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Abstract: Human poses and the behaviour estimation for different activities in (virtual reality/augmented
reality) VR/AR could have numerous beneficial applications. Human fall monitoring is especially
important for elderly people and for non-typical activities with VR/AR applications. There are
a lot of different approaches to improving the fidelity of fall monitoring systems through the use
of novel sensors and deep learning architectures; however, there is still a lack of detail and diverse
datasets for training deep learning fall detectors using monocular images. The issues with synthetic
data generation based on digital human simulation were implemented and examined using the
Unreal Engine. The proposed pipeline provides automatic “playback” of various scenarios for
digital human behaviour simulation, and the result of a proposed modular pipeline for synthetic
data generation of digital human interaction with the 3D environments is demonstrated in this
paper. We used the generated synthetic data to train the Mask R-CNN-based segmentation of the
falling person interaction area. It is shown that, by training the model with simulation data, it is
possible to recognize a falling person with an accuracy of 97.6% and classify the type of person’s
interaction impact. The proposed approach also allows for covering a variety of scenarios that can
have a positive effect at a deep learning training stage in other human action estimation tasks in an
VR/AR environment.

Keywords: modelling and simulation; depth maps; segmentation; human fall; CNN; machine learning

1. Introduction

With the rapid progress of deep learning models gathering the necessary amount
of training, data is a challenging task [1]. Typically, synthetic data is used in the neural
networks training process to reduce the costs of collecting big diversity of the dataset
and solving domain-adaptation problems in visual tasks [2]. In this case, developing and
improving three-dimensional modelling and rendering software aims to achieve synthetic
data modelling for solving non-standard problems in network training.

The existing synthetic dataset samples cover an impressive amount of applications
in recognition tasks, such as autonomous robots navigation [3–5] and unmanned aerial
vehicles [6–9]. There can be large-scale datasets of interiors with any number of furniture
sets, or separate datasets with objects of the environment. On the other hand, there can
be various samples of residential or non-residential environments [10,11] simulated under
different lighting conditions [12,13]. There are also large-scale urban datasets, including
modelled natural areas and landscapes [14,15], and it is shown that such datasets have
a good effect on convolutional neural network (CNN) training. The dataset modelling task
has many variants of realization that combine photogrammetry methods and computer
visualization engines [6,16].
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Synthetic training datasets can be created using human body modelling with a certain
approximation that has been confirmed more than once to be useful in solving standard
problems in recognizing the form and actions of a person [17–19]. For general cases of
human posture assessment, datasets [20,21] collect an impressive amount of annotated
data. However, in particular problems of recognizing human actions, existing sets may not
cover all scenarios [22], and their variability may not be full enough [23]. The person action
annotation task with the environment is one of the resource-intensive tasks [24], while this
sort of data is being increasingly applied in health care and tracking tasks, e.g., automatic
fall detection systems [25,26], with subsequent analysis of their causes to improve the
quality and safety for people.

Computer visualization and rendering provides the ability to generate a large amount
of data with perfect labels [27], and the creation of a pipeline for generating a synthetic
dataset based on human actions and interactions with the environment is an important
and urgent task. The main emphasis in this research focuses on the usage of a simulation
environment for applied tasks of human action predictions with the environment, including
for further use in rehabilitation based on virtual reality. In the study, there is a high interest
in applying the approach in the healthcare industry, particularly in regard to analysing
the causes of falls. Because of the study, the life quality of people with disabilities [27]
can be improved.

