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Featured Application: The material in this article draws on, and has applications across a range
of applications in civil and structural engineering, mechanical engineering, computer science,
biochemistry, geometry and applied mathematics.

Abstract: In this paper, we offer an overview of a number of results on the static rigidity and
infinitesimal rigidity of discrete structures which are embedded in projective geometric reasoning,
representations, and transformations. Part I considers the fundamental case of a bar–joint framework
in projective d-space and places particular emphasis on the projective invariance of infinitesimal
rigidity, coning between dimensions, transfer to the spherical metric, slide joints and pure conditions
for singular configurations. Part II extends the results, tools and concepts from Part I to additional
types of rigid structures including body-bar, body–hinge and rod-bar frameworks, all drawing on
projective representations, transformations and insights. Part III widens the lens to include the
closely related cofactor matroids arising from multivariate splines, which also exhibit the projective
invariance. These are another fundamental example of abstract rigidity matroids with deep analogies
to rigidity. We conclude in Part IV with commentary on some nearby areas.
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1. Introduction

The study of the rigidity and flexibility properties of bar–joint structures can be traced
back to work of Cauchy and Euler on Euclidean polyhedra. In this article we will review,
clarify and extend this extensive theory using a projective perspective.

From at least the time when Möbius developed barycentric coordinates with weighted
points (projective homogeneous coordinates) to write their text on statics [1,2], scientists,
engineers and mathematicians (who were often the same individuals in the 1800s) have
worked with static rigidity within a projective perspective, sometimes implicitly.

James Clerk Maxwell explored static stresses in frameworks with planar graphs via
projections of 3-dimensional spherical polyhedra, building on drafting-table graphical
statics techniques of engineers [3]. In the same issue of the Philosophical Magazine, the
engineer Rankine describes attending a lecture at the Royal Society on “the new geometry”
(projective geometry from the continent). He immediately jotted down a short note for
publication observing that statics was projectively invariant [4]. At the time, Rankine
was writing their text on statics for engineers [5]. Throughout the remainder of the 1800s,
various authors implicitly, and sometimes explicitly, connected work on static rigidity, and
sometimes on the companion infinitesimal rigidity, to projective geometry.

Klein, as a student of Plücker who developed Plücker coordinates for lines in projective
geometry, understood that statics and static rigidity lived within the projective world, and
therefore, implicitly, this would extend to all the metrics in their geometric hierarchy which
draw on projective geometry: spherical; hyperbolic; Minkowski; de Sitter [6]. Throughout
the last decades of the 1800s and the first few decades of the 1900s a number of authors
recognized that statics, and therefore infinitesimal rigidity, were projective invariants [7–10].
As mathematics separated from engineering, and projective geometry faded from basic
undergraduate education, these connections were lost, though they were kept alive in some
places, such as Russia and Austria [11,12].

As we look at a variety of rigidity-related topics, we can connect results, methods,
and even new conjectures through shared underlying projective geometry. This survey is
an opportunity to pull out those connections, and observe shared similarities. One of the
ways of making the connections is to recast some of the concepts in projective language.
Another way is to examine the underlying projectively embedded transformations: change
of metrics to connect examples in Euclidean, spherical, Minkowski, hyperbolic, de Sitter
spaces; projection and lifting as projective techniques; polarity as a connection between
what might appear as distinct concepts; transformations which place critical geometric
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objects (e.g., points in 2D) at ‘infinity’ to bring in additional examples which were implicitly
covered by previous results. There is much to be learned by moving methods and results
among the concepts, results, and settings with a projective lens.

We note that within Klein’s Hierarchy of Geometries [6] projective geometry contains
both combinatorics (counting) and topology as conceptual contexts. As we move through
the sections below, there will be critical results based on counting of edges, vertices, faces,
etc., and simple topological results—starting with the connectivity of a graph, on to results
based on topological surfaces such as planar graphs and combinatorial spheres.

Part I pulls together results which apply directly to rigidity of bar–joint frameworks.
These offer a surprising sweep of rigidity results and applications which are, in their core,
projective. The concepts, and a number of the techniques, are abstracted from questions
arising in civil and structural engineering where building with iron bars and rivets started
the study of pin-jointed frameworks. Bar–joint frameworks on graphs have become the
basic conceptual patterns for most of the work on rigidity, and also the playground where
a number of techniques are explored. We will illustrate the power of projective geometric
representations and reasoning in our choice of presentation and results.

In dimensions 1 and 2 the rigidity of bar–joint frameworks, generically, is completely
understood [13,14] and fast deterministic algorithms exist [15–17]. However it is a fun-
damental unsolved problem, that is more than 150 years old, to determine analogously
whether a graph G = (V, E) has realisations in 3-space which are infinitesimally rigid. This
question motivates a number of partial results in Part I. It also motivates a combinatorial-
geometric result we return to in Part III.

Part II expands the concepts from bar–joint frameworks to structures with larger
bodies and a range of articulations: connecting bars, hinges, pins, etc. These patterns
arise in a range of fields from mechanical engineering (Section 7.7) through to the study
of flexible proteins (Section 10.5) and computational geometry [18]. Perhaps surprisingly,
some of the combinatorics with bodies becomes simpler than for bar–joint frameworks in
dimensions at least three, so we have fast algorithms for when a graph has infinitesimally
rigid realisations as body-bar and body–hinge frameworks in all dimensions. This expands
the possible applications, and the fast algorithms are embedded in software packages, such
as FIRST and KINARI [19,20], which analyse the rigidity of biomolecules such as large
proteins and virus capsids.

Part III will briefly present multivariate splines for approximating surfaces over cell
decompositions with piecewise polynomial functions with specified smoothness. These
structures are also projectively invariant so they fit the overall theme of this paper. There
are several directions for the connections between splines and rigidity theory: (i) common
matrix (matroid) patterns that encourage transfer of techniques from rigidity to splines and
from splines to rigidity theory [21,22]; (ii) some common projective techniques, including
coning and projecting between dimensions which expands our results [23,24].

As mentioned above, Part I leaves hanging the characterisation of generic rigidity in
dimension 3. It remains a conjecture that generic rigidity in R3 is the maximal abstract rigid-
ity matroid for this count (has the maximal set of independent sets of edges). What has been
recently proven is that an analogous alternate matroid on graphs—the C1

2-cofactor matroid
from bivariate splines [21]—is the unique maximal abstract 3-rigidity matroid [25,26].

Part IV offers a brief overview/summary of connections, methods and techniques that
have been part of our toolkit for asking interesting questions, exploring connections and
experiencing the geometry of the topics presented here.

In a companion paper Projective Geometry of Scene Analysis, Parallel Drawing and
Reciprocal Drawing [27], we will continue the exploration of related topics which have a
deep projective basis: (i) scene analysis: the lifting of pictures in dimension d to scenes in
dimension d + 1; (ii) the parallel drawings of configurations with fixed normals to faces
(polar to scene analysis); and (iii) reciprocal diagrams developed by Maxwell, Rankine and
Cremona [3,4], as well as engineers working on examples at their drafting tables. This field
was called graphical statics in both Europe and the US in the last half of the 19th century.
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Together these reciprocal techniques were developed for spherical polyhedra and their
extensions to higher-dimensional spherical polytopes, and greatly extended as geometric
questions, methods and results with multiple applications. In these studies, we are able
to ask a number of questions which are also at the core of this current paper, and develop
some new results and conjectures which continue to apply to projective (and combinatorial)
methods presented here.

Working on this survey, with a shared projective lens, has opened up new applications
of classical projective geometry. This paper includes some new results and often new ways
to look at prior results. Some samples are the following: some results drawing on the
projective representations of infinitesimal motions (Sections 7.3 and 8.2); added details
on framework rigidity in Minkowski space (Section 4.2); the transfer of pure conditions
to C1

2-spline cofactors (Section 11.4). Writing in explicit projective terms gives added
perspectives. Some key sections on examples and approaches with centers of motions draw
on unpublished preprints [28,29], and some subsections on multivariate splines draw on
an unpublished paper [24] and difficult to access prior papers [21,22]. All the unpublished
preprints are on ResearchGate or arXiv, and we reference those, as well as known additional
links to help access papers. There are many new directions for future projects and further
interesting explorations. Both projective geometry and rigidity theory are active fields for
continuing research, and we invite you to join this work.

Part I

Projective Geometry in Core Rigidity
Results
2. Introduction to Euclidean Rigidity Theory

To ease transition to our desired, more thoroughly projective presentation, we begin
with a brief description of the more familiar Euclidean presentation of rigidity theory.
See [30–34], for example, for more details.

A d-dimensional (bar–joint) framework (G, p) is an ordered pair consisting of a finite,
simple graph G = (V, E) and a map p : V → Rd. We think of a framework as a set
of stiff bars (corresponding to the edges of G) that are connected at their ends by joints
(corresponding to the vertices of G) that allow bending in any direction of Rd. Loosely
speaking, such a framework is called rigid if every continuous deformation of the vertices
which fixes the bar lengths arises from a congruence of Rd. Otherwise, the framework is
said to be flexible (Figure 1). See [30], for example, for a detailed definition.

(a) (b) (c) (d)

Figure 1. A rigid (a) and a flexible (b) framework in the plane. The motion shown in (c) takes the
framework in (b) to the framework in (d).

An infinitesimal motion u : V → Rd of (G, p) is an assignment of velocity vectors to the
joints so that the distance between any pair of joints connected by a bar is preserved at
first order:

(pi − pj) · (ui − uj) = 0 for all ij ∈ E, (1)

where pi = p(i) and ui = u(i). An infinitesimal motion is called trivial if it arises as the
derivative of a rigid body motion of Rd, restriced to p. The dimension of the space of
trivial infinitesimal motions of a framework that affinely spans Rd is (d+1

2 ). This space
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is generated by d independent translations and (d
2) independent rotations. Infinitesimal

motions are illustrated in Figure 2.

p1 p2

u1

u2

(a)

p1 p2p3

u3
u1 = 0 u2 = 0

(b)

p6

p1

p2

p3

p4

p5

u6

u1

u2

u3u4

u5

(c)

Figure 2. Velocity vectors of a trivial infinitesimal motion (a) and non-trivial infinitesimal motions
(b,c) of frameworks in the plane.

A framework (G, p) in Rd is infinitesimally rigid if every infinitesimal motion of (G, p)
is trivial, and infinitesimally flexible otherwise. The rigidity matrix R(G, p) of (G, p) is the
|E| × d|V|matrix of the system (1), where u is unknown; that is, R(G, p) is of the form:

R(G, p) =


i j

...
ij 0 . . . 0 (pi − pj) 0 . . . 0 (pj − pi) 0 . . . 0

...

,

where the entries of the matrix are considered as row vectors.
The space of infinitesimal motions of (G, p) is the kernel of R(G, p), and if the joints of

(G, p) affinely span all of Rd then (G, p) is infinitesimally rigid if and only if rank R(G, p) =
d|V| − (d+1

2 ). It is well known that an infinitesimally rigid framework is rigid [30]. The
converse is also true, provided that (G, p) is regular, that is, if rank R(G, p) ≥ rank R(G, q)
for all q ∈ Rd|V| [30]. Note that ‘almost all’ realisations (G, p) of a graph G are regular, in
the sense that the set of configurations p for which (G, p) is regular is a dense open subset
of Rd|V|. This is because they are the complement space of an algebraic variety defined by
the determinants of a finite number of submatrices of the rigidity matrix.

We say that (G, p) is generic if the coordinates of p are algebraically independent over
the rationals. Clearly, a generic framework is regular, and the set of generic realisations
of a graph G is still a dense (but not an open) subset of Rd|V|. The rigidity matrix R(G, p)
of (G, p) defines the rigidity matroid of (G, p) on the ground set E by linear independence
of the rows of R(G, p). It is easy to see that any two generic frameworks with the same
underlying graph G have the same rigidity matroid [30]. This is called the d-dimensional
rigidity matroid of G, and we will denote it by Md(G). See [34,35] for background on the
use of matroid theory in rigidity.

The above is sometimes called the kinematic approach to rigidity. We now also briefly
describe the dual notion of static rigidity. An equilibrium load f on a framework (G, p) is an
assignment of a vector f (i) to each point p(i) such that ∑i∈V f (i) = 0 and

∑
i∈V

(
f (i)j p(i)k − f (i)k p(i)j

)
= 0

for all 1 ≤ j < k ≤ d, where we use the notation xt for the t-th coordinate of a vector x.
These conditions on f are equivalent to there being no net force and no net torque. If we
regard an equilibrium load as a vector in Rd|V|, then the set of equilibrium loads on (G, p)
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forms a (d|V| − (d+1
2 ))-dimensional subspace of Rd|V|. A stress ρ of (G, p) is an assignment

of a scalar ρ(e) to each edge e of G. A stress ρ resolves an equilibrium load f if

∑
j:ij∈E

ρ(ij)(p(i)− p(j)) = − f (i) for all i ∈ V, (2)

in which case we say that f is resolvable by (G, p). See Figure 3 for an illustration. A stress
ω that resolves the zero load is called an equilibrium stress (or self-stress) of (G, p). Note that
the set of equilibrium stresses of (G, p) is a subspace of R|E|. A framework (G, p) that has
only the zero equilibrium stress is called independent (since in this case the rigidity matrix of
(G, p) has linearly independent rows). Otherwise, (G, p) is called dependent. A framework
that is infinitesimally rigid and independent is called isostatic.

A framework (G, p) is statically rigid if every equilibrium load is resolvable by (G, p).
A classical fact which can be traced back to Maxwell and which follows from linear duality
is the following.

(a) (b) (c)

Figure 3. (a) An equilibrium load on a framework (K3, p) in the plane. This load can be resolved by
(K3, p) as shown in (b). (c) An unresolvable equilibrium load on a degenerate triangle: tensions or
compressions in the bars cannot reach an equilibrium with the load vector at any of the joints.

Theorem 1. A framework (G, p) in Rd is infinitesimally rigid if and only if it is statically rigid.

We sketch a proof of this result and refer the reader to [29,36] for details.

Sketch of proof. Equation (2) is equivalent to ρT R(G, p) = − f , and hence the space of
resolvable equilibrium loads is isomorphic to the row span of the rigidity matrix R(G, p).
Let S(p) and M(p) be the space of equilibrium stresses and infinitesimal motions of (G, p),
respectively. Then, by the rank-nullity theorem, we have

|E| − dim S(p) = d|V| − dim M(p).

If (G, p) is statically rigid, then dim S(p) = |E| − (d|V| − (d+1
2 )), and hence, by the equation

above, dim M(p) = (d+1
2 ), which says that (G, p) is infinitesimally rigid. The converse is

similar.

Since for a given graph G, all generic realisations of G as a d-dimensional bar–joint
framework share the same rigidity properties (that is, they are either all rigid or all flex-
ible) [30], we may define a graph to be rigid (isostatic) in Rd if some (equivalently, any)
generic realisation of G is rigid (isostatic) in Rd. If the edge set of G is dependent in the
rigidity matroid Md(G) and the removal of any edge yields an independent set in Md(G),
then we say that G is a (rigidity) circuit in Rd. It is a major research area in rigidity theory to
obtain necessary and sufficient combinatorial conditions for the rigidity of graphs that can
be checked in polynomial time.

Using the well known recursive graph construction moves 0-extension and 1-extension,
also known colloquially as Henneberg moves (since they were originally studied by Hen-
neberg [7,37]), Pollaczek–Geiringer showed that a graph is rigid in the plane if and only if
it contains a spanning subgraph G = (V, E) satisfying |E| = 2|V| − 3 and |E′| ≤ 2|V′| − 3
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for all non-trivial subgraphs of G [13]. This result is commonly referred to as Laman’s
Theorem, since it was rediscovered and popularised by Laman in 1970 [14]. Starting from
Laman’s Theorem, we now have a very good understanding of combinatorial rigidity in
the plane. This includes polynomial-time algorithms [16], matroidal characterisations [38],
characterisations in terms of tree decompositions (see Figure 4) and analogous results for
symmetric frameworks [39–41] and frameworks with other kinds of constraints [42–46].
On the other hand, a combinatorial characterisation of rigid graphs in Rd has not yet been
found for d ≥ 3.

(a) (b)

Figure 4. A graph is isostatic in R2 if and only if the edges can be decomposed into 3 trees, exactly
2 meeting at each vertex (called 3Tree2 for short) Figure (a). The tree decomposition is proper if no
non-trivial subtrees of distinct trees have the same span [47]). Failure is illustrated in Figure (b)
which is not proper—the subgraph in the circle is covered by two trees (hence has |E′| = 2|V′| − 2).

Notable partial results for special types of frameworks are Tay’s Theorem for body-bar
frameworks (Section 9), the Tay–Whiteley Theorem [48,49] for body–hinge frameworks
(Section 10.1) and the Katoh–Tanigawa Theorem [50] for molecular (or panel–hinge) frame-
works (Section 10.4).

3. Projective Rigidity

The statics of frameworks was the earliest analysis we have found to have a distinctly
projective presentation [1,2]. This invariance was re-observed multiple times, as projective
geometry spread from the continent to the United Kingdom [3,4]. Engineers in the 19th
century, such as Cremona [51], were also mathematicians and explored projective geometry,
and geometers such as Cayley and Klein explored applications as most mathematicians of
the era were also physicists.

Projective infinitesimal and static rigidity can be described elegantly using Plücker
coordinates and the exterior algebra (or Grassman–Cayley algebra [52]), which we now
introduce. See [52–58], as well as the preprint version of [50] (arXiv:0902.0236), for example,
for some good references on this, along with relevant applications.

3.1. Plücker Coordinates and Extensors

Consider the projective d-space Pd. Recall that a point in Pd is represented as a vector
in Rd+1, but two non-zero vectors p and q represent the same projective point if and only
if p = λq for some λ 6= 0. These (d + 1)-dimensional vectors are called the homogeneous
coordinates for the points. If the last coordinate pd+1 of p is non-zero, we say that p is finite,
with pd+1 as weight. In this case, we can represent p as (p1, . . . , pd, 1). If pd+1 = 0, then p is
called infinite (as it lies in the hyperplane at infinity) and has weight zero.

