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Abstract: In this paper, the problem of controlling a human-like bipedal robot while walking is
studied. The control method commonly applied when controlling robots in general and bipedal
robots in particular, was based on a dynamical model. This led to the need to accurately define the
dynamical model of the robot. The activities of bipedal robots to replace humans, serve humans,
or interact with humans are diverse and ever-changing. Accurate determination of the dynamical
model of the robot is difficult because it is difficult to fully and accurately determine the dynamical
quantities in the differential equations of motion of the robot. Additionally, another difficulty is
that because the robot’s operation is always changing, the dynamical quantities also change. There
have been a number of works applying fuzzy logic-based controllers and neural networks to control
bipedal robots. These methods can overcome to some extent the uncertainties mentioned above.
However, it is a challenge to build appropriate rule systems that ensure the control quality as well as
the controller’s ability to perform easily and flexibly. In this paper, a method for building a fuzzy
rule system suitable for bipedal robot control is proposed. The design of the motion trajectory for the
robot according to the human gait and the analysis of dynamical factors affecting the equilibrium
condition and the tracking trajectory were performed to provide informational data as well as
parameters. Based on that, a fuzzy rule system and fuzzy controller was proposed and built, allowing
a determination of the control force/moment without relying on the dynamical model of the robot.
For evaluation, an exact controller based on the assumption of an accurate dynamical model, which
was a two-feedback loop controller based on integrated inverse dynamics with proportional integral
derivative, is also proposed. To confirm the validity of the proposed fuzzy rule system and fuzzy
controller, computation and numerical simulation were performed for both types of controllers.
Comparison of numerical simulation results showed that the fuzzy rule system and the fuzzy
controller worked well. The proposed fuzzy rule system is simple and easy to apply.

Keywords: bipedal robot; fuzzy logic; fuzzy control; fuzzy rule; robot kinematics; robot dynamics;
robot’s motion trajectory

1. Introduction

A bipedal robot has a structure with many degrees of freedom. An important feature
of bipedal robots is poor stability because the robot is supported by only two feet on the
ground. Bipedal robots are capable of performing a variety of tasks to replace humans,
serve humans, or coordinate operations with humans.

Because of such structural characteristics and applicability, bipedal robots are of wide
research interest [1–8].

The first important problem is the dynamics of bipedal robots. Although there have
been many studies on the problem of dynamics [8–16], because the structure is very
diverse for each field of application, this is still an open problem. Normally, Newton–Euler
equations and Lagrange equations of the 2nd kind are widely applied when investigating
the dynamics of bipedal robots. As shown in the following section, the research applied
Lagrange equations of the 2nd kind.
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An important feature of the dynamics problem is the relationship between motion
and the applied force, which ensures the robot’s manipulative motion and at the same
time ensures that the robot is in balance, i.e., maintaining the desired posture and state
without falling.

This is closely related to the problem of designing the robot’s motion trajectory and
controlling the robot.

There are many studies on motion trajectory planning for bipedal robots based on
different approaches [17–22], but due to the robot structure being positioned only by two
feet on the ground with poor stability, a class of motion trajectory design problems was
implemented taking into account the dynamic characteristics. Accordingly, the motion
trajectory was designed with dynamic characteristics following the principle of ZMP point
(Zero Moment Point) [23–33].

Basing the design of the motion trajectory and the control a bipedal robot on the
principle of the ZMP point has been widely applied. However, ensuring that the ZMP
point is always within the support polygon limits the flexibility of the robot and increases
the complexity and computational load when controlling the robot.

Actual observation of human activity shows that there are many times or periods
when the ZMP point is outside the support polygon, but human activity is still stable and
ensures dynamic balance. This is explained first of all by the process of falling, which will
have to take place over a period of time. When the time to change the position of the robot
is small enough compared with the time of falling, the robot will not fall; the posture and
equilibrium will change insignificantly. A second point is that humans have the ability to
adjust the interaction to ensure operation while maintaining a state of balance.

In order for a robot to mimic human-like interaction, the robot’s structure must first
have a form close to that of a human. In addition, the ability to adjust the interaction
flexibly thanks to the motors that drive at the joints must be based on the same rules as
humans. Crisp controllers based on dynamical models with closed equations will find it
difficult to meet this requirement.

Meanwhile, controllers based on fuzzy logic imitating human natural reasoning
have been studied and applied in many control problems in general and in the control
of bipedal robots—for example, a fuzzy logic-based controller for robot in mechanical
processing [34,35], a fuzzy-based-admittance controller for safe natural human–robot
interaction [36], and a fuzzy logic-based bipedal robot control [37–39]. Moreover, the
integration of fuzzy logic with intelligent algorithms is also a research direction that is
being applied to control bipedal robots [40–42].

With robots applied in mechanical processing requiring high accuracy, the research [34,35]
has shown that in the construction of a fuzzy rule system as well as in the determination of
an appropriate physical value domain, a fuzzy controller gives accurate and reliable results.
Although the control of a bipedal robot does not require high precision, as in machining,
the difficulty lies in the fact that the movement of the robot is more flexible, the operation
is not clearly defined as a mechanical engineering process. The authors of [37] show that
fuzzy logic can be used to compensate for the error of the computed torque controller.
In the work presented in [38], it was shown that the combination of fuzzy logic and ant
colony algorithm could be used to eliminate the noise that occurs when a bipedal robot
moves. This is also a new direction on the method of integrating intelligent algorithms that
this paper mentions at the end. However, the model studied in [38] was far from a real
model, and the motion trajectory was not fully and clearly performed. While the control
force/moment is a quantity that needs to be determined to ensure the law of motion of
the robot, it depends on the dynamic quantities of the robot. Likewise, the robot model
in [39] was also far from a real model in dynamic parameters, and motion trajectory was
not performed fully and clearly.

In this paper, the difference from the previous works is that first of all, a fuzzy system
and fuzzy inference were built, allowing the determination of control force/moment with-
out using the dynamic model of the robot. The proposed dynamic model with kinematic
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and dynamic parameters was close to that of a real human. The control of the robot was
closely related to the robot’s gait as well as to the dynamic factors and the equilibrium
condition. Therefore, the paper presents a comprehensive overview of the work, including
the motion trajectory planning and dynamic analysis that bring the control problem closer
to reality.

In Section 2 of the paper, the method of designing the motion trajectory of the robot
is presented based on observation and the interpolation method so that it has a human
gait. The design of motion trajectories taking into account the dynamic characteristics
is considered in Section 3 to investigate some parameters that can improve the dynamic
characteristics. In this way, it is possible to get the robot’s motion trajectory close to the
human gait. At the same time, the ZMP is either inside the support polygon or, if it is
outside the support polygon, but the ZMP is still within a distance and time that allow the
fuzzy controller to still ensure robot control to follow the trajectory and maintain balance.
Section 4 presents crisp controllers based on the dynamical model of the robot. Section 5
presents the proposed fuzzy rule system for a bipedal robot along with the method of
composing the fuzzy rule system, fuzzification, fuzzy inference, and defuzzification applied
to the fuzzy controller for the bipedal robot. Section 6 presents the simulation results of the
controllers. Section 7 concludes with the reliability and efficiency of the fuzzy controller
based on the established rule system and considers research and development.