The synthetic data generation pipeline [28] describing the consequences of a fall has
serious limitations: evaluating what part of the body had been hit; usage of the dataset in
the task of detecting the consequences of a fall; intentionality of the actions of persons in
the reconstruction process of the fall. The dataset obtained using our approach has several
differences from the existing synthetic options [20,28–30]. For the more realistically based
simulation, the digital human behaviour algorithm and inverse kinematics methodology
were applied in the research. In [20,22,29], authors performed the human fall data genera-
tion without considering the inverse kinematics human model aspects, which is in contrast
to our approach. In the existing works [28,29], modelling scenarios are not sufficiently
considered, and in the dataset [29] there is the dynamics of a person falling from an initial
static state. We give a notice to produce the hit masks that indicate the places which have
been hit, and it can be used in many applications, such as to analyse the causes of falls
in the healthcare industry, in VR controllers design, etc. In [30], authors use a hit mask
in some sense with the purpose of pressure assessment of bodies at rest on a mattress.
Moreover, our dataset includes the diversity of clothes for simulated digital humans. Our
research has put forward the following contributions:

(1) We implemented a physical model of digital humans to simulate the fall of a person
and their interaction with the environment with inverse kinematics for producing
various fall dynamics;

(2) We took into account the coordinates of impact with the object of interaction in the
process of registering a digital human fall to improve the segmentation ability of the
hit mask;

(3) We implemented the integration of digital human behaviour simulation for automatic
“playing” of various scenarios of interactions and falls in a 3D scene automatically;

(4) We apply the deep learning approach to examine the ability for training with synthetic
data to recognize the real datasets.

For the validation of the proposed synthetic dataset in recognition results, two classes
were taken into account (fall and not fall). However, at the training stage, we have three
categories that were labelled automatically using our generation pipeline: wall, floor and
hit mask, obtained as an area of floor and body touch.

The manuscript is structured as follows. In Section 2, we consider modern approaches
to the definition of falling people. In Section 3, we present a modular approach to the
problem of generating and collecting synthetic data from digital humans to study a person’s
fall and the consequences of a fall using the example of interaction with the environment.
In Section 4, we present the implementation of the pipeline, the main results and the char-



Appl. Sci. 2021, 11, 11938 3 of 16

acteristics of the generated dataset, discussing the applicability of the results and further
development of the project for the application of virtual reality. Finally, the conclusions
and general ability for the pipeline applications are given in Section 5.

2. Related Works
2.1. Human Fall Detection

The problem of fall detection has been widely studied by the authors in [27,31] using
neural networks. Significant experiments have been carried out to study human falls in
simulated laboratory conditions [32–34]. However, not all datasets are publicly available
(for privacy reasons). The fall assessment methods presented in these studies have varied
depending on the estimation-based data.

In [35], the authors used human motion segmentation with background subtraction.
The main measure was a significant change in visual information between subsequent
image frames. However, differences in the background and the presence of occlusion
objects, different camera viewpoints, and variability of the person’s appearance led to
poor generalization of methods applied to the real world [27]. The authors of work [36]
made a great contribution to the study of 3D information about a person falling from
several cameras and sensors, and the analysis was carried out using depth maps. As
noted by the authors in the work [37], systems with multiple cameras generated more
accurate fall detection results. However, these methods have additional limitations, such
as data synchronization and depth detection for 3D sensors, and it is not useful for cases in
which cheapness, quick responses and simplified usage are required. Fall detection with
a monocular camera has an advantage against other methods due to the absence of the
above restrictions.

One of the wider and open-source datasets that can be taken into account is [38],
which concerns a human falling. Solving the detection task can be complex due to variable
lighting and exposure conditions using such datasets. In most cases, these datasets are
not fully able to provide fall detection from one camera because of the high occlusion
coefficient when data from different cameras is analysed [39]. Comparable research to our
approach was presented in [28], where the authors demonstrated fall recognition derived
from synthetic data samples based on the alignment of MoCap poses and human models.
They generated the values of the skeletal joints, the segmentation mask and the “fall-no fall”
label in the created dataset. As a result, the authors [28] also introduced a deep learning
framework for fall detection in complex non-obvious real-world conditions. However, the
detection result does not provide the interaction masks with the environment during a fall.