Let U be a k-dimensional linear subspace of Rd+1 and let {u1, . . . , uk} be a set of basis
vectors of U. We let A(u1, . . . , uk) be the k× (d + 1) matrix whose ith row is the transpose
of ui. For a k-element subset {i1, . . . , ik} of {1, . . . , d+ 1}, the (i1, . . . , ik)-th Plücker coordinate
of U is defined as the determinant of the k× k submatrix obtained from A(u1, . . . , uk) by
taking the ij-th columns for 1 ≤ j ≤ k in some predetermined order. The Plücker coordinate
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vector PU of U is the (d+1
k )-dimensional vector consisting of these (d+1

k ) Plücker coordinates
of U in some predetermined order. Note that U determines PU up to a scalar multiple.

In the terminology used in the Grassmann–Cayley algebra, which considers Plücker
coordinate vectors at the symbolic level (that is, without the specification of an order for the
coordinates), the vector PU is often also called a k-extensor and is denoted by u1 ∨ · · · ∨ uk.
The subspace U is also called the support of PU . We will adopt this notation and terminology
which is commonly used in rigidity theory, while keeping in mind that we always assume
that the coordinates are given relative to an ordered basis.

Example 1. Consider a line in R3 given by the points a = (a1, a2, a3) and b = (b1, b2, b3). Let U
be the subspace of R4 spanned by the vectors ã = (a1, a2, a3, 1) and b̃ = (b1, b2, b3, 1). To obtain
the Plücker coordinate vector of U we consider the 2× 4 matrix A whose first and second row are ã
and b̃, respectively, and take the determinants of six 2× 2 submatrices of A by choosing ordered
pairs of columns in the following order: (4, 1), (4, 2), (4, 3), (2, 3), (3, 1), (1, 2). This gives

PU = (b1 − a1, b2 − a2, b3 − a3, a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
T = (d, x× d),

where d = b− a, x is any point on the line, and x× d represents the static moment of the line with
respect to the origin.

We may form the dual space of U, denoted by U∗, as follows. Consider the linear
system given by the following dot products

x · u` = 0 ` = 1, . . . k,

were the variables are x = (x1, . . . , xd+1). The matrix corresponding to this system has rank
k and so we let U∗ be the (d + 1− k)-dimensional solution space to this system. The dual
Plücker coordinate vector of U, PU∗ , is defined to be the vector that consists of the Plücker
coordinates of U∗, which are called the dual Plücker coordinates of U. PU∗ is also called the
dual extensor of PU . It is well known that the dual Plücker coordinate vector of U is the
same as the Plücker coordinate vector of U, except for a reordering of the coordinates and
some sign changes.

Note that for a basis {w1, . . . , wd+1−k} of U∗, the basis vectors of U and U∗ satisfy

wi · u` = 0 i = 1, . . . , (d + 1− k); ` = 1, . . . , k.

So if we consider the linear system

wi · x = 0 i = 1, . . . (d + 1− k)

and think of the wi as hyperplanes, then it follows that each of these hyperplanes contains
U. Hence U can be represented as the subspace spanned by the ui or as the subspace
obtained by intersecting the hyperplanes wi.

Let
∨k denote the (d+1

k )-dimensional space spanned by {u1 ∨ · · · ∨ uk | u1, . . . , uk ∈
Rd+1 \ {0}}. For X = x1 ∨ · · · ∨ xk and Y = y1 ∨ · · · ∨ y`, the join of X and Y is defined as
the (k + `)-extensor x1 ∨ · · · ∨ xk ∨ y1 ∨ · · · ∨ y`. Note that the support of X ∨Y is the span
of the union of the supports of X and Y, provided that {x1, . . . , xk, y1, . . . , y`} is linearly
independent. Otherwise X ∨Y = 0.

For X and Y as above, with k + ` ≥ d + 1, we define the meet of X and Y to be

X ∧Y = ∑
σ

sgn(σ)[xσ(1), . . . , xσ(d+1−`), y1, . . . , y`]xσ(d+2−`) ∨ xσ(d+3−`) ∨ · · · ∨ xσ(k),

where the brackets denote determinants and the sum is taken over all permutations σ of
{1, . . . , k} such that σ(1) < σ(2) < · · · < σ(d + 1− `) and σ(d + 2− `) < σ(d + 3− `) <
· · · < σ(k). Each such permutation σ is called a shuffle and the expression for X ∧Y above
is known as the shuffle formula. Note that if X and Y are non-zero and the union of X and Y
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spans the whole space, then the support of X ∧Y is the intersection of the supports of X
and Y.

The operations of join and meet are dual to each other in the sense that if we inter-
change ∨ and ∧ then we must interchange

∨k with the space ∗∨d+1−k of dual extensors.

3.2. Infinitesimal and Static Rigidity in Projective Space

In this section, we give a brief summary of the development of the theory of infinites-
imal rigidity in projective space using Plücker coordinates and extensors. We start by
describing infinitesimal rigid body motions in projective space. In the following, we will

use the notation p̃ =

(
p
1

)
∈ Rd+1 for a point p ∈ Rd. Let p1, . . . , pk be k points that span

an affine subspace U of Rd of dimension (k − 1), and let U be the k-dimensional linear
subspace of Rd+1 spanned by p̃1, . . . , p̃k. Then the Plücker coordinate vector (or k-extensor)
PU = p̃1 ∨ · · · ∨ p̃k determined by U (up to a scalar) is said to be the k-extensor associated
with U.

Consider an infinitesimal rotation of Rd. It has a (d− 2)-dimensional axis (or center)
W. Let c1, . . . , cd−1 affinely span W. In the projective setting, the center is a subspace of
dimension d− 1 in Pd spanned by the vectors c̃1, . . . , c̃d−1. We let Z = c̃1 ∨ · · · ∨ c̃d−1 be
the (d− 1)-extensor associated with W. Then for any point p /∈ W, Z ∨ p̃ is a d-extensor
associated with the hyperplane span(W + p). Now, for some vector v that is normal to
span(W + p), Z ∨ p̃ can be written as (v,−v · p), where v · p is the dot product of v and p
(see [58], for example). The length of v is proportional to the distance between W and p
(and to the volume of the simplex determined by c1, ..., cd−1, p) so that for some constant
scalar α, the first d entries of α(Z ∨ p̃) represent the velocity vector of the rotation around
W at the point p. The vector Z′ = αZ is called the center of the rotation.

Next we describe an infinitesimal translation of Rd in the direction of a (free) vector
t ∈ Rd. In projective space, a translation may be thought of as a rotation around an axis at
infinity, so we may mimic the description of an infinitesimal rotation given above. More
precisely, the (d− 1)-extensor associated with the axis at infinity for the translation in the
direction of t is obtained by taking the orthogonal complement U of span(t), fixing a basis

u1, . . . ud−1 of U, and then taking the (d− 1)-extensor Z = û1 ∨ . . .∨ ûd−1, where ûi =

(
ui
0

)
is the point at infinity in the direction of ui. Now, as above, for any point p we consider the
d-extensor Z ∨ p̃ and observe that the first d coordinates of this vector are independent of
p and proportional to t. So for some constant scalar α, we have Z′ ∨ p = (t,−t · p). The
vector Z′ = αZ is called the center of the translation in the direction of t.

Now, an arbitrary infinitesimal rigid body motion M is the vector sum of infinitesimal
rotations and translations. If Z′i , i = 1, . . . , b, are the corresponding centers of these
infinitesimal rigid body motions, then the velocity vector assigned to p under M is given by
the first d coordinates of the vector ∑b

i=1(Z′i ∨ p̃). The vector Z′ = ∑b
i=1 Z′i is called the screw

center of M. Note that the screw center can in general not be expressed as a (d− 1)-extensor.
(As indicated by the name ‘screw’, in R3 it can be represented as the sum of an extensor for
a rotation, and an extensor for translation along the axes of the rotation [59].) We define the
motion or momentum M(p) at the point p to be Z′ ∨ p̃ := ∑b

i=1(Z′i ∨ p̃).
Recall that if u is an infinitesimal motion of a framework (G, p) in Euclidean d-space,

then the velocity vectors ui at the points pi satisfy the linear equations in (1). This linear
system takes on an even simpler form in projective space. As we have seen above, the
momentum of the point pi is given by the d-extensor M(pi) = (ui,−ui · pi), so for every edge
ij of G we obtain

0 = (pi − pj) · (ui − uj)

= (ui · pi)− (ui · pj)− (uj · pi) + (uj · pj)

= M(pi) · p̃j −M(pj) · p̃i. (3)
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Moreover, recall that geometrically the momentum M(pi) at pi is a weighted section of a
hyperplane of Rd containing pi with normal vector ui. The associated projective hyperplane
will be denoted M(pi). An equation for this hyperplane is given by M(pi) ∨ x = 0, and
hence we also have

M(pi) ∨ p̃i = M(pi) · p̃i = 0 for all i ∈ V. (4)

In the sequel, we will often use the notation Mi = M(pi). The matrix corresponding to
the linear system (3) and (4) is the projective rigidity matrix R̃(G, p̃). This matrix is the
(|E|+ |V|)× (d + 1)|V|matrix of the form

R̃(G, p̃) =



i j
...

ij 0 . . . 0 p̃j 0 . . . 0 p̃i 0 . . . 0
...

i 0 . . . 0 p̃i 0 . . . 0 0 0 . . . 0
...

j 0 . . . 0 0 0 . . . 0 p̃j 0 . . . 0
...


,

where the entries are considered as row vectors.
By the discussion above, the dimension of the space of rigid body motions (trivial

infinitesimal motions) is (d+1
2 ), provided the vertices span the whole space. Assuming the

framework has at least |V| = d vertices, a projective framework (G, p̃) is infinitesimally
rigid if and only if the rank of R̃(G, p̃) is (d + 1)|V| − (d+1

2 ). If |V| < d then, as in the
Euclidean case, the framework is infinitesimally rigid if and only if G is complete and p̃ is
in general position (has no affine dependence).

In Figure 5, the plane momenta are shown as arrows-though they are actually weighted
extensors λaac along the line to the center. In our companion paper [27], these vectors
are equivalent to ‘parallel drawings of the plane configuration’. The paper [60] offers an
extended study of how to projectively construct the centers of motion of the bars of a plane
framework. A simple illustration is given in Figure 5. The preprint [28] includes a number
of examples that are analyzed geometrically in terms of centers of motion. These projective
momenta, as the ‘centers of motion of vertices’, round out the projective representation of
infinitesimal kinematics.

(a-b)

va

vbvb.(a-b)

va.(a-b)

M(b)

M(a)
va

vb

a

b
M(b)

M(a)
a

b

a

b

c

(a) (b) (c) (d)

Figure 5. An infinitesimal motion has equal projections on a bar (a). In the plane, if the vectors are turned 90 degrees,
we have weighted line segments or momenta for vertices in (b), whose lines meet in a point, and whose ends produce a
segment parallel to the bar. This point is the center of motion (c) for the bar. A choice of scale for the weight of the center as
a projective point generates a line parallel to the bar (d).
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We present one class of frameworks amenable to this approach of centers of mo-
tion of bars for plane frameworks [28]. We will revisit the geometry of momenta in
Sections 5 and 7.

Example 2. Consider a cycle of quadrilaterals in the plane. The relative center of motion of any
two bars in the plane is the difference of the two projective centers of the bars [28], or the center of
motion of the second bar, when the first one is held fixed (by subtracting its center from all other
centers). The basic observation is that for any quadrilateral of bars, a1a2b2b1, the relative center of
(a2, b2) relative to (a1, b1) is a multiple of the point of intersection (a1a2) ∧ (b1b2) = c12, and the
center of (a1, b1) relative to (a2, b2) is the same projective point with a negative weight (Figure 6a).
For a cycle of 4 quadrilaterals, the count is |E| = 12 = 16− 4 < 2|V| − 3 revealing a non-trivial
infinitesimal motion. This infinitesimal motion can be described by an affine combination of the
four centers around the cycle. If these four centers are collinear (Figure 6b), then there will be two
independent affine (or projective) combinations, and therefore an additional non-trivial infinitesimal
motion. This extra infinitesimal motion corresponds to a drop in rank of the rigidity matrix which
implies an equilibrium stress.

With a general cycle of quadrilaterals of length n (Figure 6c), the analysis gives |E| = 2|V| − n
and n − 3 degrees of freedom. However if the n centers are collinear, then there will be n − 2
independent projective combinations of the relative centers. This implies that the collinearity
is sufficient (and necessary) for an equilibrium stress in these under-braced frameworks. The
collinearity of the centers, along a line of perspective of the inside and outside polygon [61], creates
an image that (correctly) suggests we can hold one polygon flat in the plane and tilt the other one
up into 3-space, lifting vertices vertically. With this image we can ‘see’ a spatial polyhedron, as
workers in rigidity since at least the time of J.C. Maxwell did [3,62,63]. We will encounter these
connections in detail in an exploration of ‘reciprocal diagrams’ in our companion paper [27].

Note that the entire analysis applies if some or all of the relative centers happen to lie on
the projective line at infinity (as relative centers for relative translations). If the two edges of a
quadrilateral are parallel, then their lines will intersect ‘at infinity’ and we need to include centers
at infinity. This analysis is a fundamentally projective tool, based on projective constructions. We
will examine the full inclusion of vertices at infinity (or ‘slide joints’) in Section 6.

c12=-c21

a1

b1

a2

b2
ca1b1=c1 c2

a4

b4

c23

a2

a3

b2
b3

c12

b1

a1

c34 c41

a2b2

c12

b1

a1

cn1

an bn

cnn-1

an-1
bn-1

c23

b3 a3

(a) (b) (c)

Figure 6. Each plane quadrilateral has a relative center of motion of opposite edges (how one moves when the other is held
still): a multiple of the intersection point of the other two sides (a). For a larger ring of quadrilaterals, the collinearity of
these relative centers will guarantee extra infinitesimal motions (b,c).

Note that, in the projective rigidity matrix R̃(G, p̃), the weight of each projective point
p̃i is 1. We can, of course, change this weight to an arbitrary non-zero number λi for each
p̃i by simply multiplying the column for i by 1

λi
, the rows ij by λiλj, and the row for i

by λ2
i . These row and column multiplications do not change the rank of the matrix, or

the dimension of the kernel or cokernel. Since the solutions Mi depend on the weight
λi assigned to each vertex, the name we often use for the solution set M is (projective)
momenta (as in velocity times mass). Note that we have focused our discussion on finite
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projective points (i.e., points with nonzero weight) so far. We will discuss how to deal with
infinite projective points in Section 6.2.

Since row rank equals column rank, for an infinitesimally rigid framework, the row
rank of R̃(G, p̃) is (d + 1)|V| − (d+1

2 ). We need to confirm this is equivalent to static rigidity
for the framework by connecting linear combinations of the rows with resolutions of
equilibrium loads.

Let us now consider static rigidity in the projective setting. An Euclidean force
f = ( f1, . . . , fd)

T that is applied to an Euclidean point p = (p1, . . . , pd)
T in Rd can be

written in the projective space Pd as the 2-extensor given by the join of the projective points
f̂ = ( f1, . . . , fd, 0)T and p̃ = (p1, . . . , pd, 1)T . For an appropriate choice of basis, the first d
coordinates of the (d+1

2 )-dimensional vector Fi = f̂ ∨ p̃ is the free vector ( f1, . . . , fd), and
the remaining (d

2) coordinates may be interpreted as the moment of the force about the
various coordinate axes.

If we have a set of forces (2-extensors) Fi, then the composition F of the Fi is defined
as F = ∑i Fi (where the sum is obtained by adding the corresponding minors). This
composition is in general not a new single force (or 2-extensor) but a wrench [53]. However,
if a set of forces Fi = f̂i ∨ p̃ is applied to the same point p̃ (i.e., all forces Fi are on lines
through p̃), then we obtain the resultant force G = ∑ Fi = ∑i( f̂i ∨ p̃) = (∑i f̂i) ∨ p̃.

Example 3. Two opposite forces on parallel lines form a static couple (see Figure 7a). In the projec-
tive plane, the forces add up to an extensor on the line at infinity. After a projective transformation
brings this line into the finite plane, the sum looks like (b) or (c). These are equivalent as the same
force F1 can be drawn anywhere along its line.

F1
F2

F2

F1+F2

F1

F1+F2

F2F1

(a) (b) (c)

Figure 7. Two opposite forces on parallel lines (a) form a couple. They will add up to a force along the line at infinity. After
a projective transformation, they appear as (b) or equivalently (c).

If f is an equilibrium load on a framework (G, p) in Euclidean d-space which assigns
the force fi to the point pi, then in the projective space Pd, this equilibrium load is given
by the assignment of the force f̂i ∨ p̃i to each point p̃i so that ∑i∈V f̂i ∨ p̃i = 0. A stress ρ
resolves this equilibrium load if

∑
j:ij∈E

ρ(ij) p̃j ∨ p̃i = − f̂i ∨ p̃i for all i ∈ V. (5)

As mentioned in Section 2, a framework is statically rigid if it can resolve every equlibrium
load. Moreover, the resolution of the zero force is an equilibrium stress (or self-stress). The
set of Equations (5) can be written in matrix form as
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ij ik
...

i 0 . . . 0 p̃i ∨ p̃j 0 . . . 0 p̃i ∨ p̃k 0 . . . 0
...

j 0 . . . 0 p̃j ∨ p̃i 0 . . . 0 . . . 0 . . . 0
...





...
ρ(ij)

...
ρ(ik)

...


=


...

− f̂i ∨ p̃i
...

,

where the matrix on the left is denoted by S̃(G, p̃) and each matrix entry in S̃(G, p̃) is written
as a column vector. Static rigidity is equivalent to the matrix resolving all equilibrium loads.

The equivalence of the original projective matrix and this matrix for resolving equilib-
rium loads will be more transparent if we work with the transpose of S̃(G, p̃), and focus
on the self-stresses which are now row dependences ωij, that is

(
. . . ωij . . .

) 
. . . i . . . j . . .

...
. . . . . . . . .

