can be used by
researchers, musicians, and sound designers to experiment with these algorithms in music
creation contexts. We hope that our work will enable further technical and artistic research
on the use of unsupervised machine learning for music creation.
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FCMT Fluid Corpus Manipulation Toolkit
FFT Fast Fourier Transform
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