The presented approaches and datasets have two common disadvantages: (1) this
is the intentional actions of persons in the process of reconstructing a fall (although the
researchers note that they studied data on an unexpected and unintentional fall); (2) the
presented variations of falls are often limited and difficult to use in the task of detecting
the consequences of one. For example, it is difficult to evaluate what part of the body had
been hit and the object of hit. In such tasks, human detections inevitably make mistakes in
predictions and pixel segmentations [28].

2.2. Existed Training Sets

As mentioned above in Section 2.1, recognition of human actions often faces problems
associated with changing the camera’s point of view and external lighting, as well as the
shape of the person’s body and clothes [40]. At the same time, the camera orientation
change makes a significant contribution to the recognition, and the same action can lead
to different results. In addition, annotations of body joints that are heavily occluded
can have many errors [28]. The high cost of annotating large-scale data has prompted
researchers to look for efficient ways to synthesize large data sets for the reliable recognition
of actions [22,41]. The main advantage of synthetic data is complete control over the virtual
environment and the ability to generate datasets with high variance [20,22].
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The general idea of the work in [29], in which authors developed and presented
a framework synthesizing training data for synthetic 3D people models, inspired us to
pursue this research. The dataset developed in [29] shows Human Pose Models that
represent RGB and depth images of human poses independent of external parameters such
as clothing, lighting and camera viewpoints. The authors in [29] take the synthetic data
approach, as it promises a wide range of actions due to its diversity and scale of variation.
Therefore, in a virtual environment, a researcher can fix as many variations of the same
action as required to solve a specific problem, while such an implementation in the real
world would require large costs [14,42]. It was experimentally demonstrated in [22,29] that
the method based on synthetic data is superior to existing modern methods of recognizing
actions in conventional RGB and RGB-D videos.

The authors in [20] also used the synthetic data generation method for the problem
of body segmentation and depth estimation. Another dataset, Human3.6M [43], presents
a realistic rendering of people in mixed reality. In [20,22], it was also shown that CNN
trained using the synthetic dataset allows one to accurately estimate 3D depth and segment
the human part in real-life images. However, results in [29] noted that the realism of
synthetic data directly affects generalization in regard to real data. As a solution in [29], the
authors proposed several methods of adapting the subject area. As noted in [22], there are
two main approaches for creating a dataset, namely rendering only a synthetic dataset and
combining synthetic and real training data. During the analysis, a significant advantage of
mixed datasets based on synthetic and real data was revealed due to the control of model
retraining using just synthetic data features. However, in a real experiment it is difficult to
obtain truly satisfying data regarding hit maps of human falls because there is so much
outlay here. For example, a pavilion with tactile surfaces with feedback was needed to
register impacts with high time costs and the chance of the subject being injured. The
authors in [29] noticed that the developed dataset of synthetic people images was created
using 3D models and lighting variations. At the same time, 2D backgrounds were used as
the environment, on which the lighting was not transferred, and the transition between the
model and the background was sharp and unrealistic, leading to the additional usage of
methods that “improve” the synthetic data.

Thus, the use of synthetic data based on the combination of physical modelling and
digital humans can improve the quality and variability of the dataset, and the approach
itself allows for the generation of really large-scale data.

3. Proposed Digital Human Falling Dataset Generation Pipeline

It is necessary to have an environment that combines both a physics and animation
engine, as well as a realistic rendering in real-time, for the successful implementation of
the pipeline. Moreover, such an environment has to provide modularity and access to any
component within that pipeline. There are at present many modern engines for modelling
and creating your own synthetic datasets, and a detailed comparison can be found in [44].
Therefore, we chose a modern engine, Unreal Engine 4 (ue4), implemented on c++ [45] as
a platform for simulation. The ue4 combines all the architectures and tools we need, and it
is also capable of providing high performance 3D simulations.

The proposed pipeline in the manuscript of synthetic data generation consists of three
main modules:

• Three-dimensional scene generation for various textures, meshes, skeleton physics,
etc. (Sections 3.1–3.3);

• Various behaviour simulation of a digital human (Section 3.4);
• Masks of digital human hit registration with a 3D scene environment (Section 3.5).