2. Kinematics of Robot and Motion Trajectory Planning

A human-like bipedal robot can have main parts that include a head, body, two arms,
and two legs as shown in Figure 1a. Arms and legs are made up of several links, connected
by joints, and a joint can have from 1 up to 3 degrees of freedom of motion. The head, arms,
and legs are connected to the robot body by joints from 1 to 3 degrees of freedom. With
such a structure, the robot can perform movements as well as manipulations ranging from
simple to complex spatial actions. The goal of the paper was to present the robot’s walking
control and not to mention the dynamic effects of arm movement. Therefore, mechanically,
the head and arms were integrated with the robot body as a solid object and are collectively
referred to as the robot body when surveying and calculating from now on. The robot
can move on flat horizontal ground, or on ground that is sloping and rough, convex, and
complex. A simple motion of the robot is a straight, horizontal motion. This motion is
called a motion that is in the sagittal plane [21]. Figure 1a–c shows the robot moving in
the sagittal S plane. With this motion, the survey model of the robot can lead to a simple
model in which the parts of the legs that are connected to each other and to the robot
body are revolute joints. Revolute joints that connect the robot body to the thighs of the
legs are called hip joints. The knee joints connect the thighs to the calves, the ankle joints
connect the calves to the feet. All revolute joints have a rotation axis perpendicular to the
sagittal plane. With such structure and motion in the sagittal plane, the survey model of
the robot is returned to the flat model, as shown in Figure 1b,c. Figure 1b represents when
the robot is stationary in the vertical state, Figure 1c demonstrates the robot in walking
position. Because the paper focuses on studying control algorithms based on fuzzy logic
and building a fuzzy rule system, this flat model was used.
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Figure 1. Bipedal robot model: (a) human-like bipedal robot; (b,c) robot’s kinematic scheme and
coordinate systems.

2.1. Kinematic Equations of Robot

When a robot moves, one leg will act as the supporting leg, the other leg will swing
in the direction of travel to take a step. These will be called supporting (leg, foot) and
swinging (leg, foot), respectively. To set up the kinematic equations of the robot, the
coordinates systems and kinematic parameters were derived as shown in Figure 1c, in
which the coordinate system x0y0z0 was attached to the background, which was the base
coordinate system. The x0fy0fz0f coordinate system was also attached to the background,
which was used to represent the robot position at each step. The x1y1z1 coordinate system
was attached to the foot of the supporting leg, having its origin at the toe of the foot. The
x7y7z7 coordinate system was attached to the robot body, whose origin was at the hip joint.

The angles θ2, . . . , θ7 are the joint coordinates, where θ7 is joint coordinate between
the thigh, axis x3, and body, axis x7. These coordinates, together with θ1, i.e., θ1, θ2, . . . ,
θ7, are independent generalized coordinates, defining the robot’s state and motion. On
the other hand, in space, the factors that characterize the robot’s state are the position of
the robot body and the positions of the supporting foot and the swinging foot. At each
step, the coordinate system x0fy0fz0f was determined with respect to the coordinate system
x0y0z0. The robot body position is represented by the hip joint coordinates xb, yb, and angle
θb between the x7 axis, which is the axis mounted along the robot body, relative to the
vertical, axis zb. The position of the supporting foot is determined by the coordinates of the
supporting foot x1, y1, and angle θ1. The coordinates of the ankle, xk, yk, and θk, are used to
represent the swinging foot position. Where, θk is the angle between the swinging foot, x6
axis, and the vertical, axis zk.

In the calculation, the coordinates x0f , y0f , z0f are determined by the coordinate system
x0fy0fz0f with respect to the base coordinate system x0y0z0; the coordinates xb, yb, θb, x1, y1,
θ1, xk, yk, θk are determined in each step and are represented with respect to the x0fy0fz0f
coordinate system.

In general, when the robot is operating, from the operation request, the robot’s attitude
is determined by the position of the robot’s body, supporting foot, and the swinging foot.
Therefore, the coordinates locating the above components are called operational (task)
coordinates and are denoted as follows:

p = [p1, p2, . . . , p12]
T =

[
x0 f , y0 f , z0 f , xb, yb, θb, x1, y1, θ1, xk, yk, θk

]T
(1)
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The independent generalized coordinates are denoted as follows:

q = [q1, q2, . . . , q7]
T = [θ1, θ2, . . . , θ7]

T (2)

In addition to the time-varying parameters, which are the coordinates mentioned
above, there are also geometric parameters of the robot, including the robot’s foot di-
mensions hf, df, dh (Figure 1c), and the length of the legs calves and thighs are ac and at,
respectively.

The operational coordinates (1) are the parameters for designing the motion trajectory,
while the independent coordinates (2) are the basis for controlling the robot’s motion.
However, only six generalized coordinates, which are the joint coordinates θ2, . . . , θ7 are
driven and controlled, while the number of independent generalized coordinates is seven.
Thus, the bipedal robot is an underactuated system. The angle θ1 is a parameter related
to the stable equilibrium of the robot. The guarantee of θ1 angle value for the purpose of
stable balance of the robot is not performed directly by the driving motor but depends on
the dynamic state of the robot as well as the control algorithm applied on the joints driven
by the motor. Therefore, θ1 is both a parameter related to the design problem of the motion
trajectory and one of the independent coordinates related to the problem of controlling
the robot’s motion. The following sections will continue to present issues related to this
problem. The angles θ6, θ7 represent the posture of the robot body and swinging feet,
respectively, in stationary as well as in moving states.

Using the homogeneous coordinate transformation transfer matrix method, the robot
kinematic equations are set up as follows:{

atcosθ13 + accosθ12 + a f cosθ1 + d f − xb = 0; cosθ13 = cos(θ1 + θ2 + θ3); cosθ12 = cos(θ1 + θ2);
atsinθ13 + acsinθ12 + a f sinθ1 − yb = 0; sinθ13 = sin(θ1 + θ2 + θ3); sinθ12 = sin(θ1 + θ2);

(3)

{
accosθ15 + atcosθ14 + atcosθ13 + accosθ12 + a f cosθ1 + d f − xk = 0; cosθ15 = cos(θ1 + · · ·+ θ5); cosθ14 = cos(θ1 + · · ·+ θ4);
acsinθ15 + atsinθ14 + atsinθ13 + acsinθ12 + a f sinθ1 − yk = 0; sinθ15 = sin(θ1 + · · ·+ θ5); sinθ14 = sin(θ1 + · · ·+ θ4);

(4)

From the kinematic structure diagram, it is possible to derive

θ6 = θk − (θ1 + θ2 + θ3 + θ4 + θ5)−
π

2
(5)

θ7 = θb − (θ1 + θ2 + θ3) +
π

2
(6)

With the position and state of the robot at each step being determined by the opera-
tional coordinates (1), Equations (3)–(6) allow solving the generalized coordinates (2), in
which the joint coordinates θ2, . . . , θ7 are driven, thus creating the basis for controlling
robot movements. In contrast, the generalized coordinates (2) are identified by sensors
allowing the solution of Equations (3)–(6) to find the robot’s posture at each step taken.

Therefore, the systems of kinematic Equations (3)–(6) are used when designing motion
trajectories for the robot.

2.2. Robot Motion Trajectory Planning

The bipedal robot can perform human-replacement operations, it can serve humans
as a normal robot, and it can cooperate by manipulating objects with humans in human
environments. Therefore, the robot’s activities will be very diverse in general, and with
walking in particular, there are many different status postures.

In terms of the stages of movement in each step of the robot, there can be three stages
as follows:

- The stage in which one foot lands on the ground, while the other swings in the air
to take a step in the direction of travel. This phase is called the single phase of the
robot’s walk.
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- The stage is which both feet rest on the ground and the robot body system moves in
the direction of motion. This phase is called the double phase of the robot’s walk.

- The stage in which both feet leave the ground. This phase is called the aerial phase of
the robot’s walk.

Usually, the stage corresponding to the aerial phase occurs only when moving very
quickly, such as when running or jumping, and occurs at the time of switching from the
supporting foot to the swinging foot and vice versa. The stage corresponding to the double
phase can also occur at the time of switching from the supporting foot to the swinging foot
and vice versa. Therefore, the duration of the double phase is usually small and even very
small if the motion is not too slow.