...
0 . . . p̃i ∨ p̃j 0 . . . 0 p̃j ∨ p̃i 0 . . . 0
...

. . . . . . . . .
...

 =


...
0
...

.

Recall that for any point q̃i, p̃i ∨ q̃i = 0 if any only if p̃i = αq̃i for some scalar α.
Given any row dependence ωij of S̃(G, p̃)T we have

∑
j:ij∈E

ωij p̃i ∨ p̃j = 0 =⇒ p̃i ∨ ( ∑
j:ij∈E

ωij p̃j) = 0 =⇒ ( ∑
j:ij∈E

ωij p̃j) = −ωi p̃i

for some scalar ωi. This is then a row dependence of R̃(G, p̃).
Conversely, given a row dependence of R̃(G, p̃), we have

∑
j:ij∈E

ωij p̃j + ωi p̃i = 0 =⇒ p̃i ∨ ( ∑
j:ij∈E

ωij p̃j) = 0 =⇒ ∑
j:ij∈E

ωij p̃i ∨ p̃j = 0.

This is a row dependence of S̃(G, p̃)T . Thus, the space of row dependencies for R̃(G, p̃) are
isomorphic to the space of column dependencies for S̃(G, p̃). We apply the same reasoning
to connect the resolutions of equilibrium loads by columns of S̃(G, p̃) to resolutions by
rows of R̃(G, p̃):

∑
j:ij∈E

ωij p̃j ∨ p̃i = − f̂i ∨ p̃i =⇒ ( ∑
j:ij∈E

ωij p̃j) ∨ p̃i = − f̂i ∨ p̃i

=⇒ ∑
j:ij∈E

ωij p̃j = − f̂i −ωi p̃i

=⇒ ∑
j:ij∈E

ωij p̃j + ωi p̃i = − f̂i.

Conversely

∑
j:ij∈E

ωij p̃j + ωi p̃i = − f̂i =⇒ ( ∑
j:ij∈E

ωij p̃j) ∨ p̃i = − f̂i ∨ p̃i

=⇒ ∑
j:ij∈E

ωij p̃i ∨ p̃j = − f̂i ∨ p̃i.
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Thus, the row space of R̃(G, p̃) is the space of equilibrium loads. We conclude that a
framework is statically rigid if and only if R̃(G, p̃) has rank (d + 1)|V| − (d+1

2 ). This
completes the equivalence of static and infinitesimal rigidity. (see also ([29], Section 5.2))

Remark 1. If we allow infinite graphs where every vertex has finite degree, then it turns out that
infinitesimal rigidity is no longer equivalent to static rigidity, since for infinite-dimensional matrices
the row rank is no longer equal to the column rank. Figure 8b shows an example of an infinite
framework on the line which is statically but not infinitesimally rigid.

The line framework in Figure 8a is connected and therefore infinitesimally rigid. The framework
in Figure 8b is disconnected and hence infinitesimally (and finitely) flexible, with the velocities of a
non-trivial infinitesimal motion shown. Figure 8c shows a resolution of a force applied to one part of
the framework, and Figure 8d shows the resolution of another force applied to the framework. Note
that these are not equilibrium loads; this framework resolves all loads that can be applied (with no
conditions for equilibrium) and hence it is statically rigid. The framework in (a) is also statically
rigid, but with an equilibrium stress (which has the same stress coefficient on each edge). In general,
infinitesimal rigidity implies static rigidity for infinite frameworks (in all dimensions) [64], but the
converse clearly fails. It is tempting to conjecture, however, that the converse is true for frameworks
whose underlying graphs are connected.

A

p3
B u1 u2 u3 u4

p4p2p1

p3
C

p4p2p1

F -F -F -F -FF F F

p3
D

p4p2p1
-F -F -FF F F

E
p4p2p1

-F -F -FF F F

(b)

(a)

(c)

(e)

(d)

Figure 8. (a) shows a connected infinite framework which is infinitesimally and statically rigid on the line. (b) shows a
disconnected framework which is not infinitesimally rigid. (c,d) show resolutions of forces applied to this disconnected
framework. (e) shows a one direction infinite framework with the resolution of load.

3.3. Projective Invariance

A fundamental and classical result is that infinitesimal (or equivalently, static) rigidity
is projectively invariant. For discrete structures this was observed by Rankine in 1863 [4].
Proofs were later also given by Liebmann (for static rigidity of special types of frame-
works [8]) and by Sauer (for both infinitesimal and static rigidity for general frameworks;
see [9,10], respectively). See also [65], for example, for a recent proof, as well as [28,29,53].

Using our projective rigidity matrix, we can easily see that infinitesimal rigidity
is projectively invariant as follows. Let T be a projective transformation represented
by a (d + 1) × (d + 1) invertible matrix. Then we can multiply the projective rigidity
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matrix R̃(G, p̃) of (G, p̃) on the right by I|V| ⊗ TT to obtain the projective rigidity matrix of
(G, T( p̃)):

R̃(G, T( p̃)) =



i j
...

ij 0 . . . 0 T( p̃j) 0 . . . 0 T( p̃i) 0 . . . 0
...

i 0 . . . 0 T( p̃i) 0 . . . 0 0 0 . . . 0
...

j 0 . . . 0 0 0 . . . 0 T( p̃j) 0 . . . 0
...


,

where the entries in the matrix are considered as row vectors. Since this is a multiplication
by an invertible matrix, all critical properties of the matrix are unchanged: the rank;
the kernel (the space of projective infinitesimal motions); and the cokernel (the space of
equilibrium stresses). Note that if TT is a projective transformation which multiples p̃i on
the right, then the corresponding change of the momentum is captured by multiplying
Mi by (TT)−1 on the left, which geometrically produces a new hyperplane represented by
(TT)−1(Mi) through the transformed vertex T( p̃i).

3.4. Equivalence of Projective and Euclidean Rigidity Matrices

The next obvious question is how the projective rigidity matrix relates to the usual
Euclidean rigidity matrix. We can make the direct connection through some row reductions,
when the projective points are finite. (As mentioned earlier, we will deal with infinite
projective points in Section 6.2.) If the points of (G, p̃) are finite, with the final coordinate
p̃i,d+1 (or weight) of p̃i being equal to λi 6= 0 for each i, then we can use the procedure
described in Section 3.2 to transform the projective rigidity matrix of (G, p̃) to an equivalent
projective rigidity matrix with the property that p̃i,d+1 = 1 for each i. These row and
column operations do not change the rank of the matrix, or the size of either the kernel or
cokernel. In other words, we may transform any projective framework (G, p̃) with finite
points to a framework in the affine patch Ad of Pd (i.e., in the hyperplane {(x, 1)| x ∈ Rd}
of Rd+1) without changing its infinitesimal rigidity properties. (We will slightly abuse
notation and refer to Ad as affine space in what follows.) The resulting matrix is

R̃(G, p̃) =



i j
...

ij 0 . . . 0 p̃j 0 . . . 0 p̃i 0 . . . 0
...

i 0 . . . 0 p̃i 0 . . . 0 0 0 . . . 0
...

j 0 . . . 0 0 0 . . . 0 p̃j 0 . . . 0
...


.

This matrix can be further adjusted by subtracting the row for i from all rows for ij to
become the affine rigidity matrix of the framework (G, p̃). This is the (|E| + |V|) × (d +
1)|V|matrix
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R(G, p̃) =



i j
...

ij 0 . . . 0 ( p̃j − p̃i) 0 . . . 0 ( p̃i − p̃j) 0 . . . 0
...

i 0 . . . 0 p̃i 0 . . . 0 0 0 . . . 0
...

j 0 . . . 0 0 0 . . . 0 p̃j 0 . . . 0
...


.

This row reduction preserves the rank and the kernel (the space of infinitesimal motions).
The dimension of the cokernel (the space of equilibrium stresses) also remains unchanged
but the row dependencies, or equilibrium stresses, do take a different form. If one moves
the final column under each vertex to the right, the matrix takes the shape:



i j i j
... 0

. . . 0
ij 0 . . . 0 (pi − pj) 0 . . . 0 (pj − pi) 0 . . . 0 0 . . . 0

... 0
. . . 0

...
. . .

i 0 . . . 0 pi 0 . . . 0 0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
j 0 . . . 0 0 0 . . . 0 pj 0 . . . 0 0 . . . 1 0

...
. . .



.

Note that the bottom right corner is essentially a |V| × |V| identity matrix. This leaves
the standard Euclidean rigidity matrix in the upper left, with the vertices pi in Euclidean
d-space. These operations again preserve the dimensions of the kernel (the infinitesimal
motions) and the cokernel (the equilibrium stresses). The equivalence of the projective and
the Euclidean rigidity matrix follows.

From the Euclidean rigidity matrix with generic points, we have defined the (Eu-
clidean) generic d-dimensional rigidity matroid on the edges of Kn. When we extend to the
projective rigidity matrix, we have defined the projective generic d-dimensional rigidity
matroid on the edges of Kn. These matroids are isomorphic, with the same independent
sets, the same bases, and the same circuits.

4. Projective Metrics: Euclidean; Spherical; Hyperbolic; and Minkowski

As mathematicians following the work of Klein, we have learned that there are a
cluster of metrics which arise from the underlying projective space [11,66,67]. In this
literature, which separates metrics by how distances are measured and how angles are
measured, there are 9 identified plane metrics and 27 identified spatial metrics. The
metrics which are found most directly in applications of the projective geometry are the
Euclidean metric and the spherical metric. Physically, mechanical engineers also design and
build spherical metrics. See [68], for example, to view some examples. Less obvious, but
important in mechanical and civil engineering is the inclusion of ‘sliders’ and ‘slide joints’
which are now well understood as ‘points at infinity’ through transfers from frameworks
on the sphere (Section 6 and [42]).
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The other metrics we include here are the hyperbolic metric, and its companion metric
de Sitter space, and the Minkowskian pseudo-metric which can play the same role for the
hyperbolic metrics as the Euclidean metric does for the spherical metric [66,67]. Physicists
have encountered the hyperbolic space and the de Sitter space in studies of relativity; we
will not pursue that direction here. More surprising is that some work in computational
geometry on prescribing angles for convex polyhedra can be addressed through Andreev’s
theorem, which can be viewed as the polar of Cauchy’s theorem on the rigidity and
uniqueness of convex triangulated spheres, within the hyperbolic space (see Section 8.4
and [69]). With our broader geometric lens, we find there is an essentially complete transfer
of rigidity related results among these metrics [69–71]. Throughout the remainder of the
paper we will include some paragraphs mentioning these transfers when they are relevant
and not in the existing literature. At times, the transfers give additional insights to the
basic Euclidean and spherical theory, partly by suggesting additional questions to explore
and noticing that results are more general than we initially noticed.

There are many unsolved problems for more general geometric constraints which arise
in computer aided design (CAD) [72]. Some of these connect into the alternative metrics.
An example is the study of points, lines and circles in the plane, with the constraints
being the angle of intersection of the lines and circles, along with incidences of points
on the lines and circles. These constraints are isomorphic to the study of points and
distances in hyperbolic space, via stereographic projection to the Klein model of hyperbolic
geometry [73]. This transformation takes angles of intersection between pairs of circles
and lines to circles on the sphere with the same angles, where lines correspond to circles
through the north pole of the sphere. This pattern on the sphere can also be interpreted as
planes in the Klein model of hyperbolic 3-space H3. After polarity about the sphere, the
angles between planes become distances in hyperbolic space. This correspondence extends
to all dimensions [73]. We predict there are further unexplored applications, particularly
within the further interesting questions in the general theory of geometric constraints. As
mathematicians, we continue to search for connections, and common patterns that may
still be hidden when the wider geometry is explored. The applications continue to come
whenever there is sufficient depth in the geometric analysis.

4.1. Euclidean and Spherical Spaces

In the previous section we have seen that if all the projective points are finite, then the
projective rigidity matrix is equivalent to the affine and the Euclidean rigidity matrix. We
can follow the template of [71] to show that we can also transfer infinitesimal (or static)
rigidity between Euclidean space and spherical space. Note first that we may interpret
the affine rigidity matrix R(G, p̃) of the framework (G, p̃) in Ad as the rigidity matrix of
a framework in Rd+1 that has an extra vertex pinned at the origin, which is joined to
all the vertices of G. To see this, simply consider the final |V| rows of R(G, p̃) as rows
corresponding to edges from the new joint at the origin to the points p̃i. Since the new joint
at the origin is fixed, there are no additional columns for this joint in the Euclidean rigidity
matrix. We may then scale the points p̃i so that the resulting points p̃s

i all have unit length.
This gives the following matrix:
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Rs(G, p̃s) =



i j
...

ij 0 . . . 0 ( p̃s
j − p̃s

i ) 0 . . . 0 ( p̃s
i − p̃s

j ) 0 . . . 0
...

0i 0 . . . 0 p̃s
i 0 . . . 0 0 0 . . . 0

...
0j 0 . . . 0 0 0 . . . 0 p̃s

j 0 . . . 0
...


.

Rs(G, p̃s) is the rigidity matrix for the spherical framework (G, p̃s) where the row
vector corresponding to 0i,

(0 . . . 0 p̃s
i 0 . . . 0),

represents the constraint that the joint p̃s
i remains on the unit sphere Sd (or equivalently,

the velocity vector at this joint must be tangent to the sphere for any infinitesimal motion).
Thus, it is clear that affine (and hence also Euclidean) rigidity and spherical rigidity are
equivalent at the infinitesimal level.

Alternatively, we may see this correspondence as follows. The spherical distance
constraint which preserves the angle between the bars joining the origin with p̃i and p̃j (or
equivalently the arc length between p̃i and p̃j along the surface of the sphere) is given by
p̃i · p̃j = c, where c is a constant. The constraint that each point p̃i has distance 1 from the
origin is given by p̃i · p̃i = 1. By differentiating these constraints we obtain the linear system

p̃i · ˙̃pj + p̃j · ˙̃pi = 0

p̃i · ˙̃pi = 0.

The matrix corresponding to this linear system is the projective rigidity matrix R̃(G, p̃).
Moreover, the space of trivial infinitesimal motions is the space of infinitesimal rotations
in Rd+1, which has dimension (d+1

2 ). We can make the transfer of infinitesimal motions
between a framework in Ad and the corresponding framework in Sd explicit as follows
(see [42] for details). Let (G, p̃) be a framework in Ad, and let φ : Ad → Sd

>0 be defined by
φ( p̃i) =

p̃i
‖ p̃i‖ = p̃s

i . If ˙̃pi = ( ṗi, 0)T is the velocity vector of an infinitesimal motion of (G, p̃)
at p̃i, then the velocity vector of the infinitesimal motion of (G, p̃s) at p̃s

i is

ψp̃i ( ˙̃pi) =
˙̃pi − ( ˙̃pi · p̃i)e
‖ p̃i‖

,

where e = (0, . . . , 0, 1)T . See also Figure 9.

p̃i ˙̃pi

ψp̃i ( ˙̃pi)

-( ˙̃pi, p̃i)eφ( p̃i)

Figure 9. Transfer of infinitesimal motions between Ad and Sd
>0.

Historically, Pogorelov [74] did this transfer from the sphere to affine space. Note
that Figure 9, which illustrates this, can be interpreted as stretching and projecting the
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velocity vector from the sphere to affine space. The supplementary video: Transfer-
SphereEuclidean.mov illustrates this transfer over the upper hemisphere (see the link
in Supplementary Materials).

4.2. Minkowski Space

In the early 20th century Minkowski introduced the 4-dimensional real vector space
R4 equipped with the pseudo-metric ‖(x1, x2, x3, x4)‖2

M = x2
1 + x2

2 + x2
3 − x2

4 to model
spacetime [67,75]. This can be generalised in natural ways. For a fixed dimension d, we
define the Minkowski space Md

1 to be the d-dimensional real vector space Rd equipped
with the pseudo-metric ‖(x1, . . . , x2

d−1, x2
d)‖M = x2

1 + . . . + x2
d−1 − x2

d.

Example 4. Consider Minkowski 3-space M3
1 illustrated in cross-section in Figure 10. The

Minkowski (pseudo)-metric space is defined by

‖p1 − p2‖ = (x1 − x2)
2 + (y1 − y2)

2 − (z1 − z2)
2.

There is a cone z2 = x2 + y2 where the distances are zero (two lines in the cross-section). The
sphere of radius −1 is the hyperboloid z2x2 + y2− z2 = −1 (the upper hyperbola in cross section
in Figure 10). The sphere of radius 1 is the hyperboloid of one sheet z2x2 + y2 − z2 = 1 (the side
red hyperbola in cross section in Figure 10. The sphere of radius −1 models the hyperbolic plane,
and the sphere of radius 1 models the de Sitter plane.

Figure 10b shows some samples of perpendicular arrows along the ‘unit circles’ in the
Minkowski plane. While the projective motions will be the same (in this case weighted line segments
connecting to the centers of the circles), the perpendicular vectors depend on the location within the
space. Lines and planes go to lines and planes in Minkowski space, and we have the full space of
translations.

r=1

r=-1

(a) (b)

Figure 10. A section of Minkowski 3-space M3
1 with the plane y = 0 (a). A diagram of perpendiculars (b).

The video DesarguesMinkowski.mov linked in Supplementary Materials illustrates
the distortions of this metric in a model of the Minkowski plane.

Remark 2. There are further generalizations of the pseudo-metrics to have j coordinates with
negative signs Md

j . There will also be spheres of radius 1 and −1 in these more general Minkowski
spaces. The corresponding rigidity matrices can be accessed by appropriate multiplications of
columns by −1 with all rigidity properties – row dependencies, dimensions of the kernel, etc.–being
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preserved. Currently lacking applications of these, or accessible mathematical analyses and even
vocabularies, we will not discuss them further in this paper, but we are interested in what will
appear in the future. In addition we have not found a prior exploration of coning and projection in
Minkowski space. We have been exploring options that offer choices of signatures for the cone space,
and for the hyperplane screen for projection. What is clear is that all of these choices live within the
common world of projective spaces and metrics.