3.1. Digital Human Construction

We used 3D scanned models of real people from the RenderPeople [46] dataset as
a base three-dimensional human model. Thus, 4 models (2 male and 2 female) with 17–23 K
triangles were included in the sample. To control the colour diversity of the digital human
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and his clothes, materials for rendering models were implemented. We used skin tone
variety palettes and texture patterns for clothing. In Figure 1a, the examples of digital
humans are shown.

1 
 

 

 

 

Figure 1. Digital human examples used in experiments (a); digital human skeleton hierarchy (b); physical model of digital human (c).

We executed the cloth texture generation pipeline. It contains the following steps:
(1) select 5 typical patterns for the main background of clothing (including one-color),
(2) transform and rotate patterns, (3) project the pattern over the entire model according to
UV, (4) change the colour of patterns across the entire spectrum of the standard rgb palette.

3.2. Physical Modeling

We used a skeleton containing the 22 main bones of the body and legs and 30 bones
of the fingers, which has a standard tree structure. Figure 1b,c shows the anatomy of 3D
scanned people models corresponding to the hierarchy of skeletal bones. It is outlined
that the human skeleton has the freedom degrees (DOF) for each joint—red 6 DOF, yellow
3 DOF, green 2 DOF, blue 1 DOF. The physical model of a digital human is based on a hinge
system of primitives with corresponding constraints for each joint.

As shown in Figure 1b, certain bones have their own DOF. Below in the experiments,
we will discuss the process of a person’s fall as closely as possible. Such imitations
are possible using a system based on physical capsules corresponding to the skeleton
hierarchy [47]. Figure 1c shows a schematic diagram of the physical model. It is a person
modelled as an articulated rigid body system consisting of primitives such as capsules. Each
bone is assigned a capsule with the appropriate weight and simulation parameter value.

The physical model for simulating the rigid body dynamics of a human model based
on capsules was used. The idea is based on the movement simulation of the rigid body,
which takes into account the applied forces and moments. However, we used local con-
straint, where the obtainable angular transformation is limited at each stage by the upper
and lower limits [48]. This minimizes and avoids unrealistic joint displacements during
physical simulation.

3.3. Background and Rendering

A physical model of a person is placed in a 3D environment in which the human
model interacts with a 3D interior to obtain simulation data (Figure 2a). It is necessary
to notice that the term “interaction” of a person implies the activation of a digital human
behaviour scenario, whose algorithm will be described in Section 3.4.
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Figure 2. Visual representation of simulation room (a) and camera system for digital human (b).

In the experiment, we used a 3D room of fixed sizes. The weight and length were 8 m
and the height is 3 m. On the walls were randomly placed objects of interior paintings, and
on the floor were rugs. The rendering material type for each type of environment model
(floor, walls, etc.) was assigned. Moreover, the following variability of parameters within
the material were implemented: texture scale, texture blending colour, normal coefficient
and roughness.

The simulation environment has the significant ability to adjust the light while record-
ing visual changes by moving the camera to any angle and any desired point of view.
For experiments, we arranged and configured three types of light sources (basic skylight,
directional source and 9 light windows that simulate office lighting sources).

In Figure 2b, it is shown that the layout of cameras for filming during the experi-
ments was a contained system of 16 units for digital human registration. This system
issued images with fall registration at different angles simulated by different cameras in
a 3D environment.

We executed the next scheme to obtain simulation data for images generated by the
described system. We implemented a separate object that follows a digital human and
consists of 16 virtual cameras, located in the hemisphere at the same distance and where
the centre of interest is a person model. The field of view of each camera was specified
and equalled 90 degrees. Recording and registration from virtual cameras was carried
out synchronously.

In general, the method allows one to effectively include large variations of any number
of virtual cameras and many factors that affect the final result when generating data.