As mentioned, the goal of this paper focuses on a robot controller based on fuzzy logic.
To confirm the validity of the fuzzy controller and the fuzzy rule system, the robot’s walk
that is close to that of a human is investigated. Therefore, it is possible to ignore the double
phase and the aerial phase because the duration of these phases is very small.

In terms of speed of movement, walking can be accomplished with increasing velocity,
constant velocity, or decreasing velocity.

From observations, it has been shown that the human gait is related to posture and
state of the body, as well as to that of the robot’s feet. Normally, from the beginning
of a movement with increasing velocity and reaching a constant velocity, a robot body
tends to lean toward the motion (forward). This can be seen when observing runners.
When walking at a decreasing speed, the body tends to lean in the opposite direction
(backward). The supporting foot can have two states—that is, the foot is in full contact with
the platform or transitions from full contact and gradual decrease to point contact at the toe
before leaving the platform. The swinging foot can have three states when landing—that
is, landing with the toe of the foot, landing with the heel of the foot, or landing with the
entire surface of the foot.

The above states on the one hand depend on the individual human, while on the other
hand, they are related to dynamic conditions, such as ensuring dynamic balance, non-slip
conditions, and optimal energy.

Therefore, when investigating with the bipedal robot model, the parameters repre-
senting these states, as denoted above by (1), were used for designing the motion trajectory
as well as for controlling the motion of the bipedal robot.

Modeling and simulation methods are often applied to planning motion trajectories
for robots in general and bipedal robots in particular. Inputs for modeling and simulation
of bipedal robots can be obtained by cameras and sensors attached to the robot body and
at the joints when taking a step. In this way, it is possible to obtain the entire motion
trajectory of the robot so that it is close to the human gait. A simpler way is to observe
human movement and record a number of points per step and to then use interpolation to
obtain the full motion trajectory for each step. In the paper, the second method was used.

Figure 2 depicts the robot’s steps, in which lines 1, 3, 5, 7, and 9 represent the movement
of the ankle joint, and lines 2, 4, 6, 8, and 10 represent the movement of the hip joint. The
movement of the robot body was recorded at trace 11. Robot movements were simulated
and saved at the link [43]. The length of each step of the foot, also of the ankle joint, is
denoted by 2L, and that of the hip joint is denoted by L. Particularly for the starting step
from the resting state, which with the initial position is vertical, the movement of the ankle
joint is L. Similarly, the final step back to rest, in an upright position, also has lengths L for
the movement of the ankle joint.
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Figure 2. The walking steps of bipedal robot: (a) the starting steps; (b) the steady steps; (c) the final
steps; (d) the robot’s gait; (e) posture of robot body when moving: https://youtu.be/8A3849PUCyM
(accessed on 21 September 2021).

To create a database for the problem of dynamics and control, some numerical calcula-
tions and simulations of the motion trajectory of the robot were performed. A proposed
robot model with kinematic and dynamic parameters is listed in Table 1. The process of
starting the robot usually moves at an increasing speed, while the motion slows down to a
state of rest. In the steady-state of motion, the horizontal velocity of the robot body was
assumed to be constant.

Calculations and simulations were performed with the typical steps for the above
three processes as follows:

- The first step of the acceleration process, called the “starting step” from now on;
- The step of the steady motion process, called the “steady step”;
- The last step of deceleration to rest, called the “final step”.

The kinematic parameters in Table 1 were used to calculate and design motion tra-
jectories for the robot corresponding to these three steps, and the results are shown in
Figures 3–8.

https://youtu.be/8A3849PUCyM
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Table 1. The kinematic, dynamic, and motion trajectory parameters of the proposed robot model.

The Geometrical, Kinematical, and Motion Trajectory Parameters

Geometrical
Parameters Values Dimensional Kinematical Parameters Values Dimensional

foot size hf 0.08 m normal step length 2L = 0.76 m
foot size df 0.132 m starting step length L = 0.38 m
foot size dh 0.06 m final step length L = 0.38 m

thigh length at 0.38 m steady velocity Vc = 4275 m/h (hour)
calf length ac 0.38 m average speed of starting step Vs = 1487 m/h

body height hb 0.45 m average speed of final step Vf = 1368 m/h

The dynamical parameters

Links
Mass
(kg)

Link’s center of mass
coordinates (m) Inertia tensor of links (kg·m2)

xci yci zci Ixx Iyy Izz Ixy Ixz Iyz

1 1.22803 −0.06792 0.02140 0 0.00138 0.24390 0.0055 0.00129 0 0
2 3.25665 −0.18377 0 0 0.00122 0.04695 0.04714 0 0 0
3 5.86021 −0.16274 0 0 0.00279 0.10417 0.10467 0 0 0
4 5.86021 −0.21726 0 0 0.00279 0.10417 0.10467 0 0 0
5 3.25665 −0.19623 0 0 0.00122 0.04695 0.04714 0 0 0
6 1.22803 0.05350 0 0 0.00490 0.00111 0.0055 0.000851 0 0
7 38.8 0.36870 0 0 0.24390 2.21146 2.02948 0 0 0
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Figure 3a–c shows the motion trajectory of the hip joint in the starting, steady, and
final steps, respectively. Similarly, the movement of the ankle joint is shown in Figure 4a–c.

Figure 5a–c shows the position and velocity of motion over time of the hip joint at
the starting, steady, and final steps, respectively. Similarly, the movement over time of the
ankle joint is shown in Figure 6a–c.
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With the calculated motion of the hip and ankle joints, applying Equations (3)–(6) as
presented in Section 2.1, the relative motion of the robot’s links was determined by the
joint coordinates, according to the time, and were calculated and shown in Figures 7 and 8.

Figure 7a–c shows the position of the links and the joint coordinate value in time at
the starting, steady, and final steps, respectively. Figure 8a–c shows the relative velocity of
the links in time at the starting, steady, and final steps, respectively.

The trajectories of the robots in the form of joint coordinates and their 1st and 2nd
derivatives with respect to time were saved in “pq(k).txt”, “vq(k).txt”, “aq(k).txt” files. Here,
the index k = 1, 2, 3 corresponds to the starting step, the steady step, and the final steps.
These data files were used to simulate the controllers in Section 6.

The analysis of human gait and the selection of kinematic parameter values for motion
trajectory design is related to the dynamics of the robot, and are further analyzed in the
following sections.

3. Dynamics of Robot

In the paper, the Lagrange equation of the 2nd kind was applied to establish the
system of differential equations of motion of a bipedal mobile robot, as follows:

M(q)
..
q + ψ(q,

.
q) + G(q) + Q(q) = U (7)

Here:
M(q) is the mass matrix of size (7× 7), whose elements are functions of the generalized

coordinates q, determined as follows:
M(q)(7×7) =

7
∑

i=1

(
JT
Timi JTi +

ci JT
Ri

ciΘci
ci JRi

)
(7×7)

JTi =
∂rci
∂q

JRi =
∂ciωci

∂
.
q

(8)

where Ci is the center of mass of link i, rci is the location vector of Ci with respect to
the coordinate system xofyofzof; ciωci is the angular velocity of link i represented in the
coordinate system of link i; mi is the mass of link i; ciΘci is the inertia tensor of link i with
respect to the center of mass Ci, represented in the i-th coordinate system, which has its
origin at the center of mass of link i.

ψ
(
q,

.
q
)

(7 × 1) is the vector of size (7 × 1), whose elements are generalized forces of
Coriolis and centrifugal inertial forces, which are calculated through the elements of matrix
M(q) by the formula: 

ψj =
7
∑

k,l=1
(k, l; j)

.
qk

.
ql ;

(k, l; j) = 1
2

(
∂mkj
∂ql

+
∂ml j
∂qk
− ∂mkl

∂qj

) (9)

where (k, l; j) is the Christoffel notation with three indexes of the first kind; mkl (k, l = 1, . . . ,
7) are the elements of the matrix M(q).