5. Coning and Projecting

Given a graph G = (V, E), the coned graph Gc of G is obtained by adding a new vertex
v0 to V and joining v0 to every vertex of V. For a framework (G, p) in Rd, any realisation
of the coned graph Gc in Rd+1 is called a coned framework of (G, p). Coning a framework
arose in engineering folklore [76] and is now a fundamental technique in rigidity theory.
In particular, coning a framework from Rd to Rd+1 preserves static and infinitesimal
rigidity and is hence a powerful tool for transferring results on the infinitesimal rigidity
of frameworks between dimensions (see [71], for example). The converse operation,
projecting from a cone-vertex to any hyperplane not containing the cone vertex, is also
significant as a tool. In particular, coning and projecting is a tool for confirming the
projective invariance of properties such as infinitesimal rigidity. Coning and projecting
applies in all projective metrics we have encountered. We will see in Section 11 and in our
companion paper [27] that coning is a widely applicable technique wherever the concepts
are projectively invariant.

In Section 4.1, we have shown that infinitesimal and static rigidity can be transferred
between Rd and Sd. We did this by first transferring the Euclidean framework to the affine
space Ad and then interpreting the final |V| rows of the affine rigidity matrix as rows
corresponding to edges joining a fixed cone point at the origin with all the other vertices.
The vertices of the graph (except for the pinned cone vertex) can then be pulled back to the
unit sphere without changing the rank of the matrix, resulting in the equivalent spherical
rigidity matrix.

Note that if we start with the spherical rigidity matrix of an infinitesimally rigid
spherical framework (modeled as a coned framework with fixed cone point) and then
release the cone point, then we add d + 1 columns to the matrix. This increases the di-
mension of the kernel by d + 1, so that the kernel of the extended matrix has dimension
(d+1

2 ) + (d + 1) = (d+2
2 ). This is the dimension of the space of trivial infinitesimal motions

in Rd+1, so this shows that the coning procedure transfers infinitesimal and static rigidity
between Rd and Rd+1. A simple, but often useful, observation here is that moving indi-
vidual vertices along their cone rays does not change the rank of the rigidity matrix, and
hence preserves infinitesimal and static rigidity. See Figure 11 for an illustration.

Figure 11. Coning and moving vertices radially in and out on the cone rays does not change
infinitesimal rigidity.

5.1. Coning a Framework from Pd to Pd+1

In the following, we consider coning in projective space. Given a framework (G, p̃)
in projective space Pd, we add a new cone vertex placed at Ô = (0, . . . , 0, 1) in Pd+1 to
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obtain the corresponding coned framework (Gc, ( p̂, Ô)) in Pd+1. We have the following
basic result.

Theorem 2. (Projective Coning) Given a projective framework (G, p̃) in Pd, the coned framework
(Gc, ( p̂, Ô)) in Pd+1 has an isomorphic space of equilibrium stresses, so (G, p̃) is statically rigid if
and only if the framework (Gc, ( p̂, Ô)) in Pd+1 is statically rigid.

Conversely, given a cone framework (Gc, ( p̂, Ô)) in Pd+1, the projection from the cone vertex
into any hyperplane H gives a framework (G, p̃) in H ≡ Pd with an isomorphic space of self
stresses, so (Gc, ( p̂, Ô)) is statically rigid in Pd+1 if and only if (G, p̃) is statically rigid in Pd.
Finally, if we pull or push vertices along the rays from the cone to the original vertices, replacing p̂i
by p̂i + αÔ, α 6= 0, static rigidity is preserved.

Proof. Recall that the projective rigidity matrix of (G, p̃) is the (|E|+ |V|)× (d + 1)|V|
matrix

R̃(G, p̃) =



i j
...

ij 0 . . . 0 p̃j 0 . . . 0 p̃i 0 . . . 0
...

i 0 . . . 0 p̃i 0 . . . 0 0 0 . . . 0
...

j 0 . . . 0 0 0 . . . 0 p̃j 0 . . . 0
...


.

We can fill out this matrix with the columns for an added cone vertex Ô in Pd+1 connected
to all existing vertices. With Ô = (0, . . . , 0, 1), we create the following matrix:

p̃1 . . . p̃|V| p̂1
d+2 . . . ˆp|V|

d+2 Ô



e1
[R̃(G, p̃)] 0 0...

e|E|
...

0 [I|V|] p̂i{Ô, p̂i}
...
{Ô} 0 0 Ô

.

Now consider an equilibrium stress on the original framework. With added coefficients of
0 on all the added rows, it is still an equilibrium stress on the coned framework, that is,
a row dependence for the extended matrix. Consider an equilibrium stress on the coned
framework.

1. Looking at the columns for p̃1, . . . , p̃|V| it must be an equilibrium stress on the original
framework.

2. Looking at the columns for p̂1
d+2, . . . , ˆp|V|

d+2 the coefficients on the bars {Ô, p̂i}must
all be zero.

3. Looking at the residual column for Ô, the coefficient on the row {Ô}must also be 0.

So we conclude that the equilibrium stress is also an equilibrium stress of the original
framework. If we pull and push vertices along the rays from the cone to the original
vertices, replacing p̂i by p̂i + αÔ, the rank of the matrix is preserved. We can also apply a
projective transformation to the cone, placing Ô anywhere off the original hyperplane in
Pd+1 and preserving the original framework by keeping the original Pd fixed. To complete
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the static rigidity statements, consider how coning changes the counts of edges and vertices.
We have

|E| = d|V| −
(

d + 1
2

)
if and only if

|Ec| = |E|+ |V| = (d + 1)|V|+ (d + 1)−
[(

d + 1
2

)
+ (d + 1)

]
= (d + 1)|Vc| −

(
d + 2

2

)
.

Thus, a framework has full rank for static rigidity in Pd if and only if the coned framework
has full rank for static rigidity in Pd+1.

Note that this coning includes projective points at infinity as vertices of the original
framework, so this is an expected extension to include sliders as in [42] and Section 6. We
can also projectively place the cone point on the hyperplane at infinity in Pd+1, making all
the cone connections from the original vertices into sliders. In this form, the equivalence
of the equilibrium stresses is even more obvious: simply drop the last coordinate of any
applied loads and resolving vectors.

For infinitesimal motions or for projective momenta, the only change under coning is
that there are more trivial motions—essentially those for the cone point. We capture this
change in the following corollary.

Corollary 1. Let G = (V, E). Consider a framework (G, p) in projective space Pd and the coned
framework (Gc, ( p̂, Ô)) in Pd+1. With the cone point fixed, the two frameworks have isomorphic
spaces of infinitesimal motions.

Proof. Delete the last columns for the cone vertex (pinning it down in the vocabulary of
the later sections) from the rigidity matrix of (Gc, ( p̂, Ô)). The new matrix is obtained from
the rigidity matrix for (G, p) by adding |V| columns and |V| linearly independent rows. It
is immediate that the kernels will be isomorphic.

As a further modest corollary to this proof, we also see that any stress on a framework
in Pd+1 projects to a stress in Pd. This holds for the projection from any point in Pd+1,
including from an existing vertex, in which case the edges through this vertex are erased
from the graph.

Geometrically, we can transfer the momenta in (G, p) to momenta in a general cone
(Gc, ( p̂, p0)) by simply joining the original momenta to a multiple of the cone point αp0:
M(a) goes to M(a) ∨ αp0. Recall that, if the joints span the projective space Pd, then an
infinitesimal motion is non-trivial if and only if there is a pair of joints with M(a) ∨ c +
M(c) ∨ a 6= 0. Note that for a plane momentum M(a), M(a) ∨ c is the oriented area of
the triangle with the momentum M(a) as the base and c as the third vertex (Figure 12b).
When the momenta are expanded towards the cone point, we still have M(a) ∨ c ∨ αp0 +
M(c) ∨ a ∨ αp0 6= 0, and the momenta of the cone, fixing p0, represents a non-trivial
infinitesimal motion.

Conversely, momenta for the cone framework fixing p0 can be intersected by a plane
containing the vertices to give momenta in that subspace, which is non-trivial if and only if
the original momenta represented a non-trivial motion.
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M(c)

a
d
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M(a)

M(b)

M(d)
M(c)
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b

d
c

M(a)V(αp0)

M(b)V(αp0)

M(d)V(αp0)

M(a)

M(b)

M(d)

M(c)

M(c)V(αp0)

p0

a
b

dc

(a) (b) (c)

Figure 12. Plane momenta (a) are geometrically confirmed as a non-trivial motion when the areas of triangles M(a) ∨ c
and M(c) ∨ a are not equal and of opposite orientation (b). When the plane framework is coned to p0, the plane momenta
expand to 3D quadrilaterals in planes through the cone point (c).

Example 5. Consider a 1-story building with a vertical post under each joint on the (almost flat)
roof [76] (see Figure 13a). This can be viewed as a cone from a point at infinity on the lines of the
posts (b) which is still projectively a cone (c). This means that the rigidity of the roof (whether it is
plane or not) relative to the cone point depends only on the projection (d). To make this building
rigidly attached to the ground, we need to add 3 further braces in the walls, preventing motions
around the cone vertex, which would be translations. This matches the analysis in Section 6 where
these constraints to infinity become sliders. It is possible to extend this coning analysis to multi-story
buildings (a stacking of cones) [76].

(a) (b) (c) (d)

Figure 13. A 1-story building is essentially a cone (a–c). The rigidity of the roof depends on the projection (d) in the
vertical direction.

5.2. Coning and Projection for Sd, Md, and Hd

We have given the full theory of coning in projective form. As such it is just a matter
of interpretation to observe that coning will preserve all the static and infinitesimal rigidity
properties of a framework in any of the projective metrics.

For example, the projective proof can be directly reinterpreted to prove the full transfer
of infinitesimal and static properties for coning from Sd to Sd+1. As we have seen in the
previous section, if finite projective points are pulled back (re-weighted) to have length 1,
then the affine rigidity matrix becomes the spherical rigidity matrix, and the lower rows
for the vertices i can be geometrically interpreted as rows for cone-rays from a fixed origin
to the points p̃s

i .
These results can be extended in a straightforward fashion to the Minkowski spaces

and their corresponding ‘spheres’ of radius −1 and 1 (hyperbolic space and de Sitter
space [71]). For Minkowski space Md

1 we can just multiply the r relevant columns for
vertices in the matrix by −1. The signature of the added dimension is optional, so we have
coning from Md

r to Md+1
r and to Md+1

r+1 . With this coning, applied within Minkowski space,
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we can now complete the details of taking spheres of radius −1 to obtain the hyperbolic
spaces and the spheres of radius 1 to get de Sitter space. We can also project down to an
arbitrary hyperplane which does not contain the cone point. In general this will go to a
lower dimensional Minkowski space. It is possible to choose a hyperplane which has a
Euclidean metric so that the image is Euclidean but not Minkowskian. It is also possible to
cone up from Euclidean space with the added dimension having a negative signature so
the cone lives in a Minkowskian metric.

We can cone any framework up from Md
1 to Md+1

1 , with any cone vertex, in the same
projective way as above. For this geometric dimension, we assume the added dimension
has signature +1 in the metric. (see Remark 2 for other possibilities.) We can also project
down from a cone point in Md+1

1 to a hyperplane. At one extreme, the hyperplane has
only the coordinates with signature +1 and we end up in the Euclidean space Ed. At
the other extreme, the hyperplane contains the subspace with signature −1, and we end
up with Md

1. For the hyperbolic metric, and the companion de Sitter metric, one may
mimic the transformation from the Euclidean space to the spherical space-but within the
Minkowskian metric.

To transfer from the affine rigidity matrix to the rigidity matrix for Md
1, we simply

multiply the d-th column of each vertex corresponding to the points of the framework
by −1 [71]. All key matrix properties are unchanged, so static and infinitesimal rigidity
properties are transferred from Euclidean space to Md

1. Note that the full space of transla-
tions of Euclidean space transfers to translations in Md

1. Projective centers of motion and
momenta for vertices will also transfer. The vectors illustrated in Figure 10b are tangent
to the hyperbolas (spheres of radius 1 and −1 in the metric) and perpendicular (in the
Minkowskian metric) to the vectors pointing to the central point (0, 0, 0).

6. Joints at Infinity and Sliders

To date, we have focussed on frameworks in Pd where all the joints are viewed as
finite points, i.e., projective points with last coordinate 6= 0. All the figures, examples, and
vocabulary spoke of points, lines, planes in the finite Euclidean space. In this section, we
will refocus our gaze on the whole of the projective space and notice that projective points
“at infinity", i.e., with last coordinate = 0, also fit naturally into this analysis. Rather than
wait for a projective transformation to bring points at infinity into view, we show here that
they represent crucial concepts in understanding examples and methods in mechanical
and civil engineering. When people were working with projective centers of motion it was
immediate to recognize that a translation was a “rotation about a center at infinity” [53]. In
the barycentric coordinates for points in the plane projective geometers recognized that
it was valuable to include points at infinity, as intersections of parallel lines when the
implied points had weights of 0. In simplifying projective theorems such as Desargue’s
Theorem which appears below (Figure 20), it was valuable to include three parallel lines
as meeting at a single point (perspective from a point), or two triangles with corresponding
parallel edges as creating a perspective “line at infinity” rather than break a single simple
projective theorem into multiple cases of “or . . .” whenever a finite point became infinite.
The algebra and representations we have been developing sustain, and even encourage,
a more inclusive view. Figure 14 illustrates a common example of a slider for opening
a house window [77]. Some points are constrained into a groove and ‘slide’ or translate
along the groove. This will be represented below as equivalent to a fixed distance from the
projective point at infinity on the normal of the groove.
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Figure 14. A standard window mechanism uses a slider to open (from [77]).

We will return to this example as a slider framework below. We first give a simple
example of a slider framework with graphic notation that we will use in the next few
sections.

Example 6. Consider, for example, two rigid bodies in the Euclidean plane that are joined along a
groove (Figure 15a), so that the only possible relative motion between the bodies is a translation
along the vector t = (t1, t2) (Figure 15b). As we have seen in Section 3.2, this translation can be
represented in the projective plane as a rotation about the infinite point (−t2, t1, 0).

Conversely, if a rigid body in the plane is joined to another fixed body in the plane by a joint at
infinity (c1, c2, 0), then the only possible motion allowed for each point p = (p1, p2, p3) on the body
is α(c1, c2, 0) ∨ (p1, p2, p3) = α(c2 p3,−c1 p3, c1 p2 − c2 p1). Thus, the corresponding Euclidean
velocity is the translation α(c2,−c1). Figure 15c shows the framework from (a) after a projective
transformation in which the slider ` becomes a rotational joint `. The situation is similar in 3-space.
We refer the reader to [28,29,42,53], for example, for a more detailed discussion of joints at infinity
and the slide joints from engineering, both in the plane and in 3-space.

l
l

l

l

(a) (b) (c)

Figure 15. A slider joining two bodies (a,b). After a projective transformation, this is two bodies in the plane, joined by a
single vertex (c). The translation becomes a rotation as indicated in (c).

In Section 3.4, we have seen that for frameworks with only finite projective points,
we can transfer infinitesimal (or static) rigidity from projective to affine (or equivalently,
Euclidean) space and then from affine to spherical space (or more precisely, the open
upper hemisphere) via central projection, and vice versa. This transfer can be extended
to include infinite projective points by replacing bar–joint frameworks with the more
general point-hyperplane frameworks and by allowing points of the spherical frameworks
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to lie on the equator. Under central projection points on the equator map to points at
infinity in the extended affine space, which in turn may be considered as hyperplanes of a
point-hyperplane framework in affine (or equivalently Euclidean) space.

In the Euclidean plane, a slide joint can be modeled by a distance constraint between
a point and a line. A framework in R2 consisting of points and lines that are connected
by point-point and point-line distance constraints, as well as line-line angle constraints, is
known as a point-line framework [43]. The analogous structure in higher dimensions is called
a point-hyperplane framework [42]. Moreover, using elementary operations on spherical
frameworks, further transfers of infinitesimal rigidity can be made between spherical
frameworks with an assigned set X of points on the equator and bar–joint frameworks
with the vertices in X collinear (both on a finite line and on the line at infinity) [42,78]. We
summarise the key results below.

While giving an emphasis here to sliders viewed as points at infinity, there are mul-
tiple other strands of mathematical and applied work that connect to sliders, and points
constrained to follow lines or plane [43,46,79]. See below for stronger connections.

6.1. Point-Hyperplane Frameworks

A point-hyperplane framework in Rd is a triple (G, p, `) where the vertex set of the
graph G is partitioned into VP and VL representing points and hyperplanes, respectively.
The edge set E of G is then partitioned into EPP, EPL, and ELL representing point-point
distance constraints, point-hyperplane distance constraints, and hyperplane-hyperplane
angle constraints, respectively. The configurations for the points and hyperplanes are given
by p : VP → Rd, and ` = (a, r) : VL → Sd−1 ×R, where the hyperplane associated with
each j ∈ VL is defined by {x ∈ Rd : 〈x, aj〉+ rj = 0}. We assume here that the points p(VP)

and hyperplanes `(VL) affinely span Rd.
By taking the derivatives of the constraint equations for (G, p, `), we obtain the

following linear system of first order constraints (see [42] for details):

〈pi − pj, ṗi − ṗj〉 = 0 (ij ∈ EPP) (6)

〈pi, ȧj〉+ 〈 ṗi, aj〉+ ṙj = 0 (ij ∈ EPL) (7)

〈ai, ȧj〉+ 〈ȧi, aj〉 = 0 (ij ∈ ELL) (8)

〈ai, ȧi〉 = 0 (i ∈ VL). (9)

where the constraints in (9) arise from the fact that ai ∈ Sd−1 for each i ∈ VL. An infinitesimal
motion of (G, p, `) is a map ( ṗ, ˙̀), where ˙̀ = (ȧ, ṙ) satisfies this system of linear constraints,
and (G, p, `) is infinitesimally rigid if the dimension of the space of its infinitesimal motions
is equal to (d+1

2 ), the dimension of the space of Euclidean motions in Rd.
In the following section, we will see that all of the transfer from the sphere through

to the slider representation preserves the infinitesimal rigidity properties as well as inde-
pendence and dependence of the constraints (see also [42]). The converse translation also
applies. All of the combinatorial counts and inequalities for rigidity and independence
hold, with |V| = |VP|+ |VL| and |E| = |EPP|+ |EPL|+ |ELL|.