3.4. Digital Human Behavior Simulation

Initially, our simulation approach was to autonomously observe a virtual person with
actions and “play” various scenarios of his interaction with the 3D environment. Thus,
a behaviour system was implemented for our digital human.

The implementation of human behaviour in the experiment was carried out using the
behaviour tree (BT) [49]. Such algorithm representation sets a certain digital human action
command as a leaf of BT. A node in the BT either encapsulates the action to be performed
or acts as a component of the control flow that directs the traversal of the BT.

We examined the followed implementation of the behaviour in the experiment.
Figure 3 presents the scheme of decision making by a digital human with the descrip-
tion of BT component types.



Appl. Sci. 2021, 11, 11938 7 of 16

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 16 
 

action command as a leaf of BT. A node in the BT either encapsulates the action to be 

performed or acts as a component of the control flow that directs the traversal of the BT. 

We examined the followed implementation of the behaviour in the experiment. Fig-

ure 3 presents the scheme of decision making by a digital human with the description of 

BT component types. 

 

Figure 3. Behaviour tree for the digital human. 

The BT consists of one root and two sequences, two parallel, two condition and four 

activity nodes. Firstly, at the BT start point, the first branch on the left is the “explore the 

room” sequence. Using such an algorithm, the digital human can choose any point of free 

area, and the action “move” occurs with the playback of the corresponding animation. 

Secondly, if a digital human in the process of moving comes close enough to the object it 

can interact with, then the second branch in the BT is activated. In that case, the digital 

human focuses the attention on the object and moves closer. Upon completion of the ac-

tion, the BT returns success. Finally, the digital human continues the loop by walking 

around the room and the object of interest during the searching process. 

The slides of the registration process for synthetic data simulation are shown in Fig-

ure 4. In the process of digital human random motion at some arbitrary moment, the ac-

tion is triggered at t_start time, which leads to a “fainting” after a t_fall time. From the 

moment the trigger t_start is activated, the automatic system begins a comprehensive data 

collection. At t_fall, the physical model of a person is activated, which corresponds to the 

simulation of a sudden loss of consciousness in a person. The animation contribution to 

the movement of the joints tends to go to zero, and only the simulation of the capsule 

model remains—the person continues to fall in the direction of inertia of the last skeletal 

pose until the moment t_end, when the physical model is fully balanced. In addition, we 

can capture the digital human during his motion in the behaviour process, which provides 

non-fall images. 

 

Figure 4. Single-frame registration digital human from the moment the fall simulation trigger is activated. 

3.5. Hit Masks and Visualisation 

For further comprehensive research of deep learning, the data was presented in sev-

eral versions. A dataset is synchronously captured from each camera in each frame with 

standard 60 Hz update frequency. Therefore, this includes the main rendering maps: rgb, 

normal, depth and object segmentation. Figure 5 shows a sample obtained in a fixed sim-

ulation frame. 

Figure 3. Behaviour tree for the digital human.

The BT consists of one root and two sequences, two parallel, two condition and four
activity nodes. Firstly, at the BT start point, the first branch on the left is the “explore the
room” sequence. Using such an algorithm, the digital human can choose any point of free
area, and the action “move” occurs with the playback of the corresponding animation.
Secondly, if a digital human in the process of moving comes close enough to the object it
can interact with, then the second branch in the BT is activated. In that case, the digital
human focuses the attention on the object and moves closer. Upon completion of the action,
the BT returns success. Finally, the digital human continues the loop by walking around
the room and the object of interest during the searching process.