G(q) (7 × 1) is the generalized force vector of the conservative forces acting on the
robot.

G(q)(7×1) = [G1, G2, . . . , G7]
T ; Gj =

∂Π
∂qj

(10)

Π is the sum of the potential energy of the robot.
Q(q) (7 × 1) is the vector of the generalized forces of the non-conservative forces

acting on the robot. The article investigates the robot’s motion, without interacting with
the environment. If the robot is carrying a load, the load will cause a conservative force
to appear. Therefore, non-conservative forces are assumed to include only frictional and
disturbance forces at the joints.
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Some dynamical factors directly related to the motion of a bipedal robot are the non-
slip condition and the dynamic balance condition of the robot. The non-slip condition
mainly depends on the friction between the platform and the supporting foot, assuming
that the friction is large enough to ensure that the non-slip condition is always satisfied.
Regarding the dynamic equilibrium condition, there have been many studies based on
the application of ZMP [23–33] that have been discovered and proposed by MIOMIR
VUKOBRATOVIC [23,24]. Accordingly, if a robot moves in a trajectory so that the ZMP
point is always inside the supporting polygon, the dynamic equilibrium condition will
be guaranteed—that is, the robot will not fall. This method has been widely applied for
nearly half a century and provides good results in controlling a moving robot, following
the designed trajectory based on the principle of the ZMP point.

However, is it necessary to fully comply with the ZMP point principle when planning
the motion trajectory of a bipedal robot? Such a question is raised because it is a rather
difficult and complicated job. In addition, a robot’s mobility is limited. When a robot’s
motion velocity is significantly greater than the speed that can occur when falling, then
the robot “did not fall” before it entered a new state. This is easy to see when observing
a person running. Intuitively and through preliminary calculations, the robot’s ability to
drop increases when the ZMP point is outside and further away from the boundary of the
support polygon.

Figure 9 shows the possible states of the robot when the ZMP point is outside the
support polygon, where Figure 9a shows that the contact of the supporting foot with the
ground remains almost unchanged until the swinging foot begins to make contact with
the ground. Figure 9b shows the change in contact of the supporting foot with the ground
when the swinging foot begins to make contact with the ground.
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Figure 9. The robot state when the ZMP point is outside the support polygon.

These cases are similar to the walking of the human foot shown in Figure 9c,d, respectively.
In practice, there is often a change in contact between the supporting foot and the

ground. This is explained because the ZMP point is outside the supporting polygon, so
according to the principle of the ZMP point, there will be a phenomenon of flipping around
point A, or B, with the robot model. With the human foot model, the flip point can be either
C or D. However, due to the time of step’s transition is very short, the α angle value for the
case as shown in Figure 9a,c is very small, can be considered as zero.

In this article, we investigate a number of factors that can affect the robot’s ability to
flip around the fulcrum, which are the toe of the foot (point A), or the heel (B), as shown in
Figure 9.

First of all, it is the θb angle between the robot body and the vertical. As mentioned
above, when observing human movement in the process of increasing speed or steady
speed, the body often leans toward the motion, while leaning in the opposite direction to
the direction of motion when the motion slows down to a stationary state. This is the basis
for the selection of θb values.
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Another parameter to be considered is the position of the center of mass of the whole
bipedal robot system. Intuitive and preliminary calculations show that the lower the center
of mass position, the closer the ZMP point is to the support polygon domain or the closer
that it is to being within the support polygon domain. However, the position of the center
of mass is always changing in the moving process, and the calculation is quite complicated,
so here another parameter was chosen, which was the θ3 joint coordinate of the supporting
leg. Because if θ3 was large, then the center of mass would be low and vice versa. Figure 10
shows some robot gaits with different levels of lowering of the center of mass. The relative
horizontal position of the center of mass relative to the position of the supporting foot also
affects the robot’s ability to resist tipping.
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By changing the parameters θb, θ3, and the law of coordinated motion for the sup-
porting leg and swinging leg, some motion trajectories of the robot were calculated and
designed and are presented in Section 2.2. These motion trajectories were tested through
numerical simulation of dynamics and ensured that the robot did not fall and that it moved
according to the designed trajectory. This is explained because the parameters θb, θ3, and
the law of coordinated motion of the robot legs, on the one hand, affected the position of
the ZMP point, and on the other hand changed the dynamic quantities that mainly affected
inertia force/momentum and driving moments. It should be emphasized that the driving
moments on the one hand ensured that the robot’s movement was according to the set
trajectory, and on the other hand that it also affected the robot’s dynamic equilibrium.

Therefore, studying a control algorithm for the robot to follow its trajectory and ensure
the condition of not flipping is one of the key issues of the paper and is presented in
Sections 4 and 5. To facilitate the presentation and distinguish it from the terms “equi-
librium” in general and “dynamic equilibrium” of bipedal robots, in cases in which the
robot does not fall and moves along the designed trajectory even though the ZMP point is
outside the supporting polygon, it is called “relative equilibrium”.

4. The IDPD, IDPID Controller for Bipedal Robot

As shown, the bipedal robot was an underactuated system having seven generalized
coordinates, of which six were controllable joint coordinates. The non-driven coordinate
θ1 was related to the robot’s relative equilibrium condition. The relative equilibrium
condition was guaranteed if θ1 remained unchanged or changed within a range such
that the robot was still moving along the designed trajectory. The robot lost its relative
equilibrium if θ1 changed greatly, leading to the robot falling or completely deviating from
the designed trajectory. Thus, the underactuated system of the biped robot was different
from other underactuated systems. That is, when the uncontrollable coordinates deviated
greatly, the controlled coordinates also became out of control. As preliminarily mentioned
above, among the factors affecting the relative equilibrium condition of bipedal robots, the
moments that drive the controlled joints are also directly affected. The problem was to
find control algorithms with which the driving moments were calculated to ensure both
the motion laws of the controlled joints and at the same time contribute to ensuring the
relative equilibrium conditions. The most common and popular controller in the industry
is a controller based on two closed feedback loops consisting of an inner feedback loop, to
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calculate Inverse Dynamics, and an outer loop that applies Proportional Derivative control
law (Inverse Dynamics + PD), or Proportional Integral Derivative (Inverse Dynamics + PID).
These controllers are also commonly applied in robotics engineering. For the convenience
of presentation, we abbreviate the controller Inverse Dynamics + PD or Inverse Dynamics
+ PID as IDPD or IDPID, respectively. With the motion trajectory of the bipedal robot
designed to satisfy the ZMP point principle or the relative equilibrium condition as stated,
applying the control law IDPD, IDPID was convenient and easy. However, with these
controllers, the driving moments were calculated based on the equations, and so it was not
flexible to adjust the driving torque to contribute to increasing the robot’s ability to ensure
the relative equilibrium condition.

In his natural walk, man adjusts himself based on natural reflexes trained from natural
“inferences” from the first steps.

The fuzzy logic-based controller (hereinafter referred to as the fuzzy controller) was
based on natural human reasoning, so it had the flexibility to adjust the interactions
reasonably. Specifically, the fuzzy controller was built by a reasonable fuzzy rule system
based on natural human inference, allowing it to adjust the driving torques to ensure the
control goal. The use of a fuzzy controller for a bipedal robot is presented in Section 5.

Below, the IDPD and IDPID controllers that were applied to bipedal robots are pre-
sented. In the simulation calculations, first of all, the assumption that the dynamic model
is accurately determined and that the motion trajectory is designed to ensure the relative
equilibrium condition was applied to the IDPD controller. Next, in the dynamical model of
the robot, it was assumed that there were noisy or uncertain forces, such as friction and/or
damping at the joints. In this case, the IDPD controller needed to have additional noise
cancellation capability, so with the addition of the integral component in the control law, the
IDPD controller became the IDPID controller and was applied for simulation calculations.