6.2. Point-Hyperplane Frameworks and Projections from Spherical Frameworks

Let (G, p, `) be a point-hyperplane framework in Rd. Then we may consider this
framework as a point-hyperplane framework (G, p̃, `) in the affine space Ad by tak-
ing p̃T

i = (pT
i , 1) for all i ∈ VP. So (G, p̃, `) is the point-hyperplane framework with

G = (VP ∪VL, E), p̃ : VP → Ad and ` = (a, r) : VL → Sd−1 ×R.
Using a central projection, we may then transfer (G, p̃, `) to a spherical framework

(G, φ ◦ ( p̃, `)) in Sd
≥0 (the upper hemisphere including the equator) by defining φ( p̃) = p̃

‖ p̃‖
for each p̃i with i ∈ VP, and by regarding each hyperplane `i = (ai, ri) with i ∈ VL as the
point (ai, 0) on the equator of Sd. It can then be shown (as detailed in [42]) that there exists
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an isomorphism between the space of infinitesimal motions of (G, p̃, `) and (G, φ ◦ ( p̃, `)).
Thus, (G, p̃, `) is infinitesimally rigid if and only if (G, φ ◦ ( p̃, `)) is infinitesimally rigid.

Example 7. We illustrate this transfer of infinitesimal rigidity in Figure 16. By a simple count,
the framework is flexible. Since the placement of the sliders in the plane does not matter, up to
normals, the motion is illustrated in Figure 16c, with two positions illustrated with the same length
bar sliding along the lines. This motion illustrates the classic example of a ladder sliding along a
wall and the floor.

v2v1

u1
u2

u1

u2

v1

v2

u2'

u1'

(a) (b) (c)

Figure 16. A point-line framework in R2 (a) and the corresponding spherical bar–joint framework obtained by coning up
(b). The points on the equator correspond to the lines of the point-line framework. Figure (c) has brought the sliders to the
end points of the bar in (a) with a visible motion taking u1, u2 to u′1, u′2.

Example 8. Consider the projective framework in Figure 17 with a collinear triangle (a). While
it satisfies the count |E| = 2|V| − 3, the dependence in the collinear triangle guarantees an
infinitesimal motion. When the collinear triangle is on the line at infinity—three sliders with fixed
angles (b)–the third angle is dependent and can be omitted. The infinitesimal motion becomes a
finite motion with the interior triangle rotating while the slider lines spread and contract (c), (d).
This is illustrated in the video SlidersInfinity.mov linked in Supplementary Materials.
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Figure 17. A Desargues framework with a collinear triangle (a) must have a non-trivial infinitesimal motion. When realised
with sliders (the triangle of lines with fixed angles) as in (b) the three angles are dependent, so one can be omitted (c,d).
There are additional realisations (c,d) arising from a finite motion.

Given a bar–joint framework (G, q) on the sphere Sd, we may rotate the whole frame-
work in Sd so that all points are moved off the equator, and then invert all points that lie on
the lower hemisphere to obtain a spherical framework (G, q′) that lies on the strict upper
hemisphere Sd

>0. This framework may now be projected up (using the inverse of the map φ)
to a bar–joint framework (G, p̃) in the affine space Ad (or equivalently, the Euclidean space
Rd). All of these operations preserve infinitesimal rigidity. Moreover, points of (G, q) lie on
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a hyperplane in Sd if and only if the corresponding points of (G, p̃) lie on a hyperplane in
Ad. In summary, we have the following result.

Theorem 3 ([42]). Let G = (V, E) be a graph and X ⊆ V. Then the following are equivalent:

(a) G can be realised as an infinitesimally rigid point-hyperplane framework in Rd such that each
vertex in X is realised as a hyperplane and each vertex in V \ X is realised as a point.

(b) G can be realised on the sphere Sd with each vertex in X on the equator and each vertex in
V \ X is realised in the open upper hemisphere.

(c) G can be realised as an infinitesimally rigid bar–joint framework in Rd such that the points
assigned to X lie on a hyperplane.

Using the results in [43] this provides the following combinatorial characterisation of
graphs which can be realised as infinitesimally rigid bar–joint frameworks in the Euclidean
plane with a given set of collinear points. Given a graph G = (V, E), X ⊆ V and A ⊆ E, let
νX(A) denote the number of vertices of X which are incident to edges in A.

Corollary 2 ([42]). Let G = (V, E) be a graph and X ⊆ V. Then the following are equivalent:

(a) G can be realised as an infinitesimally rigid bar–joint framework in R2 such that the points
assigned to X lie on a line.

(b) G can be realised as an infinitesimally rigid point-line framework in R2 such that each vertex
in X is realised as a line and each vertex in V \ X is realised as a point.

(c) G contains a spanning subgraph G′ = (V, E′) such that E′ = 2|V| − 3 and, for all ∅ 6=
A ⊆ E′ and all partitions {A1, . . . , As} of A,

|A| ≤
s

∑
i=1

(2νV\X(Ai) + νX(Ai)− 2) + νX(A)− 1.

The combinatorial condition in (c) is more complicated than a standard vertex-edge
count. However in [43], it is shown that the condition can be efficiently checked by a
combination of standard rigidity algorithms and matroid union. It is also worth noting that
currently there is no known recursive construction of the family of graphs satisfying (c).

Example 9. We return to the sliders of the window mechanism in Figure 18. As displayed in
(a) we have 6 regular vertices, one auxiliary vertex (with dotted incident edges) to hold the two
collinear edges collinear, and the red line of the slider, making |V| = 8. We can count |E| = 12
with 6 regular edges, 3 auxiliary edges, and 3 edges attaching vertices to the slider ‘vertex’. With
|E| = 12 < 2× 8− 3 the structure has a non-trivial infinitesimal motion, which is finite unless
there is an additional dependence.

In Figure 18c we have shifted the line of the slider to pass through the vertices which are
attached to the slider in the original mechanism. A careful inspection of the constraint equations
above and the corresponding rigidity matrix detects that there are no occurrences of rj, just its
derivative ṙj. We can replace the line of the slider by any parallel line (keeping the same normal,
which does occur) with no change in solution space. In general, we can choose a hyperplane to be
anywhere within a parallel class determined by its normal. This holds in all dimensions and in some
figures it may be convenient to place all sliders as lines through the origin.

6.3. Sliders: Free and Pinned

There are variations in both practice, and in the mathematical theory, for how con-
strained the sliders are [42]:

1. free sliders, where the line can translate freely without changing the constraint, and, at
least infinitesimally, rotate;

2. fixed normal or fixed angle sliders, where the angles between the lines are constrained
(these constraints correspond to edges along the line at infinity);
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3. fixed intercept sliders, where any line can rotate freely about a fixed point, but not
translate;

4. fixed or pinned sliders, where the lines cannot translate or (infinitesimally) rotate to
change the normal.

(a) (b) (c)

Figure 18. A point-line framework version of the window slider mechanism (a,b) showing two positions of a finite motion.
In (c), the line for the slider is shifted to pass through the vertices as it is in the original mechanism.

All of these have geometric representations in terms of constraints for the points on
the equator in the spherical model or equivalent constraints ‘at infinity’ (see Figure 19.) If
all lines are of one of these types, they also generate modified criteria for independence. See
Theorems 4.2 and 4.3 in [42]. The simplest form is when all the sliders are fixed or pinned.
It turns out that this case, with all the vertices along the line at infinity (or projectively any
other line), is also covered by the analysis of Assur graphs in Corollary 5. In the rigidity
matrix for the point-line framework, this will drop all the columns for the lines to obtain a
matrix for a realisation of a pinned graph (i.e., a graph whose vertex set is partitioned into
‘pinned’ and ‘inner’ vertices and whose edge set has the property that each edge is incident
to at at least one inner vertex) as presented in Section 7.7. In a fixed slider framework, there
are no edges connecting pinned vertices in VL.

v1

v2
v3

v4
v5

v6
v7
v8

v0

v1

v2
v3

v4
v5

v6
v7
v8

u1

u2

Figure 19. A constrained point-line graph G with eight constrained line vertices: v1 has a fixed
normal; v2 and v3 are fixed; {v4, v5} have a fixed center of rotation and {v6, v7, v8} have a different
fixed center of rotation. We transform G to an unconstrained point-line graph G′ by adding the rigid
graph K with two point-vertices, u1 and u2, and one line-vertex v0 [42].

Theorem 4 (Fixed Sliders). Let G = (VP ∪VL, E). Given a fixed slider framework (G, p, `) in
R2, with all vertices of VL realised as slider lines through the origin with at least two different slopes
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and generic positions of unpinned vertices VP, the resulting pinned slider framework is isostatic if
and only if G satisfies the Pinned Laman Conditions:

1. |E| = 2|VP| and
2. for all subgraphs G(V′p ∪V′L, E′) the following conditions hold:

(i) |E′| ≤ 2|V′P| if |V′L| ≥ 2,
(ii) |E′| ≤ 2|V′P| − 1 if |V′L| = 1, and
(iii) |E′| ≤ 2|V′P| − 3 if V′L = ∅ and |E′| > 0.

These Pinned Laman Conditions are basic counting criteria which are easily checked
by the pebble game [16,17]. This result is a rewording in terms of sliders of Corollary 5
(Section 7.7). It was originally obtained in the context of pinned Assur graphs in mechanical
engineering [80].

6.4. Linear Constraints as Sliders

In practical applications one is often interested in bar–joint structures with additional
boundary or grounding constraints. A natural model of such structures is provided by
linearly constrained frameworks. Such a framework is based on a looped simple graph
G = (V, E, L) with non-loop edge set E and loop set L. The framework is a triple (G, p, q)
where p assigns positions to the vertices as usual and q prescribes a normal vector to
some hyperplane at the location p(v) of the vertex incident to the loop. The hyperplane is
considered fixed and the vertex is constrained to move within the hyperplane. One may
think of a linear constraint as a distance constraint to a fixed point at infinity and hence as
a special type of fixed slider constraint where the point is forced to lie on the slider. Care is
needed with this identification since the slider graph has an additional vertex at infinity,
and an edge incident to that vertex in place of each loop in the linearly constrained graph.

In the case where the linear constraints are generic, a 2-dimensional analogue of
Laman’s theorem (closely analogous to Theorem 4) was proved by Streinu and Theran [46]
and this has been extended to all dimensions, under additional hypotheses on the di-
mension of the affine subspaces each vertex is restricted to, first in [81] and then in [79].
Moreover if one restricts to body-bar frameworks or to 2-dimensions but allows non-
generic linear constraints, as in Theorem 4, then combinatorial characterisations are also
known [82]. In the context of non-generic linear constraints in higher dimensions, frame-
works restricted to move on an algebraic variety V become natural. There the constraint to
V is a constraint to move in the tangent hyperplane to V through p(v). The case of smooth
2-dimensional varieties has been studied. We have already described the case of the sphere
in detail from a different viewpoint. For other surfaces, such as the cylinder, see [45,83] for
rigidity and [84] for global rigidity.

6.5. Further Extensions to Include Infinity

The transfer results described above immediately extend to all of the variants of
infinitesimal rigidity and static rigidity for related structures, such as body-bar, body hinge,
and even polars of these structures. Earlier work by Crapo and Whiteley, such as [53],
included sliders as hinges along lines at infinity. This follows from the general projective
representations, as well as from realisations of bodies as bar–joint frameworks, so that the
specific results cited above apply in detail.

The interest is heightened by the observation that the behaviour associated with points
at infinity or sliders is exhibited by real structures that mechanical engineers and designers
study and play with, as the window mechanism illustrates. Sliders representing points
at infinity do transfer to Minkowski space (all variations Md

j ), which have the full space
of translations. Sliders do not appear to transfer to hyperbolic space as there do not exist
clear spaces of translations to use for sliders, although there are points at infinity in most
hyperbolic models.

We may extend the specific results for collinear vertices on the sphere and plane
to Minkowski Space. This is an immediate consequence of the method used to transfer
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infinitesimal rigidity from Euclidean space to Minkowski space. The original work already
included the spherical metric and did not rely on any genericity assumption. The results
for finite collinear vertices also transfer to hyperbolic and de Sitter space.

We observe that coning of collinear vertices in the plane goes to coplanar points
in R3. Pulling and pushing creates a more general set of coplanar points in the cone
framework. Thus, we have an initial result for coplanar points in the cone framework. It
would be interesting to establish conditions for frameworks with coplanar vertices to be
infinitesimally rigid in R3. It would also be interesting to have criteria for larger partitions
of points, each component of which is collinear. In the special case where the collinear
points are part of a plane-rigid body, we will return to this question in Section 10.4.

There are a number of examples, such as Figure 17, where infinitesimal motions of
the dependent framework extend to finite motions when realised as a slider framework.
We do not (yet) have a full conjecture for when sliders allow for an infinitesimal motion
to extend in this way. Of course, this should be affinely invariant, but not projectively
invariant. However we conjecture these types of examples are widespread and worthy of
exploration.

7. Pure Conditions

Given a generic isostatic framework (G, p) in Pd there is an algebraic variety of
special positions for p which reduce the rank of the rigidity matrix, allowing a non-trivial
infinitesimal motion, and a non-zero equilibrium stress. It is immediate that these special
positions can be determined by the determinants of the maximal square submatrices of
the rigidity matrix, formed by deleting (d+1

2 ) columns chosen with a modicum of care. In
Section 2, this observation was the basis for defining generic configurations. In this section,
we will refine the observation. The surprise is that, up to trivial factors from which columns
were knocked out, there is a single non-zero polynomial which generates the variety [85].
This section will focus on those polynomial pure conditions.

7.1. Bracket Ring

To present the algebra of special conditions we will use a subset of the Grassmann–
Cayley algebra—the bracket ring developed explicitly by Neil White [85,86]. This is the
classical language of projective geometric invariants, which is the most suitable for efficient
expression and manipulation of the determinants of the rigidity matrices. This language has
been employed in the projective theory of frameworks [28,29,58,85] and will be embedded
in much of our geometric analysis throughout this paper.

Informally, the key insight is that the pattern of the bracket of d + 1 points in projective
d-space Pd, [a0, a1, . . . , ad] = [a0a1 . . . ad] represents the pattern of the determinant of
a (d + 1) × (d + 1) matrix of the projective coordinates of a0, a1, . . . , ad in Pd, and their
products. Geometrically, the bracket [a0, a1, . . . , ad] represents the normalised volume of
the d-simplex with d + 1 vertices a0, a1, . . . , ad, a volume which is equivalent to a (d + 1)×
(d + 1) determinant using the affine coordinates of the points as rows of a square matrix.

Formally, working with variable points, a0, a1, . . . , ad, an element of the bracket ring
B is a bracket [a0, a1, . . . , ad] with entries as variables. The bracket ring is formed by all
such brackets, their (commutative) products and finite sums. All sums and products are
homogenous in the degree of the brackets, with real coefficients. The brackets satisfy the
following very well-known relations of determinants, called syzygies.

1. Antisymmetry: [x0, x1, . . . , xj, . . . , xi, . . . , xd] = −[x0, x1, . . . , xj, . . . , xi, . . . , xd] for j > i.
Applied repeatedly, we have

[x0, x1, . . . , xd] = sign(σ)[xσ(0), xσ(1), . . . , xσ(d)]

for any permutation σ of {0, 1, . . . , d}. When we add the requirement that the brack-
ets are linear in the entries, then [x0, x1, . . . , xd] = 0 if the vectors are projectively
dependent.
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2. Basis Exchange:

[x0, x1, . . . , xd][y0, y1, . . . , yd] =
d

∑
i=0

[yi, x1, . . . , xd][y0, y1, . . . , yi−1, x0, yi+1, . . . , yd].

The flavour of basis exchange is that if {y0, y1, . . . , yd} is a standard basis, then this is
the Laplace decomposition of the determinant with [yi, x1, . . . , xd] as the i-th minor
and [y0, y1, . . . , yi−1, x0, yi+1, . . . , yd] as the i-th coordinate of x0. (Note that for i = 0,
the first term of the sum on the right hand side is [y0, x1, . . . , xd][x0, y1, . . . , yd].)

The commutative ring B, with these syzygies imposed, is clearly an integral domain.
We observe that the generic bracket ring B is a unique factorization domain [85]. We can
evaluate a bracket polynomial at a realization p ∈ P by substituting the coordinates for the
variable points and computing the bracket as a determinant.

7.2. Small Examples

The following two examples illustrate pure conditions as a single projective polyno-
mial that captures when a generically isostatic graph has an equilibrium stress or equiva-
lently a non-trivial infinitesimal motion . These, and many other examples, are explored at
length in [28,29], using both projective kinematics and projective stresses, in P2 and P3.

Example 10. Consider the graph in Figure 20a. With 6 vertices and 9 edges, this graph is
generically isostatic in P2 (recall the 3Tree2 partition in Figure 4a). If either of the triangles is
collinear, [a1a2a3] = 0 or [b1b2b3] = 0, then there is an equilibrium stress, and these terms are
factors of the pure condition. If neither triangle is collinear, then consider the remaining 3 edges
a1b1, a2b2 and a3b3. For simplicity, assume that a1, a2, a3 have 0 as their momenta. If there is a non-
trivial infinitesimal motion, the momentum for b1 must be a multiple of a1b1 and then the relative
center c of this motion must lie on this line. Similarly, the relative center must lie on a2b2, and
a3b3, so the three bars must be concurrent, and the two triangles are perspective from c [61]. This
concurrence can be written, using Grassmann–Cayley algebra, as the simple polynomial equation,

[a1b1a3][a2b2b3]− [a1b1b3][a2b2a3] = 0.

If we consider the condition for an equilibrium stress, with neither triangle collinear, the
equilibrium stress ω1a1b1 + ω2a2b2 + ω3a3b3 onto the triangle b1, b2, b3 requires that these three
forces are concurrent, so the three bars are concurrent. We can capture all these conditions in the
product of the conditions (or in the logic of the separate conditions):

[a1a2a3][b1b2b3]([a1b1a3][a2b2b3]− [a1b1b3][a2b2a3]) = 0.