The slides of the registration process for synthetic data simulation are shown in
Figure 4. In the process of digital human random motion at some arbitrary moment, the
action is triggered at t_start time, which leads to a “fainting” after a t_fall time. From the
moment the trigger t_start is activated, the automatic system begins a comprehensive data
collection. At t_fall, the physical model of a person is activated, which corresponds to the
simulation of a sudden loss of consciousness in a person. The animation contribution to the
movement of the joints tends to go to zero, and only the simulation of the capsule model
remains—the person continues to fall in the direction of inertia of the last skeletal pose
until the moment t_end, when the physical model is fully balanced. In addition, we can
capture the digital human during his motion in the behaviour process, which provides
non-fall images.
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Figure 4. Single-frame registration digital human from the moment the fall simulation trigger is activated.

3.5. Hit Masks and Visualisation

For further comprehensive research of deep learning, the data was presented in
several versions. A dataset is synchronously captured from each camera in each frame
with standard 60 Hz update frequency. Therefore, this includes the main rendering maps:
rgb, normal, depth and object segmentation. Figure 5 shows a sample obtained in a fixed
simulation frame.
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Figure 5. Simulation results: rgb (a), normal (b), depth (c), segmentation (d) rendering maps.

Simulation of digital human interaction in a virtual scene has significant advantages.
We can obtain annotated data using such an approach with minimal costs, different types,
accuracy and gradation. Thus, in Figure 5d, it is shown that we compute accurate seg-
mentation maps of objects: floor, wall and the human body. A fact of using additional
controlled parameters such as normal and depth maps (Figure 5b,c) makes it possible to
comprehensively assess the orientation of digital human body parts in the task of recogniz-
ing the consequences of a fall. Moreover, we presented an advanced dataset from human
interaction maps with the environment at the time of fall impact. We were interested in
the possibility of generating and training a collision recognition model. Therefore, in the
research, we register human collisions with the floor and use of a simplified registration
system for which several stage outputs are presented below in Figure 6.
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Figure 6. 2D render target map representing the scene depth buffer relative to the floor plane (a) and
map after filtering by render depth (b).

This is the main scene-capturing component, which is located in the plane of the
floor and is directed perpendicular to the ceiling of the room. The component registers
render target texture in a 2D frame by frame in an orthographic projection, and displays the
scene depth buffer relative to the floor plane. Figure 6a shows the results of depth buffer
rendering with a maximum scan value of 0.17 m. The resulting frame with the depth mask
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has the threshold value of 0.037 m and is normalized relative to the entire mask (Figure 6b).
Thus, we obtain a “fingerprint” of the digital human body on the surface of a floor, which
is further projected according to the view of the activated camera.

4. Experiments
4.1. Dataset

In this article, we performed the following digital human simulation and hit mask
recognition research. Several experiments were carried out and the simulation values
were initialized in each experiment: firstly, a digital human was randomly selected and
forwarded in one specially generated room; secondly, many digital humans were randomly
selected and placed in four unique generated rooms. Finally, the synthetic dataset contains
of 577 simulations (first experiment) and 271 simulations (second experiment) accordingly.
Each experiment amount of data includes three images from 16 cameras (48 images at one
simulation): rgb frame, ground truth hit mask for “fall” and “not fall” cases, ground truth
segmentation masks for floor and wall. In accordance with the digital human behaviour
simulation algorithm, half of the simulations were carried out with fall results, while the other
one captured non-fall results. For the second experiment, we specifically reduced the number
of simulations, but on the other hand, the criteria number for generating the appearance of
the digital human and the environment that affected the variance of the data was increased.

For the registration of an arbitrary moment without falling (walk or stand) and the
moment of falling from the different views, 16 cameras were performed. The duration
of each simulation was 1–3 s. Simulations were run on the PC with an 8th core and 16th
threaded processor with 4.3 GHz and GeForce RTX 2080 video card. If a Person’s location
took place in the proximity of the walls and corners of the room, then some amount of
cameras were expected to be outside the room. Therefore, data from such cameras were
automatically excluded from the sample. As a result of two experiments, 27,476 and
12,698 images of 512 × 512 size were modelled and collected accordingly.