4.1. IDPD Controller

Assuming that the robot dynamical model was fully and accurately determined
and that the motion trajectory was designed to ensure the relative equilibrium condition,
ignoring noise and external forces, the dynamic model applied to the IDPD controller is
the differential equations of motion of the robot (7). Applying the control law IDPD, the
system of equations to determine the control force/moment is shown as follows:

U(7×1) = M(q)(7×7)u(7×1) + ψ(q,
.
q)(7×1) + G(q)(7×1) + Q(q)(7×1); U1 = 0 (11)

Here, u is determined based on the proportional derivative control law (PD) as follows:

u(7×1) =
..
qd(7×1) + Kv(7×7)

.
e(7×1) + Kp(7×7)e(7×1) (12){

e(7×1) = [e1, e2, . . . , e7]
T ; ei = qdi − qi

.
e(7×1) =

[ .
e1,

.
e2, . . . ,

.
e7
]T ;

.
ei =

.
qdi −

.
qi

(13)

{
KP(7×7) = diag{kP1, kP2, . . . , kP7}; kPi > 0, (i = 2, . . . , 7), kP1 = 0

KV(7×7) = diag{kV1, kV2, . . . , kV7}; kVi > 0 (i = 2, . . . , 7), kV1 = 0
(14)

In which:
qdi,

.
qdi,

..
qdi(i = 1, . . . 7) are the desired designed joint coordinates and their time deriva-

tives, respectively; qi,
.
qi,

..
qi(i = 1, . . . 7) are the joint coordinates obtained by the control

and their first and second derivatives with respect to time, respectively; kPi, kVi are the
proportional and derivative gain coefficients, respectively; KP, KV are diagonal matrices.
Since the coordinates q1 are not controlled, U1 = 0; for simplicity, we set kP1 = 0, kV1 = 0.

Substituting (12)–(14) into (11) to find out the system of canonical equations of the
controller is shown as follows:

..
e(7×1) + KV (7×7)

.
e(7×1) + KP(7×7)e(7×1) = 0 (15)
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4.2. IDPID Controller

In the case of disturbance and unknown forces, it was assumed to be disturbance force
and damping (frictional) force, as below:

Qd = kd[0,cosq2, sinq3, cos2q4, sin2q5, cosq6, sinq7]
T (16)

Qb = kb
[
0,

.
q2,

.
q3,

.
q4,

.
q5,

.
q6,

.
q7
]T (17)

Here Qd, Qb are vectors whose elements are the disturbance force and friction at the
joints, respectively.

Applying the IDPID controller, the system of equations for determining the control
force/torque (12) is rewritten as follows:

u(7×1) =
..
qd(7×1) + KV (7×7)

.
e(7×1) + KPe(7×1) + KI (7×7)

t∫
0

e(7×1)dτ (18)

KI(7×7) = diag{kI1, kI2, . . . , kI7}; kIi > 0 (i = 2, . . . , 7), kI1 = 0 (19)

The numerical simulation calculations of these controllers are presented in Section 6.

5. The Fuzzy Controller for Bipedal Robot

Normally, a controller has three main components—namely, input signal block, control
algorithm block based on control law, and output signal block, which is the control quantity.
In addition, there is a component of the fuzzy controller that has an invisible connection
to it and plays a decisive role: the expert knowledge base. With a crisp controller, such as
a robot controller, the input signal block is usually the motion trajectory required by the
robot. The algorithm block calculates the control quantity based on the dynamical model
of the system (transfer function, motion differential equation, equation of state, etc.)—for
example, the IDPD, IDPID algorithms, as mentioned above. The output signal block is a
controlled quantity defined from the algorithm block, such as the motor driving force and
torque, and it can be converted in machine language, such as amperage, etc.

In the fuzzification block of fuzzy controller, the process of converting the physical
values of the controlled variables into linguistic values was performed.

The fuzzy controller’s algorithm performed calculations from fuzzy inferences based
on fuzzy rules.

In the output block, defuzzification occurred, and the language values of the control
quantities were converted to physical values.

The knowledge base determined all the processes in the blocks of the fuzzy controller.
Figure 11 shows the general structure of a control system for a bipedal robot, in which the
control block is a fuzzy controller. In turn, the general structure of the fuzzy controller
is shown in Figure 12. The controller’s algorithm block is the central block, called the
inference mechanism, which performed fuzzy inference based on the fuzzy rule system.
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The problem of fuzzy logic-based controllers is that there is no common rule or
method for constructing control rules, as well as no rule or method for fuzzification and
defuzzification. The processes of fuzzification, defuzzification, and building fuzzy rules
for the controller are based on expert knowledge and depend entirely on the designer.
Fortunately, fuzzy rules can be built and integrated from very simple basic fuzzy rules, in
simple natural languages.

In the paper, the steps of fuzzification and building a fuzzy rule system, along with
applying an inference method and defuzzification corresponding to the blocks in Figure 12,
are presented below.

5.1. Fuzzification
5.1.1. The Input, Output Signals, and Physical Value Domains

The input signals were the position error e(t) and velocity error
.
e(t) of the joints gener-

ated from comparing quantities that define the robot’s motion trajectory represented by
the joint coordinates qd and their derivative

.
qd, with response values of the corresponding

quantities, q,
.
q. These quantities were determined according to Equation (13). The output

signal of the controller was the value of driving moments U(t) at the driven joints, which
ensured the motion trajectory of the robot—i.e., with the errors e(t),

.
e(t) as small as possible,

relative to the desired value—and ensures the relative equilibrium.
The driving moments U(t) depended on the motion requirements of the robot as

well as the geometrical, kinematical, and dynamical parameters of the robot. For crisp
controllers in general, and IDPD and IDPID controllers, the computation of these moments
is based on a dynamical model, which is a system of differential equations of motion, and
can have kinematic constraints by errors of position e(t) and velocity

.
e(t). With the fuzzy

controller applied in this paper, the calculation of U(t) did not use the dynamical model
but only relied on a fuzzy rule system built based on expert knowledge and on the errors
e(t),

.
e(t). To accomplish that, one of the first requirements was to determine the physical

value domain of the control moments U(t) as well as the physical value domain where
the errors e(t) and

.
e(t) could occur. Using the minimum and maximum limit values, the

physical value domains of errors e(t),
.
e(t), and driving torque U(t) are denoted as follows:

ei = [eimin, eimax](rad), i= 1, . . . , 7
.
ei =

[ .
eimin,

.
eimax

](
rad.s−1), i= 1, . . . , 7

Ui = [Uimin, Uimax](Nm), i= 1, . . . , 7

(20)

5.1.2. Linguistic Variables and Scale Mapping of Input, Output Data

The linguistic variables used corresponded to the input and output signals, which
are the errors of position e(t) and velocity

.
e(t) and the driving moments of the joints U(t).

Although the input signals of the fuzzy controller were not position and velocity but were
their errors, for convenience of presentation, their linguistic variables were sometimes, for
short, called linguistic variables of joint position and linguistic variables of joint velocity.
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Linguistic variables have both physical and linguistic values. The physical values belonged
to the physical value domain of linguistic variables and were determined by Equation (20).
Let X be the universe of discourse of linguistic variables.

In the fuzzy controller, the input data of fuzzy operations and fuzzy inference were
fuzzy sets. Therefore, the input data (physical values) of linguistic variables needed to be
converted into suitable linguistic values (fuzzy sets).