This condition for a non-trivial motion is folklore within the older rigidity community [28,29], and
we will return to it several more times in this paper. This figure is also a cycle of three quadrilaterals—
the case n = 3 already described above in Example 2—giving the two triangles being perspective
from a line (Figure 20b).

The example is also intimately connected to Desargues Theorem of projective geometry, which
says that the two triangles being perspective from a point, or one of the two triangles being collinear
is equivalent to the two triangles being perspective from a line: corresponding edges intersect at
points along a line [61]. Some classic statics textbooks for engineers include appendices which
give static proofs of these types of projective geometry theorems [87]. Statics has a long history in
projective geometric reasoning, including the balance of weighted points in Möbius barycentric
coordinates and classical proofs of Ceva’s theorem.
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Figure 20. A Desargues configuration with non-collinear triangles is infinitesimally flexible in the
plane if and only if the three joining edges are concurrent at a relative center of motion c for the two
triangles (a), or equivalently, by Desargues Theorem, if and only if the two triangles are perspective
from a line (b). The three collinear points on the line of perspective are the relative centers of motion
of the pairs of opposite edges aibi, ajbj connecting the triangles.

Example 11. Consider the graph G of an octahedron, depicted in Figure 21, which is generically
isostatic in R3 (see also Theorem 14). A theorem of Bennett [28,29,88] shows that this has an
infinitesimal motion if and only if the four alternate faces (in yellow in (a)) meet in a single point.
This geometry can be expressed by a single projective polynomial which will be named the pure
condition in Section 7.4 below. The polynomial that expresses the concurrence of the planes is:

[a1a2b3b1][a2a3b1b2][a3a1b2b3] + [a1a2b3b2][a2a3b1b3][a3a1b2b1].

This requires that the octahedron must be non-convex and hence is far from the results of Cauchy
for triangulated convex polyedra (Section 8.4). It is a theorem of projective geometry that if one
set of four opposite faces meet in a single point then the other four faces also meet in a single point.
This theorem will follow from the analysis below. This geometry of four faces being concurrent also
appears in robotics of octahedral manipulators [89].

We can access this geometric condition both statically [29] in Figure 21b and kinematically [28]
in Figure 21c with projective geometric analyses. We present both approaches to highlight the power
of the associated projective tools for understanding the geometric conditions. We begin with the
static analysis. If we assume there is an equilibrium stress in the bar–joint framework, then at vertex
a, we have

ω f a f a + ωdada + ωabab + ωacac = 0 =⇒ ωabab + ωacac = −(ω f a f a + ωdada).

Here ωabab + ωacac is in the plane of abc and (ω f a f a + ωdada) is in the plane of f ad, so ωabab +
ωacac is along the intersection of the two planes abc and f da. Similarly, ωbaba + ωbcbc is on the
intersection of (abc) ∧ (deb) and ωcaca + ωbcbc is along the intersection (abc) ∧ (e f c). Since
three forces in a plane can only be in equilibrium if they are projectively concurrent, we conclude that
a static dependence requires the four faces to be concurrent in a point on all four faces (Figure 21b).

We can reverse these steps from four faces concurrent in a point to find three forces in
equilibrium in the plane abc. These then resolve out along to the edges from abc to de f . Such
an equilibrium load will reach an equilibrium on the rigid triangle de f . We conclude there is a
self-stress if the four faces are concurrent in a point.

The kinematic analysis will again use the intersections of the faces at a, b, c but this time
representing momenta (Figure 21c). Assume that the rigid triangle de f is fixed. The momentum of
a will have to be a multiple M(a) of da f , the momentum of b will be a multiple M(b) of dbe and
the momentum of c will be a multiple M(c) of ec f . These momenta can be ‘projected’ as motions
in the plane of abc. In this projective representation, this means that we take the intersection of
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the momenta with the plane abc to represent the momenta of the points within abc. M(a) ∧ abc,
M(b) ∧ abc and M(c) ∧ abc must represent a trivial motion of the rigid triangle abc, which will
have a point center on each of these plane momenta. This center will be on the four planes abc,
M(a) = λada f , M(b) = λbdbe, and M(c) = λcec f . This illustrates that we can compute
momenta in subspaces by projective intersection of momenta in the larger space.

Conversely, if the four planes are concurrent in a center of motion of the triangle, we can
compute backwards to assign momenta to a, b, c in the plane of the triangle along the lines of
intersection of this plane with the other planes da f , dbe, ec f . These plane momenta then extend to
momenta in P3 which also fix the triangle de f .

The existence of a necessary projective condition for the octahedron is itself a proof that the
graph is generically isostatic. It is historically interesting that there are even more specialised
realisations of the octahedron, called the Bricard octahedra which have a continuous motion, though
these special classes are all self-intersecting [90]. There are, however, triangulated surfaces which are
embedded spheres with continuous flexes [91]. Note that continuous flexibility is not projectively
invariant or even affinely invariant (we return to this in Section 13.3).
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Figure 21. The octahedron is infinitesimally flexible in 3-space if and only if four opposite faces are concurrent (a). For an
equilibrium stress, the components of the equilibrium stress in the plane of a, b, c must lie in the plane at a, b, c and meet in a
point p in the plane (b). The momenta for vertices a, b, c intersect the plane of triangle abc in plane momenta which meet in
a point p–the center of motion of the triangle—which is on all four planes (c).

7.3. Bipartite Frameworks and Quadratic Surfaces

The family of complete bipartite graphs have fully understood rigidity properties,
both generically and geometrically in all dimensions. The original theory for these graphs
was developed, using statics, in [92]. An early example of K3,3 in the plane with conics was
presented by Sang [93], and an applied 3-dimensional example of K4,6 with a quadric was
found by row-reduction in a Master’s thesis in geodesy for the bipartite graph of satellite
positions and ground stations [94]. We will present the overall results as transferred to
infinitesimal kinematics in [95,96]. The second widely studied class of generically rigid
graphs are the simplicial manifolds, which are far from bipartite. See Section 8.4 and [97].
A key result in this direction, obtained by Fogelsanger [98], is that the graph of any
triangulation of a closed 2-manifold is generically rigid in R3.

Theorem 5 (Whiteley [95]). A framework realizing the bipartite graph Km,n with partite sets A
and B (m, n ≥ 2) in Rd (for d > 1) has a nontrivial infinitesimal motion if and only if either

1. the joints of A ∪ B lie on a quadric surface,
2. one side (A or B) lies on a hyperplane along with at least one joint of the other side, or
3. one side (A or B) lies on a hyperplane H and lies on a quadric surface within the hyperplane.

Corollary 3. Any bipartite framework (with more than 2 joints) realised with all its joints on a
quadric surface in Pd (for d > 1) will have a non-trivial infinitesimal motion.

The essential geometric feel for Corollary 3 can be found by observing that this is
true for a sphere as the quadric, and that in some sense (including through the complex
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numbers) all quadrics are projective images of the sphere. Note that for a sphere as the
quadric the velocities are radial in-out of equal length. See Figure 22.

b2

a1

a2

a3

a4

b1

b3b4

a

b

(a) (b)

Figure 22. A complete bipartite framework on a circle has a non-trivial infinitesimal motion moving
ai out along rays and bj in along rays (a). The two velocities for any pair of points on the circle have
equal projections on the line of the chord (b).

Example 12. There is a deeper projective form shown in Figure 23. The projective momenta of the
vertices on the sphere are now weighted hyperplanes tangent to the d-sphere (a), in all dimensions,
with equal weights at each joint. In the plane, the construction of the center of motion of a bar as the
intersection of the momenta of its ends (cab = M(a) ∧M(b)) is also the construction of the polar
point to a line of the bar through the circle in the conic polarity (Figure 23b). The weight of this
center of rotation is scaled to ensure βabcab ∨ a = M(a).

With momenta, the ‘in-out’ motion becomes clockwise/counterclockwise tangents for the two
classes of vertices (a). Following the property that the in-out velocities are of equal length, the
momenta must be equal weight multiples of the polar tangent lines. In the plane, with the momenta
tangent to the circle, a projective transformation of the circle will create a more general conic, with
the momenta now tangent to the new conic. If we take limits of such conics, we can find the momenta
for any conic. For degenerate conics (e.g., two lines meeting or parallel) there is still a non-trivial
infinitesimal motion, but the momenta are more subtle [95].

In R3, the momenta will be weighted tangent planes to the sphere, and the projective center
will be a line (2-extensor) which is the intersection of the two momenta planes at the ends of the bar,
and also the polar of the line in the sphere. After a projective transformation, the momenta remain
tangent to the new quadric and the Euclidean velocity will be normal to the quadric. This geometric
reasoning extends to all dimensions, giving a center of motion for each bar which is the polar of the
bar in the quadric in the space. This polarity for momenta is a new result for projective momenta.

Moreover, if we apply a projective transformation to the entire configuration, to obtain other
non-degenerate quadric surfaces, the momenta transfer immediately with the same projective
transformation, along with the polarity. It will take some more subtle limiting arguments to transfer
to degenerate quadric surfaces, in the manner of [95].

In a general dimension d, the momenta of ends of the bar (a, b) are weighted hyperplanes, and
M(a) ∧M(b) is the weighted center of motion of the bar. This is a striking new geometric result
which depends on projective geometry of polarities about quadrics and the special infinitesimal
motions of frameworks on quadrics. Notice that if a bar is a diagonal of the sphere (through the
center of the sphere) the momenta are parallel hyperplanes, meeting at a projective ‘center’ at infinity,
representing a translation of the bar.
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Figure 23. With a bipartite framework on a circle, the projective momenta are all tangent to the circle
(a). These momenta lines meet in the center of motion of a bar—appearing as a weighted point which
is a multiple of the polar of the edge in the conic (b).

We can summarize this example with the following new result.

Proposition 1. Given a bipartite framework (G, p) realizing a bipartite graph Km,n in Pd with all
vertices on a quadratic surface Q, the polar of the vertices (G, p) in the quadric gives a multiple of
the momenta of the vertices and the polar of the edges gives a multiple of the projective centers of
motion of the bars for a non-trivial infinitesimal motion.

The geometry of centers of motion, including these momenta of vertices, is rich and
not well explored. However, some further examples are found in [28], where there was
a focus on planar graphs and connections with projections of spherical polyhedra. This
connection will also reappear in our companion paper [27], where we explore reciprocal
diagrams.

Corollary 4. A complete bipartite graph Km,n is generically rigid in Pd if and only if (i) m, n ≥
d + 1; and (ii) m + n ≥ (d+2

2 ).

Example 13. Consider the graph K5,5. This graph is generically rigid in P3. Since |E| = 25 =
3|V| − 5 it also has an equilibrium stress. If we consider a realisation where all points lie on a
quadric (one geometric condition) then it is infinitesimally flexible, with a larger space of equilibrium
stresses. With one bipartite side of 5 points in a plane, these 5 points must lie on a plane conic and
also generate an infinitesimal motion, which actually extends to a finite motion.

Example 14. A framework realising the graph K4,5 plus any single bar in P3 has a non-trivial
infinitesimal motion if and only if there is a quadric surface through the nine joints which also
contains the line of the added bar or if the four joints a1, a2, a3, a4 are coplanar ([95] Corollary 2.1).

Example 15. Consider K6,6 realised as a generic framework in P4. With |E| = 36 = (4|V| −
10) − 2 we immediately see that the space of non-trivial infinitesimal motions is at least 2-
dimensional. Since any 12 vertices have a 3-dimensional space of conics through all the vertices,
there is actually a 3-dimensional space of non-trivial infinitesimal motions. There must be an
equilibrium stress in all generic realisations, even though these frameworks are flexible. This is an
example of a circuit which is not predicted by any simple count of vertices and edges. We will return
to this in Section 11.6.

By a similar count of conics and edges, K6,7, realised as a generic framework in P4, has
|E| = 42 = 4|V| − 10, but has a 2-dimensional space of quadrics. We need a minimum of 15 points
in a generically rigid complete bipartite framework in 4-space, which avoids a quadric in 4-space.

The following extension with additional bars was explicitly presented in [95] for d = 3
with the observation that the results extend immediately to all dimensions. Notice that if
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two points ai, bj in Pd lie on a quadric Q then the entire line joining them lies entirely in the
quadric if and only if the midpoint (ai + bj)/2 is also on the quadric. This observation also
means that if we are counting discrete geometric conditions, then adding an extra edge
on a quadric is effectively adding one more point to the matrices and counts in the pure
conditions.

Theorem 6. A framework realizing Km,n with partite sets A and B (of size m, n > 2, respectively)
in Pd with one added bar a1, a2 will have a non-trivial infinitesimal motion if and only if at least
one of the following holds:

1. the joints are contained on a quadric surface containing the line a1, a2;
2. the joints of A lie in a hyperplane containing some joint of B;
3. the joints of B line in a hyperplane containing both a1 and a2 or containing some other joint

of A;
4. the joints of B lie on a hyperplane quadric and the line a1, a2 touches the quadric at 1 point;
5. the joints of A lie in a hyperplane quadric containing the line a1, a2.

The following theorem presents the general case of a set of added edges in P3. This
describes a widely used truss for flat roofs. See Figure 24b [99].

Theorem 7 (Whiteley [95,100]). Consider the bipartite graph G = Km,n with partite sets A and
B plus added edges C ⊆ A× A and D ⊆ B× B. Let (G, p) be a framework in P3 with no flat
joints (joints with all entering bars in a single plane).

1. If A and B span the space, there is a non-trivial infinitesimal motion of (G, p) if and only if
there is a quadric surface containing all the joints and all the lines of bars in C ∪ D.

2. If A spans a plane Ā and B spans a plane B̄, and no joints lie on the intersection of the two
planes, then there is a non-trivial infinitesimal motion of (G, p) if and only if there are two
points p and q on the (projective) intersection of the two planes such that each line of a bar in
C ∪ D passes through one of these points (Figure 24a).

3. If A spans a plane Ā and B spans the space, with B′ = Ā ∩ B, then there is a non-trivial
infinitesimal motion of (G, p) if and only if there is a conic in the plane containing all joints
of B′ ∪ A and all bars of D ∩ (B′ × B′) as well as of C, and this conic touches the line of any
other bar in D.

(a) (b)

Figure 24. If we add a lot of extra edges to a bipartite framework on two planes, and they lie in these
two planes and through two points on the intersection of the planes (a), then there is a non-trivial
infinitesimal motion. The half-octahedral-tetrahedral truss (b) has this form, with the bipartite graph
simplified, but still having an infinitesimal motion.

Example 16. A framework in P3 on the graph K4,5 plus any single bar has a non-trivial infinitesi-
mal motion if and only if there is a quadric surface through the nine joints which also contains the
line of the added bar or if the four joints a1, a2, a3, a4 are coplanar ([96] Corollary 2.1).
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Example 17. Buckminster Fuller’s half-octahedral tetrahedral truss is a widely used framework
for the roofs of shopping centers and arenas (Figure 24b, [99]). Even with all edges joining points
on the top plane and the bottom plane, it fits perfectly into Theorem 7(2). It will have a non-trivial
infinitesimal motion which warps the two planes. In this infinitesimal motion, two opposite corners
go up, and two go down, initially as two essentially parallel ruled hyperboloids, with the lines in
the top and bottom remaining infinitesimally straight. This initial behaviour is addressed in actual
buildings by supporting the roof on four solid posts. In fact, the infinitesimal flexibility can be used
during construction by knowing the roof will ‘sag’ a bit if the four supporting points are not quite
coplanar [96].

This roof is (in)famous in the engineering study of building failures as the roof of the Hartford
Coliseum. See Figure 25 and [101]. The warp is not the immediate reason for the failure. That
was due to the compression members between the layers being too long, and due to a projectively
ineffective attempt to brace by welding triangles joining midpoints of the long members. This
just directed which way the members would buckle, not whether they would buckle. However, the
warping suggests the four corners would not fail with mirror symmetries, though only some studies
captured this feature. There is an interesting literature on building failures, with sources such as the
surveys [101,102].

(a) (b)

Figure 25. The design of the Hartford roof as a half-octahedral tetrahedral truss (a) and an image after the collapse from a
snow load (b), shortly after the sports fans left the arena [101,102].

7.4. Pure Conditions: Basic Theorems

In the next two subsections we present a number of results from White and White-
ley [85]. The goal is to compute a single polynomial in the projective coordinates of the
vertices of a generically isostatic graph, which is zero if and only if the corresponding
framework has an equilibrium stress, and the rank of the rigidity matrix drops in rank.
The idea is to square up the rigidity matrix so we can use the determinant to generate
the desired polynomial. There are two ways to square this matrix up: add rows or delete
columns. In [85], White and Whiteley add rows, because this gives a tool to prove that, in
the end, the polynomial does not depend on which columns are deleted, or equivalently,
that any good choice of added rows generates a simple factor depending only on those
added rows, leaving a single polynomial C(G) which depends on the graph but not on the
added rows or on the columns deleted.

For an isostatic graph G = (V, E) realised generically in Pd, a tie-down T of a frame-
work (G, p) in Pd is a set of n = (d+1

2 ) bars of the form ax with a ∈ V and x /∈ V
where m(x) = 0 for every infinitesimal motion m and each such bar adds a row to
the rigidity matrix (which is nonzero only in the columns corresponding to a). The
tie-down bars are chosen to remove all infinitesimal motions and hence pin the frame-
work. The following matrix shows the rows of a basic tie-down of G in Pd: MG(T) with
d + (d− 1) + · · ·+ 1 = (d+1

2 ) rows.
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a1 | a2 | . . . | ad | ad+1 | . . . | a|V|
(a1, x1,1) (a1 − x1,1) | 0 | . . . | 0 | 0 | . . . | 0
(a1, x1,2) (a1 − x1,2) | 0 | . . . | 0 | 0 | . . . | 0

...
... |

... | . . . |
... |

... | . . . | 0
(a1, x1,d) (a1 − x1,d) | 0 | . . . | 0 | 0 | . . . | 0
(a2, x2,1) 0 | (a2 − x2,1) | . . . | 0 | 0 | . . . | 0

...
... |

... | . . . |
... |

... | . . . | 0
(a2, x2,d−1) 0 | (a2 − x2,d−1) | . . . | 0 | 0 | . . . | 0

0 | 0 | . . . | 0 | 0 | . . . | 0
...