4.2. CNN Training

The CNN approaches can be applied in many areas. In fact, other CNN are unable to
obtain a mask in order to segment the coordinates of impact with the object of interaction
in the process of registering a digital human fall, therefore the Mask-R-CNN network [50]
effectiveness was examined. We used our generated synthetic data to train the Mask
R-CNN network for the prediction of pixel masks produced after a person interacts with
any environment. In our case, we checked hitting the floor after a digital human’s fall.
We divided the dataset into training and test samples in a ratio 4:1, which were randomly
selected from all amounts of simulation samples. The library Tensorflow 2.3 was used in the
framework. We used SGD for gradient optimization with learning rate 0.001, momentum
0.9, weight decay 0.0001 and patch size 100. Initial weights were taken based on the ResNet-
101 model weights pre-trained on the COCO dataset [51]. Segmentation masks involved
three classes—floor, fall and does not fall, and the model itself was trained for 250 epochs.

The values of the loss function, which combines classification, localization, and seg-
mentation mask losses, equal 0.483 and 0.394, respectively, as a result of training with
synthetic data. Figure 7 shows the plot of the loss function curves.

The loss function was a combination of many resulting values for the basic loss
parameters of the training model that generated a sum. There is the cross-entropy of
an anchor classifier loss, bounding box difference (smooth L1 norm) between target and
recognized object and the difference (smooth L1 norm) between target and predicted object
mask. The difference or L1 norm was calculated using the following expression:

L1,smooth =

{
0.5(y− x)2, i f |y− x| < 1
|y− x| − 0.5, otherwise

where x is a training sample and y is a predicted result. Additionally, for cross-entropy, the
function was used in the form:
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Lcross−entropy = −
n

∑
i=1

ti log(pi)

where ti is the truth label and pi is the Softmax probability for the i-th class.
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Figure 7. Loss functions for Mask R-CNN model trained on digital human fall data for the first and
second simulation experiment.

4.3. Recognition Results

Figure 8 presents the simulation results of the digital human in two different rooms,
where top—ground truth segmentation maps (hit map = 1.0; floor = 0.79; human = 0.66;
walls = 0.48), and bottom—hit map predictions by model with rendered rgb images. In
Figure 8a–c, the example images before falling from different cameras and labelled “did
not fall” were shown, and Figure 8d–f, images are labelled “fall”. The recorded samples of
fall scenarios represent different interactions with the environment during a fall, which can
be divided into three main cases: the subject falls forward (Figure 8d), falls back (Figure 8e)
and falls on the side (Figure 8f), the description of which will be detailed below.
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It is possible to evaluate the unique scenarios of the fall, and the recorded data allows
one to judge the nature of the impact as a result of conducted simulations with digital
humans. Finally, all three simulation examples in Figure 8d–f have a head hit registration,
as seen from the hit map data from the bottom of the figure.

As expected, increasing the variance of data generation in the second experiment (2nd
exp) improved the model efficiency at the testing stage, while the amount of data used for
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training was more than halved. The accuracy of the testing set was calculated considering
“fall” and “not fall” classes detection. The value was 91.4% and 75.8% (1st exp) compared
with 97.6% and 92.1% (2nd exp). Additionally, the 2nd exp trained model data appears
to be more effective in the hit map prediction. Table 1 shows examples of comparison of
specific predicted hit maps training data on the example of three types of falls.

Table 1. Ground truth (GT) and specific predicted hit maps for Mask R-CNN model trained synthetic data.

Fall Type GT Predicted Map, 1st Exp Predicted Map, 2nd Exp

Forward fall (Camera #2)
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Table 2. The values of the DICE and IoU segmentation metrics (detection_min_confidence = 0.9) corresponding to the
registered fall types.