The modeling of fuzzy sets from uncertain data posed the problem of information
quantification. Thus, the discretization (quantization) of a universe of discourse into a
certain number of segments was performed. The scale mapping of the input and output
data was applied, which in order to scale the input and output crisp values, transformed
the value domain of the input and output variables into the partitioned corresponding
universe of discourse. Each segment of a universe of discourse was named as a generic
element and formed a discrete universe of discourse. Then, in the discrete universe of
discourse, the fuzzy sets were defined. The number of quantization levels has an important
influence on the control performance and should therefore be large enough to give an
appropriate approximation. With the fuzzy controller for the bipedal robot, the universes
of discourse were discretized into five levels, denoted by Xi(i = 1, . . . , 5). Thus, there were
five corresponding fuzzy sets labeled as Fi(i = 1, . . . , 5). Fuzzy sets have overlapping parts
and were defined on the discrete universe of discourse. By discretizing the universe of
discourse and partitioning the fuzzy set on it, a linguistic variable was associated with
a term set that represented the levels of the discretized universe of discourse, and also
represented fuzzy sets, which were defined on a partitioned universe of discourse. Thus,
five corresponding terms of linguistic variables were used and denoted by: Negative Big
(NB), Negative Small (NS), Zero (Z), Positive Small (PS), and Positive Big (PB). These terms
represented the discretized values of the universe of discourse, at which the membership
function of the corresponding fuzzy sets took the value 1. These terms are also often used
to name the corresponding fuzzy sets.

Table 2 shows the levels of the discretized universe of discourse, fuzzy sets, linguistic
value terms, and their notations, respectively.

Table 2. Description of levels of the discretized universe of discourse, fuzzy sets, linguistic value
terms, and notations, of the inputs and outputs.

No. Levels Xi Fuzzy Set Fi Name of Linguistic Value Notation of Linguistic Value

1 X1 F1 Big Negative NB
2 X2 F2 Small Negative NS
3 X3 F3 Zero Z
4 X4 F4 Small Positive PS
5 X5 F5 Big Positive PB

With the robot’s fuzzy controller, the linguistic variables of the input data affected
the output data simultaneously. Therefore, for simplicity, while ensuring controller per-
formance, the universe of the discourse of linguistic variables was discretized to the same
number of levels, and with a uniform scale mapping. That explains the use of the same
notation (X) for the universe of discourse, the same notations (Fi) for fuzzy sets, and the
same with the linguistic value terms for linguistic variables. However, the physical value
of the linguistic variable and the partitioned universe of discourse was determined by
Equation (20), respectively.

5.1.3. Set Up Membership Function of Linguistic Variables

To perform fuzzy operations and fuzzy inference, the input data must be assigned
membership values of one or more fuzzy sets into which the universe of discourse has been
partitioned. There are different methods for assigning membership values or membership
functions to fuzzy variables. Here the membership functions of the right trapezoid, triangle,
and left trapezoid were used to represent the membership values of the linguistic variables
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e(t),
.
e(t), and U(t). Figure 13 shows the membership functions of fuzzy sets of linguistic

variables, defined on the partitioned universe of discourse, where the physical values of
linguistic variables at the discretized points of the universe of discourse were determined
as follows: NB = xi,min; NS = 0.75xi,min + 0.25xi,max; Z = 0.5xi,min + 0.5xi,max; PS = 0.25xi,min
+ 0.75xi,max; PB = xi,max.
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xi(xi = ei,

.
ei, and Ui).

By applying the membership function types mentioned above and from Figure 13,
it was easy to determine the Support (defined domain) of the fuzzy sets of a linguistic
variable Supp(Fi)(i = 1, . . . , 5). In addition, given the physical values of the language
variable, it was easy to calculate its membership value as below.

The membership value of the linguistic variable of the fuzzy set F1, Support Supp(F1)
= [NB, NS]:

µFi(xi) =


1 if xi ≤ NB
NS−xi

NS−NB if NB ≤ xi ≤ NS

0 if xi ≥ NS

(21)

The membership value of the linguistic variable of the fuzzy set F5, Support Supp(F5)
= [PS,PB]:

µFi(xi) =


0 if xi ≤ PS
xi−PS
PB−PS if PS ≤ xi ≤ PB

1 if xi ≥ PB

(22)

For the membership value of the linguistic variable of the fuzzy set Fi(i = 2,3,4), let us
call its Support as Supp(Fi) = [a1, a2]:

µFi(xi) =


xi−a1
a0−a1

if a1 ≤ xi ≤ a0; a0 = a1+a2
2

a2−xi
a2−a0

if a0 ≤ xi ≤ a2

0 if xi ≤ a1 or xi ≥ a2

(23)

5.2. Inference Mechanism
5.2.1. Fuzzy Rule Base System

In the inference mechanism block, the output quantity, the driving torque U(t) was
calculated based on the input variables, the joint position error e(t), and the velocity error
.
e(t). The problem is that a fuzzy rule system needs to be built entirely based on expert
knowledge about the controlled object. A fuzzy rule system is characterized by a set of
language statements usually represented as “if–then” rules. As is known, there are five
fuzzy sets used to represent an input variable and to determine their membership values,
as shown by Equations (21)–(23). Thus, with two input language variables, e(t) and

.
e(t),

and fuzzy rules according to the “if–then” rule, there will be 52 = 25 statements forming
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the fuzzy rule base system. Based on expert knowledge on the dynamics of bipedal robots,
this system of 25 fuzzy rules is proposed as follows:

If e(t) is NB and
.
e(t) is NB then u(t) is PB or

If e(t) is NB and
.
e(t) is NS then u(t) is PB or

...
If e(t) is PB and

.
e(t) is PB then u(t) is NB

(24)

The fuzzy rule base system is shown in Table 3. Figure 14 depicts the output control
surface describes the relationship between e(t),

.
e(t), and U(t) based on the synthesis rule of

the fuzzy rule base system for the fuzzy controller.

Table 3. Fuzzy rule base system.

U(t) Position Error e(t)

Velocity Error
.
e(t) NB NS Z PS PB

NB PB PB PB PS Z
NS PB PS PS Z NS
Z PB PS Z NS NB
PS PS Z NS NS NB
PB Z NS NB NB NB
NB PB PB PB PS Z
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The equation for the composition (synthesis rule) of the base of fuzzy rules for a fuzzy
controller is as follows:

R :
n
U

i=1
Ri

Ri :
[(

e(t) ∪ .
e(t)

)
→ u(t)

]
, i = 1, . . . , 25

(25)

5.2.2. Compositional Rule of Inference

Based upon the fuzzy rule base system, the inference methods were developed. The
inference was determined by the “implication operator” and “composition operator” as
follows. The implication operator was implemented based on the application of the
Mamdani implication method, the MIN operator. The composition operator was also based
on the Mamdani method, which is called the MAX–MIN operator. At each time, the input
control signals of position error e(t) and velocity error

.
e(t) assumed that: ei is F′ei and

.
ei is
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F′dei
(
dei =

.
ei
)
. Where F′ei, F′dei are the linguistic values of the linguistic variables e(t),

.
e(t),

respectively. Then the fuzzy set F′u of the output linguistic variable was determined by the
fuzzy implication relation as follows:

F′u =
25
U

i=1
F′ui

; F′ui =
(

F′ei, F′dei
)
◦ Ri ; (dei =

.
ei) (26)

The Mamdani’s minimum operation was used for the implication:

µF′ui
(u) = αi ∧ µFui

(u); αi = µF′ei
(ei) ∧ µF′dei

( .
ei
)

(27)

The aggregate rule of the entire fuzzy rule base system was determined by the mem-
bership value based on Mamdani’s MAX–MIN operator:

µF′u(u) =
25
V

i=1

[
αi ∧ µFui

(u)
]
=

25
V

i=1
µF′ui

(u) (28)

5.3. Defuzzification

Defuzzification is the process by which mapping is performed to convert the member-
ship function value of the output variable into crisp physical values. Here it determined
the physical value of the driving moment from its membership function value in the fuzzy
set F′u. In this paper, the well-known “center of area” method was used for defuzzification
in the fuzzy controller of a bipedal robot. This method is easy to apply, involving all output
fuzzy sets of the compositional rule of inference, and produces high-precision results.

u′ =

∫
S′

uµF′u(u)du∫
S′

µF′u(u)du
(29)

where, u′ is the actual output value, taken according to the coordinates of the central point
of the region, formed by the membership function line and the horizontal axis; S′ is the
defined domain of the fuzzy set F′u.