... |
... | . . . |

... |
... | . . . |

...
0 | 0 | . . . | 0 | 0 | . . . | 0

(ad, xd,1) 0 | 0 | . . . | (ad − xd,1) | 0 | . . . | 0



.

Such tie-downs of an isostatic framework give a pinned framework, as described in
earlier sections. However, this is a restricted type of pinning, with exactly (d+1

2 ) pinning
edges (Figure 26).
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Figure 26. Possible patterns of non-degenerate tie-downs of an isostatic framework in d = 3. As the figure indicates, we can
index the tie-downs by their sequence of attachments.

We now have a sequence of steps drawn from [85] to complete this analysis and prove
there is a unique pure condition for an isostatic graph.

1. The first step is a lemma from [85].

Lemma 1. A framework (G, p) in general position in Pd is isostatic if and only if there exists
a tie-down T which produces an invertible extended rigidity matrix R(G, p, T).

2. If we represent the tie-down bars of a framework by 2-extensors, we can construct
a square (d+1

2 )× (d+1
2 ) matrix with determinant C(T) in the bracket algebra which

is non-zero if and only if the tie-down will not support an equilibrium stress (the
tie-down rows are independent). These are the non-degenerate tie-downs with C(T) 6= 0.

3. For vi ∈ V, let αi be the number of tie-down bars incident to vi, and assume that we
have reindexed so that α1 ≥ α2 ≥ . . . ≥ αm. Then C(T) 6= 0 if and only if

k

∑
i=1

αi ≤ dk−
(

k
2

)
for all k, 1 ≤ k ≤ n− 1.
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4. Suppose G is isostatic in Pd and T is a non-degenerate tie-down. Then the determinant
of the extended rigidity matrix R(G, p, T) equals an element C(G, T) of the bracket
ring B on the set of vertices of G ∪ T [85].

5. For a non-degenerate tie-down T, the polynomial C(T) is a factor of the larger deter-
minant C(G, T) so that C(G, T) = C(T)CT(G), for some bracket polynomial CT(G).

6. For two non-degenerate tie-downs T, T′ the residual factors CT(G) = CT′(G), so there
is a unique pure condition C(G). This uses a lemma that moves one tie-down edge at
a time along an edge of G, provided the moves preserve the non-degeneracy of the
tie-down.

Theorem 8 (White and Whiteley [85]). Suppose G is isostatic in Pd. Then there exists an element
of the bracket ring on the vertices of G such that for any realisation of the graph (G, p), (G, p) has
an equilibrium stress if and only if the bracket polynomial evaluated at p is 0: C(G)(p) = 0.

C(G) is clearly a projectively invariant polynomial, and can include all projective
points, including points which would be infinite in Euclidean space. The same projective
pure condition applies in all the metrics extracted from the projective metric such as the
sphere, or Minkowski space [69,70]. The following algebraic property of the polynomial
C(G) is valuable in working out the pure conditions, as we will illustrate below.

Proposition 2. Let G = (V, E) be an isostatic graph in Pd and take v ∈ V. Then the pure
condition C(G) is of degree dG(v)− d + 1 in the variables for v.

We have already introduced coning as an operation which takes an isostatic graph in
Pd to an isostatic graph in Pd+1. We can also describe exactly what coning does to the pure
condition [85].

Proposition 3. If G is an isostatic graph in Pd with pure condition C(G), then the cone of G,
denoted Gc is an isostatic graph in Pd+1 with pure condition C(Gc) = C(G) · p. Here C(G) · p
means extending each bracket in C(G) by inserting a (d + 1)-st entry p.

Remark 3. While tie-downs can be viewed as pinning a framework, there is a different image of
them as controls for formations of autonomous robots. In P2 there are only two forms of tie-down:
2 bars at one vertex a and 1 at a second vertex b; and 1 bar at each of three vertices. The common
pattern for control of plane formations with an isostatic graph builds from the first, where a is the
leader able to make its own decisions on its velocity in the plane and b is the first follower which
must maintain a fixed distance from a but can choose a velocity along the circle with this radius
to a. Given a 2-directed graph to these tie-downs, the other agents will have two assigned directed
edges in the formation which they must maintain, and the whole formation moves rigidly after
these leaders, with no agent being asked to do the impossible and maintain more than two assigned
distances [18].

In P3, the usual control involves one leader with 3 degrees of freedom, a first-follower with
2 degrees of freedom and a fixed distance from the leader, and a second follower who has one degree
of freedom and maintains a fixed distance from the leader and the first follower. Other tie-down
patterns give other control patterns [18].

7.5. Factoring and Rigid Components

The following basic properties will help us determine the pure conditions for some
interesting examples and to pose some interesting conjectures.

Proposition 4. Suppose G is isostatic in Pd and H is an isostatic subgraph with at least d + 1
vertices. Then C(G) = C(H) · C′ for some factor C′.
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Proposition 5. If a polynomial F in the vertices of an isostatic graph G in Pd has the property that
F(G) = 0⇒ C(G) = 0, then each irreducible factor of F is a bracket expression which is a factor
of C(G).

Recall the Desargues graph in Example 10 and Figure 20a. The two triangles are rigid
components and provide two of the factors. The remaining factor must now be linear in
each of the vertices.

Proposition 6. The bracket condition for (d+2
2 ) points to lie on a quadric surface in Pd is irreducible.

Note that this irreducibility is in the sense of polynomial factoring, not in the sense
of factoring in the Grassmann–Cayley algebra which would be writing out a projective
construction for the condition. So the condition that 6 points lie on a plane conic has
a projective construction—Pascal’s Theorem. In this context, it is conjectured that the
condition that 10 points lie on a quadric in P3 does not have a simple construction. This is
a question posed more than 200 years ago [103].

Example 18. K4,6 in P3 has one factor Q which is quadratic in the variables of each of the 10 points,
reflecting the fact that the 10 points lying on a quadric is sufficient for a non-trivial infinitesimal
motion. Furthermore, having the four points a1, a2, a3 and a4 coplanar generates a non-trivial
infinitesimal motion, since they also lie on several conics. This gives a factor [a1a2a3a4]. However,
by the degree condition in Proposition 2, after we factor out the quadratic, we must have two
occurrences of each of a1, a2, a3, a4 and therefore again the factor [a1a2a3a4]. The pure condition
is [a1a2a3a4]

2Q. Notice two properties of this: the factor [a1a2a3a4] does not represent a rigid
sub-framework. In fact there are no bars among these vertices. Second, the four coplanar vertices
guarantee a 2-dimensional family of conics and therefore two non-trivial infinitesimal motions
(Figure 27). This suggests that the degree of the factor might be related to the number of added
motions (and stresses) from this geometric condition [85]. In general, the pure condition in d-space
for the bipartite graph Kd+1,m where m = (d+l

2 ), is [al , . . . ad+1]
nQ(al , . . . , ad+1, b1, . . . , bm),

where n = (d + 1)(d− 2)/2 and the factor Q(a1, . . . , ad+1, b1, . . . , bm) is the bracket expression
for all the points to lie on a quadric surface in d-space (see ([85] Proposition 4.7)).

Let us look again at K4,6 with the four points coplanar (Figure 27a). The coplanarity generates
a 2-dimensional family of infinitesimal motions with velocities in the plane (Figure 27b,c). They
actually continue out as finite motions with the points moving in the plane and the other points
following along as necessary to preserve the lengths. Further, this condition is preserved by any
projective transformation. This is not common for finite motions which have a geometric basis
(see Section 13.3). While an initial glance at this motion suggests ‘sliders’, this behaviour is not
directly connected to the theory of Section 6. The four points are incidentally constrained to remain
coplanar, not directly constrained to that linear space as sliders are.

(a) (b) (c)

Figure 27. Given K4,6 with a1, a2, a3, a4 coplanar (a), there is a 2-space of conics generated for example by pairs of lines (b,c).

Proposition 7. If, for some irreducible factor H of the pure condition of an isostatic graph G in Pd,
all realizations p′ with H(G, p′) = 0 give at least r stresses, then Hr is a factor of C(G).
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A rigid subgraph on more than d + 1 vertices implies a factor in the pure condition
of any isostatic framework in Pd. The converse question of when a factor implies a rigid
component is challenging.

Conjecture 1 (White & Whiteley [85]). Suppose G is rigid in P2 and contains no proper rigid
subgraph on more than 2 vertices. Then G has an irreducible pure condition.

As we have just seen, the example of K4,6 in P3 shows this conjecture does not extend
to 3-dimensions. The conjecture may still hold for some special cases. For example, it is
not hard to see that a triangulation of the sphere has no proper rigid subgraph if and only
if it is 4-connected. We conjecture that every 4-connected triangulation of the sphere has
an irreducible pure condition. Note that Penne [104] proved that a triangle-free version of
the 1-extension operation preserves irreducibility. It would also be interesting to develop
analogous inductive techniques for triangulated surfaces.

White and Whiteley [85] offer a larger table of pure conditions which expands on these
examples. At this point, complete bipartite graphs continue to offer the most surprising
examples, in part because these are the best characterised class of graphs for projective
geometric conditions.

7.6. Computing Pure Conditions: Pinned Frameworks, and d-Directed Graphs

The pure conditions of a graph G = (V, E) can be computed by taking a Laplace
decomposition of the determinant of the associated rigidity matrix for a generic realisation
squared off either (i) by adding (d+1

2 ) tie-down rows to remove the infinitesimal degrees of
freedom [85] or (ii) by deleting d-tuples of columns to pin down certain vertices. This second
option provides objects that are regularly studied in mechanical engineering [80,105,106].

We will summarise some of these techniques, including connections to strongly di-
rected graphs, because these also have applications both to mechanical engineering, under
the name of Assur Graphs, as well as to computing pure conditions for other rigidity-like
matrices such as cofactor matrices in Section 11. We also note that many of these methods
and results have analogues for body-bar frameworks (Section 9), for mutivariate splines
(Section 11) and for the dual concepts of liftings and parallel drawings in our companion
paper [27].

We begin by adding rows to the projective matrix for a tie-down T that blocks all of the
trivial motions, adapting [85] (recall Section 7.5). We will illustrate this process using an
example in 3-space.

Example 19. Consider the pinned tetrahedron in Figure 28a. There is a unique way to orient the
remaining edges to result in a 3-directed graph. This translates to a pure condition for the tied-down
framework (G ∪ T, p) which is a single bracket condition [a1a2a3a4]. The framework is dependent
if and only the four vertices are coplanar. We have
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R(G ∪ T, p) =



1 | 2 | 3 | 4
12 a2 | a1 | 0 | 0
23 0 | a3 | a2 | 0
34 0 | 0 | a4 | a3
14 a4 | 0 | 0 | a1
13 a3 | 0 | a1 | 0
24 0 | a4 | 0 | a2
1 a1 | 0 | 0 | 0
2 0 | a2 | 0 | 0
3 0 | 0 | a3 | 0
4 0 | 0 | 0 | a4

x1 x1 | 0 | 0 | 0
x2 x2 | 0 | 0 | 0
x3 x3 | 0 | 0 | 0
x4 0 | x4 | 0 | 0
x5 0 | x5 | 0 | 0
x6 0 | 0 | x6 | 0



=



1 | 2 | 3 | 4
12 a2 | a1 | 0 | 0
23 0 | a3 | a2 | 0
34 0 | 0 | a4 | a3
14 a4 | 0 | 0 | a1
13 a3 | 0 | a1 | 0
24 0 | a4 | 0 | a2
1 a1 | 0 | 0 | 0
2 0 | a2 | 0 | 0
3 0 | 0 | a3 | 0
4 0 | 0 | 0 | a4

x1 x1 | 0 | 0 | 0
x2 x2 | 0 | 0 | 0
x3 x3 | 0 | 0 | 0
x4 0 | x4 | 0 | 0
x5 0 | x5 | 0 | 0
x6 0 | 0 | x6 | 0



.

If we take the determinant of this now square matrix, with a Laplace decomposition into
4× 4 blocks for the 4 columns of each matrix, the columns under a1 have only one non-zero term:
[a1x1x2x3] following the three out-directed arrows at a1. This is indicated by the four red entries
in that column. Continuing to the columns for a2, and noticing the row for 12 now has only one
entry, there is a single non-zero term in the Laplace decomposition under a2, following the three
out-directed arrows (again the four red entries): [a1a2x4x5]. Next, looking at the block under a3
and noticing the two rows for 13, 23 have only one non-zero entry left, the term following the three
out-directed arrows is (again red entries): [a1a2a3x6]. Finally we have the column for a4 which also
has three out-directed arrows and gives the term [a1a2a3a4] (the red entries in the final column).
This gives the pure condition: [a1a2a3a4] = 0 if and only if the tetrahedron is flat (in a single plane).

a1

a3 a2

a4

a1

a3
a2

a4

x3
x1

x2

x4
x5x6

(a) (b)

Figure 28. A tied down tetrahedron (a) with 6 tie-downs red arrows) has a single 3-directed orienta-
tion of the edges and the tie-down (b).

In a more general example, the calculation of each term in the Laplace decomposition
follows the block decomposition by vertex columns, with a term for each orientation of
the graph (with tie-downs) of 3 outgoing edges at each vertex. The vertex row and the
entries for these three edges gives a bracket term for the column of the vertex. Overall,
this is a 3-directed orientation of the graph [85]. Every isostatic graph in P3 has at least one
such 3-directed orientation [106], which will correspond to a non-zero term in the Laplace
decomposition of the tied-down graph. However the existence of such an orientation is not
sufficient for generic rigidity [106] as this is just a guarantee of the count |E| = 3|V| − 6.
Any two distinct 3-directed orientations are connected by reversing directions on some
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set of cycles [106] (see Figure 29b,c). However the strongly connected components are
invariant under such reversals.

In P2, with a tie-down of size 3 to block the trivial motions, there will be analogous
2-directed orientations of the tied down graph. However, related to Laman’s theorem and
its counts, the existence of a 2-directed orientation of the tied down graph is necessary
but not sufficient for the graph to be isostatic [106]. This connects to work in mechanical
engineering on Assur graphs [106], which we return to below.

b1

b4 b2

b3

a1 a2

a3a4

b1

b4 b2

b3

a1 a2

a3a4

b1

b4 b2

b3

a1 a2

a3a4

a1

a4 a2

a3

b1 b2

b3b4

(a) (b) (c) (d)

Figure 29. The isostatic graph in (a) has a generically rigid tetrahedron (aqua coloured edges) whose factor we know.
With that tied down, the remaining edges have two 3-directed orientations (b,c) which each give a term summing to the
remaining pure condition. If we swap the placement of the tetrahedron (d), we get a related pure condition.

Example 20. We illustrate the process with one more example, which has served as the provocation
for a number of explorations, and will reappear in Section 10.6. Consider the framework in
Figure 29a. With the central tetrahedron tied down we get a factor [a1a2a3a4] as calculated in
Example 19. The remaining edges have two 3-directed orientations, differing by reversing the
directed cycles in Figure 29b,c:

(b1, b2)(b2, b3)(b3, b4)(b4, b1) reversing to (b1, b4)(b4, b3)(b3, b2)(b2, b1).

Together these two 3-directed orientations give the overall pure condition:

[a1a2a3a4]([a1a2b2b1][a2a3b3b2][a3a4b4b3][a4a1b1b4]

−[a1a2b4b1][a2a3b1b2][a3a4b2b3][a4a1b3b4]).

It is not immediately obvious what sign should be between the two terms. The next example will
give a simple calculation which clarifies this sign. If we swap which cycle of vertices the tetrahedron
is attached to (Figure 29d), we have a new factor [b1b2b3b4] but the remaining edges generate a
factor which is, up to ±1, the same. We will return to this ‘swapping’ of blocks (the tetrahedra) and
holes (the unfilled quadrilaterals) in Section 10.6 [107,108].

Example 21. Consider the general cycle of triangles around a rigid central n-gon which is already
pinned (Figure 30). This was analysed in ([28] Section 3), offering an additional method worth
describing. In this framework, every vertex ai is attached to two grounded vertices bi−1 and bi,
and will therefore have a projective momentum which is a multiple of the extensor for that triangle
M(ai) = λibi−1biai. The momentum equation for the bar aiai+1 is [M(ai)ai+1] + [M(ai+1)ai] =
0 which implies λi[bi−1biaiai+1] = −λi+1[bibi+1ai+1ai], where the λi are scalars. Each edge
around the cycle gives an equation:

λ1[bnb1a1a2] = −λ2[b1b2a2a1] . . . λn[bn−1bnana1] = −λ1[bnb1a1an].
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Multiplying the RHS and the LHS for all these equations around the full cycle, we have the
cumulative condition:

(λ1 . . . λn)([bnb1a1a2] . . . [bn−1bnana1]) . . . = (−1)n(λn . . . λ1)[b1b2a2a1] . . . [bnb1a1an].

Since there is a common factor (λ1 . . . λn) on both sides, the residual pure condition is:

[bnb1a1a2] . . . [bnb1ana1] = (−1)n[bn−1bna2a1] . . . [bnb1a1an].

These two terms correspond to the two 3-directed orientations in Figure 30b,c. In particular, the
sign in the previous example is −1. This condition is quadratic in each of the vertices. It also has
the swapping property noticed in the previous example: swapping each ai with bi gives the same
condition.

A projective geometric challenge is to convert these conditions into projective constructions
with intersections and unions of planes, lines and points:–a synthetic factoring in the Grassmann–
Cayley algebra [103]. For n = 3 this cycle is the graph of the octahedron, where the projec-
tive condition is known to factor in the Grassmann–Cayley algebra as the meet of four planes
(b1b2a1)

∧
(b2b3a2)

∧
(b3b1a3)

∧
(a1a2a3) = 0. This construction says that the octahedron has

a non-trivial infinitesimal motion if and only if the four planes meet in a point, which is an old
theorem of Bennett [88]. See Figure 21a,b. We return to this type of analysis again in Example 42
and the associated Figure 69.
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(a) (b) (c)

Figure 30. The 3-isostatic graph in (a) has a generically rigid turquoise n-gon. With that central n-gon tied down, the
remaining edges have two 3-directed orientations (b,c) which each give a term summing to the larger pure condition.