Data Generation 1st Exp (577 Simulations) 1 Random Character,
1 Random Room

2nd Exp (271 Simulations) 2 Random Characters,
4 Random Rooms

Fall type fw back side fw back side
Total simulations 191 196 190 89 90 92

Total images 27,476 12,698
DICE (%) 71.9 62.1 59.7 75.0 69.3 66.7
IoU (%) 55.5 48.0 44.7 59.7 52.3 49.4

In order to ensure that the proposed synthetic data generation pipeline is effective in
real-world datasets, we conducted the experiment using the UR Fall dataset (URDFD) [52].
In Table 3, the accuracy for results for fall and not fall detection was given. This experiment
shows the reliable efficiency of the proposed approach, and the results are comparable with
the recognition accuracy obtained during training on real data presented in [53], where an
accuracy of 95% was achieved. Figure 9 provides the recognition results on real data using
Mask R-CNN trained by the synthetic data.

Table 3. The detection accuracy for human fall on URDF dataset.

Camera Type Camera1 (Filming Top-Down) Camera0 (Filming Side)

Accuracy 97.9% 87.5%

1 
 

 

 

 
Figure 9. Examples of real URDF dataset human fall recognition results.

4.4. Discussion

There can be many other possibilities of such synthetic data generation pipeline usage.
The described approach of digital human synthetic data generation can be effectively used
in many applications. In addition, based on the received positive results, we can shed light
on developing possibilities for a type of VR controller that can produce a new level of virtual
environment interaction and deepen user VR experiences. The concept of such a controller
is shown in Figure 10. The main idea is to provide the VR operator with a matrix of several
sensors (pictured as blue and red on the suit) which use mechanic or electrical signals.
As demonstrated in Figure 10, it is the connection between the virtual reality results of
a digital human body interaction with the environment and with sensors on a suit that
is schematically lighted as red for the correspondent hit map and blue—sensors that are
not activated.

We also agree with the idea mentioned in [54] by M.A. Fallon and colleagues, who
argue that virtual reality, in addition to collecting data from a neural network, allows
one to determine the emotional state of a person as well as his psychophysiological load.
At the same time, a properly constructed research design will allow us not only to solve
the problems of assessing a person’s fall in a three-dimensional environment, but also to
additionally train him in the balance pose and other physiological exercises [55].

Based on analyses of the data obtained for the DICE and IoU metrics, it is necessary
to notice the high recognition of falling to the side (Table 2) despite the small number of
training examples. It is demonstrated by Table 2 that both experiments are characterized
by a slight difference in the back and side fall types of DICE and IoU metrics. Despite the
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fact that we set the minimum detection confidence for the predicted mask to a 0.9 value,
the method for generating synthetic data for the hit map prediction as a whole allows us
to achieve encouraging characteristics. Hereby, the Mask R-CNN model trained only via
synthetics can be useful in a task regarding a prototype for the novel VR controller shown
in Figure 10.
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5. Conclusions

This paper presented a modular pipeline for generating synthetic data for the tasks of
human interaction recognition with a 3D environment. The research included the following
contributions: a synthetic dataset based on the procedural generation of realistic move-
ments and falls, which take into account the physics models of digital humans; registering
basic rgb and segmentation rendering maps while simulating a digital human fall; in
segmentation maps, we presented unique hitting coordinate masks with the interaction of
the human model and 3D scenes.

The pipeline modules included generating a human’s and 3D environment’s appear-
ance, and also fall simulation based on a physical model of a digital human. We integrated
the behaviour of digital humans in automatic scenarios. All modules of the pipeline were
implemented in the open-source game engine, which allowed for high reconstruction
availability for simulation. Our generated data included rgb maps, segmentation maps of
3D scene objects and hit maps.

It was also noted that one of the main challenges at the preparation stage in training
neural networks is the collection of large-scale annotated data sets with minimal time and
resource costs, especially the detection and classification of human interactions with a high
occlusion coefficient, as a falling person can become a difficult task. Moreover, there is
a high probability of erroneous and inaccurate manual annotation of such spatial kinds of
data. It was shown that, by training the Mask R-CNN model via our generated synthetic
data, it is possible to recognize a fallen human with an accuracy of 97.6%.
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