6. Simulation Results

This section presents numerical simulations applying IDPD, IDPID, and fuzzy con-
trollers to control the robot to take human-like steps. In Section 2, the design of motion
trajectories was presented, and the typical motion trajectories were selected for the three
steps of the robot—namely the starting step at the first stage, the steady step, and the
slow step gradually to a stationary state. The motion trajectories were saved as files.txt, as
mentioned in Section 2. To confirm the validity of the fuzzy controller, it was first assumed
that the robot’s dynamical model was fully and accurately determined. Then the IDPD
controller was applied. The system of differential Equation (7) representing the motion of
the robot is presented in Section 3, with the assumption that it is correct and that it is used
for this IDPD controller.

In fact, errors always exist in the dynamic model of a robot. The first cause is deviation
due to measurement and calculation, followed by uncertain factors such as unknown
external force, change in the interaction between robot and environment, noise, etc.

The IDPID controller, which contains a disturbance-limiting and disturbance-eliminating
element, was applied. In the system of differential equations of robot motion (7), it is
assumed that there are uncertain factors such as friction force, noise, etc.

The proposed fuzzy controller did not use a dynamic model when determining control
variables, which are driving moments in the driven joints.

The results of applying the IDPD and IDPID controllers were used to verify the
proposed fuzzy controller.
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6.1. Simulation of IDPD Controller

The mathematical model of the IDPD controller is presented in Section 4. Here the
matrix of position gain and derivative coefficients were selected as follows:

KP = diag{0, 6400, 6400, 6400, 6400, 6400, 6400} (30)

KV = diag{0, 160, 160, 160, 160, 160, 160} (31)

The simulation results of the IDPD controller for the starting step, steady step, and
final step are shown in Figures 15a, 16a and 17a, respectively, in which the motion of
each joint i (i = 1, . . . , 7) changes with time and is represented, respectively, in each graph,
including the designed desired trajectory mentioned in Section 2 (qd1, . . . , qd7), the received
trajectory (real trajectory) from the control result (qr1, . . . , qr7), and the errors (dq1, . . . ,
dq7) between the desired trajectory and the real trajectory.

6.2. Simulation of IDPID Controller

Assume that there are errors in the robot dynamics model—for example, suppose that
the system of motion differential equations has unknown disturbance and frictional forces,
as shown in Equations (16) and (17). In this case, the matrix of position gain and integral
and derivative coefficients are selected as follows:

KP = diag{0; 16, 000; 8100; 8100; 8100; 22, 000; 22, 000} (32)

KV = diag{0; 250; 180; 180; 180; 280; 280} (33)

KI = diag{0; 1600; 810; 810; 810; 2200; 2200} (34)

The simulation results of the IDPID controller for the starting step, steady step, and
final step are shown in Figures 15b, 16b and 17b, respectively, in which the motion of
each joint i (i = 1, . . . , 7) changes with time and is represented, respectively, in each graph,
including the designed desired trajectory mentioned in Section 2 (qd1, . . . , qd7), the received
trajectory (real trajectory) from the control result (qr1, . . . , qr7), and the errors (dq1, . . . ,
dq7) between the desired trajectory and the real trajectory.

6.3. Simulation of Fuzzy Controller

For a fuzzy controller to work efficiently and with high accuracy, a suitable system
of fuzzy rules is first built. This was discussed in Section 5. In addition, the domain of
physical values of input and output quantities also plays a particularly important role.
For the fuzzy controller for the bipedal robot studied here, the physical domain of the
input and output variables was checked and selected based on expert knowledge and is
presented in Table 4.

Table 4. The physical value domain of input and output quantities of the bipedal robot’s fuzzy
controller.

Link ei
.
ei Ui

1 [−0.0, 0.0] (rad) [−0.0, 0.0] (rad/s) [−0.0, 0.0] (Nm)
2 [−0.001, 0.001] (rad) [−0.2, 0.2] (rad/s) [−180, 180] (Nm)
3 [−0.001, 0.001] (rad) [−2.4, 2.4] (rad/s) [−95, 95] (Nm)
4 [−0.001, 0.001] (rad) [−3.0, 1.0] (rad/s) [−50, 30] (Nm)
5 [−0.001, 0.001] (rad) [−0.3, 0.3] (rad/s) [−38, 38] (Nm)
6 [−0.001, 0.001] (rad) [−0.4, 0.3] (rad/s) [−12, 12] (Nm)
7 [−0.001, 0.001] (rad) [−0.8, 0.8] (rad/s) [−50, 50] (Nm)

The simulation results of the fuzzy controller for the starting step, steady step, and
final step are shown in Figures 15c, 16c and 17c, respectively, in which the motion of
each joint i (i = 1, . . . , 7) changes with time and is represented, respectively, in each graph,
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including the designed desired trajectory mentioned in Section 2 (qd1, . . . , qd7), the received
trajectory (real trajectory) from the control result (qr1, . . . , qr7), and the errors (dq1, . . . ,
dq7) between the desired trajectory and the real trajectory.

Below are the simulation results presented:

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 29 
 

   

   

   

   

   

   

Figure 15. Cont.



Appl. Sci. 2021, 11, 11945 22 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 29 
 

   

(a) (b) (c) 

Figure 15. Simulation results of controllers for bipedal robots at the starting step: (a) IDPD controller; (b) IDPID controller; 

(c) fuzzy controller. 

Figure 15 shows the simulation results of the controllers for the bipedal robot at the 

starting step, during which the speed increased gradually. The figures in the right column, 

Figure 15a, are the results of the IDPD controller, which assumed that the dynamics model 

of the robot was correct. 

The figures in the middle column, Figure 15b, are the results of the IDPID controller, 

assuming the dynamics model of the robot was not precisely and completely defined, i.e., 

there were additional friction and disturbance forces, collectively known as the disturb-

ance force. Then, in the control law of IDPID, there were additional elements that reduced 

or eliminated the disturbance forces. 

The figures in the right column, Figure 15c, are the result of the fuzzy controller. The 

fuzzy controller determined the control quantities, which were the driving moments at 

the driven joints based on the fuzzy law system (24), fuzzy composition rules, inference 

and defuzzification rules (25)–(29), and physical value domain in Table 4. 

On each figure, three graphs are drawn: the blue line represents the desired joint 

coordinates qdi (qd[i], i = 1,…,7); the red line represents the actual joint coordinates qri 

(qr[i], i = 1,…,7); The black line represents the deviation of the joint coordinate value be-

tween the actual and desired trajectory dqi (dq[i], i = 1,…,7). To further verify the control-

ler’s ability to adjust, the initial values of the control simulation are often made different 

from the correct values, and the controller soon returns the system to the correct position, 

follows the desired trajectory, and is stable. The average error between the desired joint 

coordinate value and the actual coordinate in stable motion is in the range of ~10−3 radians. 

For mobile robots in general and bipedal robots, such errors are very small because the 

robot’s walking accuracy is obviously not as demanding as the accuracy of robots applied 

in mechanical processing. 

In a similar way, results are shown for the simulation of the controllers for the bipedal 

robot at a steady walk, Figure 16, and walk to a stop state, Figure 17. 

  

Figure 15. Simulation results of controllers for bipedal robots at the starting step: (a) IDPD controller; (b) IDPID controller;
(c) fuzzy controller.

Figure 15 shows the simulation results of the controllers for the bipedal robot at the
starting step, during which the speed increased gradually. The figures in the right column,
Figure 15a, are the results of the IDPD controller, which assumed that the dynamics model
of the robot was correct.

The figures in the middle column, Figure 15b, are the results of the IDPID controller,
assuming the dynamics model of the robot was not precisely and completely defined, i.e.,
there were additional friction and disturbance forces, collectively known as the disturbance
force. Then, in the control law of IDPID, there were additional elements that reduced or
eliminated the disturbance forces.

The figures in the right column, Figure 15c, are the result of the fuzzy controller. The
fuzzy controller determined the control quantities, which were the driving moments at the
driven joints based on the fuzzy law system (24), fuzzy composition rules, inference and
defuzzification rules (25)–(29), and physical value domain in Table 4.

On each figure, three graphs are drawn: the blue line represents the desired joint
coordinates qdi (qd[i], i = 1, . . . , 7); the red line represents the actual joint coordinates qri
(qr[i], i = 1, . . . , 7); The black line represents the deviation of the joint coordinate value
between the actual and desired trajectory dqi (dq[i], i = 1, . . . , 7). To further verify the
controller’s ability to adjust, the initial values of the control simulation are often made
different from the correct values, and the controller soon returns the system to the correct
position, follows the desired trajectory, and is stable. The average error between the desired
joint coordinate value and the actual coordinate in stable motion is in the range of ~10−3

radians. For mobile robots in general and bipedal robots, such errors are very small
because the robot’s walking accuracy is obviously not as demanding as the accuracy of
robots applied in mechanical processing.

In a similar way, results are shown for the simulation of the controllers for the bipedal
robot at a steady walk, Figure 16, and walk to a stop state, Figure 17.

Figure 16 shows the simulation results of controllers for a bipedal robot at a steady
walk, during which the horizontal velocity of the robot body was almost constant.

The calculation results obtained the average error between the desired joint coordinate
value and the actual coordinates at the step in the steady period, which is also in the range
of ~10−3 radians. The steady step simulations were similar to those of the starting step,
including three graphs. The graph can be observed to see the accuracy and reliability of
the controllers. The fuzzy controller can be as precise as the controller that is based on the
exact dynamic model IDPD. The graph observation shows that the IDPID controller based
on the dynamic model including noise was slightly less accurate.
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(c) fuzzy controller.

Figure 17 shows the controller simulation results for the bipedal robot at the last step
when it comes to a stationary state.

From the simulation results, it can be seen that:
The IDPD controller was applied with the assumption that the robot dynamics model

was accurate, so it gave accurate results.
Even though the IDPID controller had an element to limit and eliminate the distur-

bance force, the control results still have less accuracy.
The fuzzy controller with the proposed fuzzy law allowed accurate results to be ob-

tained.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 29 
 

   

(a) (b) (c) 

Figure 16. Simulation results of controllers for bipedal robots at the steady step: (a) IDPD controller; (b) IDPID controller; 

(c) fuzzy controller. 

Figure 16 shows the simulation results of controllers for a bipedal robot at a steady 

walk, during which the horizontal velocity of the robot body was almost constant. 

The calculation results obtained the average error between the desired joint coordi-

nate value and the actual coordinates at the step in the steady period, which is also in the 

range of ~10−3 radians. The steady step simulations were similar to those of the starting 

step, including three graphs. The graph can be observed to see the accuracy and reliability 

of the controllers. The fuzzy controller can be as precise as the controller that is based on 

the exact dynamic model IDPD. The graph observation shows that the IDPID controller 

based on the dynamic model including noise was slightly less accurate. 

   

   

   

Figure 17. Cont.



Appl. Sci. 2021, 11, 11945 25 of 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 26 of 29 
 

   

   

   

   

(a) (b) (c) 

Figure 17. Simulation results of controllers for bipedal robots at the final step: (a) IDPD controller; (b) IDPID controller; 

(c) fuzzy controller. 

Figure 17 shows the controller simulation results for the bipedal robot at the last step 

when it comes to a stationary state. 

From the simulation results, it can be seen that: 

The IDPD controller was applied with the assumption that the robot dynamics model 

was accurate, so it gave accurate results. 

Even though the IDPID controller had an element to limit and eliminate the disturb-

ance force, the control results still have less accuracy. 

The fuzzy controller with the proposed fuzzy law allowed accurate results to be ob-

tained. 

The calculation results show that, during stable motion at all three stages of motion, 

the average error between the desired joint coordinate value and the actual coordinate 

was ≤10−3 radians. As stated, it is practically impossible to determine the exact dynamics 

model. On the other hand, IDPD and IDPID controllers had to perform computations of 

cumbersome and complex mathematical expressions of the robot’s dynamic model. When 

Figure 17. Simulation results of controllers for bipedal robots at the final step: (a) IDPD controller; (b) IDPID controller; (c)
fuzzy controller.

The calculation results show that, during stable motion at all three stages of motion,
the average error between the desired joint coordinate value and the actual coordinate
was ≤10−3 radians. As stated, it is practically impossible to determine the exact dynamics
model. On the other hand, IDPD and IDPID controllers had to perform computations
of cumbersome and complex mathematical expressions of the robot’s dynamic model.
When there are many abnormal and complex disturbances, it is more difficult for an IDPID
controller to ensure control accuracy.

The calculation expressions based on the fuzzy rule system and fuzzy inference are
very simple and easy.

7. Conclusions

With the proposed fuzzy rule system and the applied fuzzy inference rule, the fuzzy
controller applied in the paper provided accurate results. Computational expressions based
on fuzzy rules and fuzzy inference rules were very simple and easy to implement.
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The robot model used in the simulation had parameters close to those of a real human
and kinematic parameters such as velocity, acceleration, etc. that were also close to human
activities. Therefore, it is feasible to apply the research results in practice.

The dynamic model of human-like bipedal robots is quite diverse, and the dynamic
quantities often change with the operations. The problem of controlling the bipedal robot
needs to be such that it can simultaneously move according to the set trajectory and satisfy
the balance condition because the robot’s two-legged structure is less stable. The crisp
controllers based on dynamical models require large computations. On the other hand, the
dynamical model of a bipedal robot often changes, so with a closed computational model
it will be difficult to adapt and flexibly adjust the control quantity to flexibly respond to
multi-tasking in a human-like bipedal robot.

The construction of the fuzzy rule system took into account the influence and relation
to the uncontrolled coordinate, which is the angle between the support foot and the ground.
Therefore, the fuzzy law system allowed the calculation and adjustment of the driving
forces at the controlled joints, so as to both meet the robot’s motion trajectory and ensure
the relative balance.

A human, based on natural reasoning and through training, can operate and balance
easily in many complicated postures and states.

The high cost in time and effort in building a fuzzy controller is building the fuzzy
rule system (24) and defining the physical value domain in Table 4. However, once the
fuzzy rule system has been created and the physical value domain of language variables
has been determined, the implementation of fuzzy operations is simple and easy, allowing
real-time control requirements to be met. Equations from (21) to (29) are easy to apply
and implement.

During the numerical experiment to find the physical value domain in Table 4, a
number of tests based on Modern Evolutionary Synthesis were applied, which provided
good results. Applying this algorithm to find the physical value domain and to reduce the
calibration time is one of the next studies needed to perfect the fuzzy controller.

Regarding the fuzzy rule system, it is a rule system built based on natural reasoning,
much like the reasoning of humans. To be able to control a human-like bipedal robot that
operates flexibly and stably like a human, it is necessary to have a controller capable of
operating based on human natural reasoning and at the same time capable of being trained
in a way similar to a human. This indicates that the development direction of fuzzy logic-
based control is integrated with artificial intelligence, combining fuzzy controllers capable
of deep learning, reinforcement learning, ant colony algorithms, Modern Evolutionary
Synthesis, and other intelligent algorithms.
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