7.7. Assur Graphs and Assur Decompositions

Analysing pinned frameworks, using d-directed graphs is also found under the name
of Assur graphs and Assur decompositions in mechanical engineering [80,105,106,109–111].
It is common for mechanisms to be pinned or grounded. To analyse how the mechanism
moves when one edge changes length (a driver) the underlying goal is to find minimal
pinned graphs in the mechanism–Assur graphs or Assur groups, whose algebra is amenable
to direct analysis for motions, and then extend that motion on to other components.

We note that historically the engineer Assur was interested in finding the smallest
irreducible factors of a mechanism to simplify the problem of computing the algebraic
conditions for a motion, and the form of this motion, in a way that could be propagated
through to all the vertices of the mechanism [80,105].

Example 22. The backhoe in Figure 31a has two pistons: bars whose lengths can be adjusted by the
operator. To make this a 2-directed pinned graph, with |E| = 2|V′| for the unpinned vertices, freeze
these pistons, that is freeze the joints A and D in Figure 32a. Then the graph is pinned isostatic; see
Figure 32b.

Figure 32c shows the 2-directed orientation, confirming it is pinned isostatic. Finally,
Figure 32d shows a possible motion when the edge (piston) 01B is made longer. That all un-
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pinned vertices move follows from the way the arrows are directed: when the final vertex of the arrow
moves, the initial vertex must also move. If the piston at vertex D is expanded in the otherwise
isostatic pinned framework, then the arrows in (c) tell us that only the vertices E, F in (a) would be
moved. This is typical of how Assur graphs give information on motions.
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Figure 31. The mechanism of a backhoe (a) can be abstracted to a framework (see (b) and then (c)) with a rigid block 3 and
two vertices 01, 03 pinned to the machine body 0. Figures courtesy of the mechanical engineer and geometer Offer Shai [80].
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Figure 32. We can convert the backhoe to a pinned framework with two dotted pistons which represent possible drivers
of a motion (a). If we freeze these pistons (dashed edges) at vertices A, D by fixed bars across the vertex (b) this becomes
pinned isostatic. (c) shows the unique 2-directed orientation. (d) shows the motion if the piston 01B is made longer.

This context leads to several related questions: (i) what are the minimal pinned
isostatic graphs in the schematic of the mechanism? and (ii) what is the ordered set of
all these components—the Assur decomposition? We will just extract a few key papers
illustrating how this can be done both combinatorially [80] and geometrically [80]. This
modern mathematical presentation was really driven and inspired by the engineer and
mathematician Offer Shai, whose insights and conjectures continue to underly much of the
current developments.

For a pinned framework with underlying pinned graph G = (V, E), we will use
V = P ∪ I as a partition of the vertices into pinned and inner vertices. A pinned framework
is isostatic in Pd if it has only the trivial infinitesimal motion 0, and it has no equilibrium
stress. A pinned graph is (pinned) isostatic (in dimension d) if there exists a pinned isostatic
realisation of the graph in Pd.

An isostatic pinned framework will have a (d + 1) × |I| square projective rigidity
matrix—an extension of what we saw for frameworks with tie-downs in the previous
section. Furthermore, as an extension we have a block Laplace decomposition by (d +
1)× (d + 1) blocks down the (d + 1) vertex columns. Each non-zero term will generate a
d-directed orientation. This is an orientation in which all inner vertices have out-degree d
and pinned vertices have out-degree 0 [106].

An Assur graph in Pd is a pinned graph which is pinned isostatic in dimension d and is
minimal in the sense that there is no subgraph with at least one inner vertex which is also a
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pinned isostatic graph in dimension d. We will focus on Assur graphs in the plane, and
refer the reader to [106] for extensions to higher dimensions. There was an earlier reference
to these graphs in the section on plane sliders (Section 6.3).

A pinned graph G = (I, P; E) satisfies the Pinned Laman Conditions [80] if

1. |E| = 2|I| and
2. for all subgraphs G(I′, P′; E′) the following conditions hold for V′ = I′ ∪ P′

(i) |E′| ≤ 2|I′| if |P′| ≥ 2,
(ii) |E′| ≤ 2|I′| − 1 if |P′| = 1 , and
(iii) |E′| ≤ 2|I′| − 3 if P′ = ∅ and |E′| > 0.

Generic pinned frameworks on graphs with these counts are sometimes called statically
determinate in mechanical and structural engineering. There is a unique set of solutions
to the forces in the members to the given external loads. In structural engineering, and
throughout this paper, the graphs are called generically isostatic. Rigid structures are also
described as kinematically determinate structures, with only the zero motion.

The key types of graph and associated frameworks that have been examined in [80,105] are:

1. statically determinate graphs: graphs realizable as statically determinate (isostatic)
structures for generic configurations.

2. mechanisms: graphs which when realized in generic configurations give various
positive degrees of freedom (DOF); such structures are called mobile. A linkage will be
a mechanism with 1 DOF.

3. independent graphs: graphs without redundance, so that removing any one edge results,
for generic realizations, in a structure with an added DOF.

4. redundant graphs: graphs that are not independent for any realizations. These may be
rigid (kinematically determinate) or mobile at generic or special realizations.

The general theory of Assur Graphs was first presented for R2. However with the
projective techniques we have developed the reader should be confident that each of the
following results also transfer by careful use of projective transformations to P2.

Theorem 9 (Pinned Laman Theorem [80]). A 2-dimensional pinned graph G is pinned isostatic
in P2 if and only if G satisfies the Pinned Laman Conditions.

There is a related counting theorem in Mechanical Engineering called Grubler’s
Criterion [112]. This criterion is applied to mechanisms with a collection of bodies, edges,
and points. However, the criterion is not as complete as the rigidity counts on graphs and
subgraphs we have in our equivalent rigidity models. The following corollary implies that
the pins can all be collinear as long as they are distinct along the line.

Corollary 5 ([80]). A 2-dimensional pinned graph G = (I, P; E) satisfies the Pinned Laman
Conditions if and only if for all placements P with at least two distinct locations and all generic
positions of inner vertices I, generic with respect to the pin placements, the resulting pinned
framework is isostatic.

A directed graph is called strongly connected if and only if for any two vertices i and
j there is a directed path from i to j and from j to i. The strongly connected components
of a graph are its maximal strongly connected subgraphs. That is, strongly connected
components cannot be enlarged to another strongly connected subgraph by including
additional vertices and its associated edges. Each vertex can belong to only one strongly
connected component (which may consist of only a single vertex), so the strongly connected
components form a partition of the vertex set. There is a fast combinatorial algorithm for
partitioning a directed graph into strongly connected components [106]. This is the basis
for the Assur decomposition of a graph in [106].
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Theorem 10 (Shai, Sevatius, Sljoka and Whiteley, [80,106]). Assume G = (I, P; E) is a pinned
isostatic graph in P2. Then the following are equivalent:

1. G = (I, P; E) is an Assur graph.
2. If the set P is contracted to a single vertex p, then the resulting contracted graph is a rigidity

circuit.
3. Either the graph has a single inner vertex of degree 2 or each time we delete a vertex, the

resulting pinned graph has a motion with non-zero velocity at all inner vertices (in generic
position).

4. Deletion of any edge from G results in a pinned graph that has a motion with non-zero velocity
at all inner vertices (in generic position).

5. Any 2-directed orientation of G is strongly connected.

Example 23. Consider the pinned framework in Figure 33a. It has a 2-directed orientation (b)
so it is pinned isostatic. The circle in (c) highlights a set of directed edges in one direction which
disconnects the pinned graph into two components, so it is not strongly connected and therefore is
not Assur. The subgraph outside the circle is Assur. If the four directed edges crossing the circle
are pinned, the subgraph inside the circle, with these edges pinned, also forms an Assur graph. In
general, identifying all the pins identifies a (sub)-circuit-a subgraph which, with pins identified
becomes a circuit-as an Assur graph: in this case with vertices V′ = {a1, a2, a3, a4, p}.

Example 24. Consider the example in Figure 34a. This is isostatic, as the 2-directed orientation
in (b) confirms. As a 2-directed graph, the orientation is strongly connected. When the pins
are all identified, there is a single circuit (c) which includes all vertices and all edges. There is a
(non-generic) singular realisation (d), where there is a non-trivial infinitesimal motion fixing the
pins, which is represented visually with a parallel drawing of all the inner vertices (red arrows).
Parallel drawing is discussed in much more detail in our companion paper [27]. (c) and (d) are
illustrations of Theorems 10 and 11.

Theorem 11 (Servatius, Shai, Whiteley [105]). A pinned graph G is an Assur graph in P2, if
and only if it has a realisation p in P2 such that

1. (G, p) has a unique (up to scalar) equilibrium stress which is non-zero on all edges; and
2. (G, p) has a unique (up to scalar) infinitesimal motion, and this is non-zero on all inner

vertices.

These special positions p will be preserved by projective transformations.

Conjecture 2 ([105]). Let G be an Assur graph and let (G, p) be a framework in P2 with a single
equilibrium stress which is non-zero on all edges. Then there is a unique (up to scaling) non-trivial
infinitesimal motion that is non-zero on at least one end of each bar.

The converse does not hold. If we pin a triangle with three bars to pinned vertices, it
is Assur and the pinned pure condition has the triangle factor times the factor for the three
pinning edges. If the triangle is collinear, then the stress is zero on some edges.
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Figure 33. The pinned framework in (a) is isostatic, with a 2-directed orientation (b). We can see a
separating set of directed edges (c). If we identify all the pins (d), pulling them to the center, then this
becomes dependent but only the central part is in the circuit.
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Figure 34. The pinned framework in (a) is Assur, with a 2-directed orientation (b). This orientation
is strongly connected. With the pins identified, this forms a plane circuit (c). In a special position
(d) there is a parallel drawing which geometrically corresponds to non-trivial velocities at all inner
vertices.

8. Polarity for Rigidity

Polarity is one of the basic transformations of classical projective geometry. When
does this transformation generate a rigidity correspondence? The answer is that there
are known correspondences in 2- and 3-dimensions. Polarity in the plane changes in-
finitesimal motions to liftings to 3-space [113], so we will defer that presentation to our
companion paper [27]. We will will connect this plane correspondence into 3-dimensions
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(below) through coning. We are not aware of any strong rigidity results using polarity in
dimensions ≥ 4 [113,114]. We are aware of the use of polarity in other metrics (e.g., the
sphere in all dimensions) and even in recent work in multivariate splines [115].

8.1. Duality and Polarity for Projective Geometry

The primary example we will explore in this section is polarity in dimension 3. How-
ever the broader applications of polarity will include whole sections of our companion
paper Projective Geometry of Scene Analysis, Parallel Drawing and Reciprocal Draw-
ings [27], where parallel drawing and liftings in scene analysis are explicitly explored as
combinatorial duals, and geometric polars, of one another, in all dimensions.

In plane projective geometry, there are axioms for points and lines, and they have
an explicitly dual form: if you take theorems for points and lines, and swap the terms,
replacing points by lines and lines by points, the entire theory is unchanged. For example,
any two distinct points lie on a unique line, and any two distinct lines intersect in a
unique point.

In a general dimension d, duality pairs subspaces of Pd of projective dimension k
and projective dimension d− k− 1, reversing inclusions and preserving incidences. More
generally, such a map is also called a correlation. The correlation is invertible, and if this
correlation is its own inverse (that is, if it is an involution) then it is called a polarity. If
we write the projective points as x = (x1, x2, . . . , xd, xd+1) and the hyperplanes in dual
coordinates as u = (u1, u2, . . . , ud, ud+1), then the incidence of the point x on the hyperplane
u is given by the equation

x1u1 + x2u2 + . . . + xdud + xd+1ud+1 = 0.

In vector space terms this is sometimes named orthogonality but we prefer incidence, and
the hyperplane can be identified with the space of points incident with the hyperplane.

There are two polarities which are central to our vision. One is the ‘natural’ polarity
in which we do not change any of the coordinates, but just switch our interpretation of the
coordinates of the points as the coordinates of hyperplanes, and vice versa. This correlation
is an abstract involution but does not immediately have a geometric representation.

The second geometric construction (which can be visualized in Pd) is named polarity
about a quadric [116]. This already appeared for biparite frameworks in Section 7.3. If
we focus on the points which lie on their polar planes in the natural polarity, we see
the equation x2

1 + x2
2 + . . . + x2

d + x2
d+1 = 0 is a quadric surface in Pd. For a given non-

degenerate quadric surface in Pd, there is a geometric construction of a polarity. This takes
points on the quadric to the tangent hyperplane through the point. For the plane, we saw a
brief introduction in Figure 23.

We also recall that going from a framework to the momenta of the vertices and centers
of motions of the bars is also a duality, but is generally not a polarity, except for bipartite
frameworks with vertices on a quadric (Proposition 1).

The origins of the name ‘polarity’ become visible when we consider the ‘natural’
polarity on the sphere and the elliptical model of projective geometry with antipodal points
identified. This is also referred to as duality on the sphere. Every hyperplane on the sphere
(e.g., the equator) has two antipodal poles. When the pairs of antipodal points are collapsed
to form the elliptic model of the projective space, there is a complete pairing of hyperplanes
and points, so there is a duality which is an involution—a polarity. This a geometric image
of the natural polarity above. This polarity on the sphere takes a distance constraint (bar)
between two points to an angle constraint between the two hyperplanes. We will return to
this in Section 8.4.

8.2. Sheet Structures and Polarity for Rigidity in R3

We next introduce hinged sheetworks with planes and edges as the polars of bar–
joint frameworks, preserving rigidity when we interpret the planes as statically rigid
frameworks on the incident edges. These were mentioned, independently, in the work of a



Appl. Sci. 2021, 11, 11946 52 of 105

Danish Architectural Engineer Ture Wester, and were also mentioned in passing in [97].
The one published study of hinged sheetworks uses static rigidity [113], showing how the
forces applied to a face in its plane transmits through the statically rigid framework of a
face (a) and how a force applied to an edge splits into two forces in the two distinct faces at
the edge (b), Figure 35. The equilibrium condition for forces at the original vertex becomes
an equilibrium condition for the forces applied in the plane of the face. We can transfer all
of the definitions for static rigidity to the hinged sheetworks following [113].

There is a companion infinitesimal rigidity version of this theory using plane centers
of motion for vertices polarizing to point centers of the sheets. It has yet to receive a
proper published exposition, but the gist can be seen by polarizing the theory of momenta
and centers of motion of bar and joint frameworks. If the polarity is Φ, then Φ(ai) = Pi

is the polar plane. The momentum of a vertex M(a) becomes a weighted point center
Φ(M(a)) = M(Φ(a)) in the plane of the polar sheet. This point center of a sheet presents
the component of the velocities of points in the sheet which lies within the plane of the
plane-rigid sheet. The momentum of the hinge {i, j} is the polar center of the hinge
Φ(ai, aj), a weighted line segment in the line joining the centers of motion of the two
sheets. The hinge condition is the polar of the bar condition in terms of projective momenta:
[M(ai)aj] + [M(aj)ai] = 0 becomes [Φ(M(ai))Φ(aj)] + [Φ(M(aj))Φ(ai)] = 0.

There is a fully projective version of all this theory of sheets, but it has so far only been
published in vocabulary of R3 [113].

Definition 1. A hinged sheetwork (G, P) in R3 is an ordered pair consisting of a graph G =
(V, E) and an assignment of weighted plane sections Pi to the vertices in projective 3-space such
that Pi ∧ Pj 6= 0 if ij ∈ E.

Definition 2. An equilibrium load on a hinged sheetwork is an assignment of dual 2-extensors
(forces), L = (L1, . . . , L|V|), to the sheets such that for each sheet we have Li ∧ Pi = 0 and

∑
|V|
i=1 Li = 0. A resolution of the load L by a hinged sheetwork is an assignment of scalars λij

to the edges ij ∈ E such that, for each sheet Pi:

∑
j:ij∈E

λijPi ∧ Pj + Li = 0.

A hinged sheetwork is statically rigid if every equilibrium load has a resolution. A static stress is a
resolution of the zero load, i.e., a set of scalars λij for the edges such that Li ∧ Pi = 0 at each sheet
Pi, sum over all edges attached to the sheet. A hinged sheetwork is independent if the only static
stress is the trivial stress with all scalars zero (otherwise it is dependent) and is isostatic if it is
statically rigid and independent.

With a projective lens, it would be nice to have a good projective matrix for this.
We propose that this should be the polar of the projective statics matrix for bar and joint
frameworks.

Definition 3. A hinged sheetwork (G, P) and a bar-and-joint framework (G, p), both in R3, are
polar if there is a non-singular linear transformation T and a homogeneous multiplier H (a set of
scalars hi, i ∈ V) such that for each vertex i of G:

Pi = hiT(pi) (or equivalently pi = T−1(Pi)/hi).

Theorem 12 ([114]). A hinged sheetwork (G, P) and any polar bar-and-joint framework (G, p) in
R3 have the same static properties:

1. (G, P) is statically rigid if and only if (G, p) is statically rigid;
2. (G, P) is independent if and only if (G, p) is independent;
3. (G, P) is isostatic if and only if (G, p) is isostatic;
4. the spaces of equilibrium loads are isomorphic;
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5. the spaces of resolved loads are isomorphic;
6. the spaces of stresses are isomorphic.

Figure 35. Loads being resolved along sheets (a) and at edges joining two sheets (b) [114].

Example 25. Figure 36 illustrates the polarity with a statically rigid octahedral framework going
to a statically rigid hinged sheetwork on a cube, where each face is some statically rigid framework
in the plane of the face. Note that we are really selecting from an equivalence class of all statically
rigid sub-frameworks on vertices in the face. The equivalence is a result of a general substitution
principle which is highlighted in the substitution principles in the next subsection.

(a) (b)

Figure 36. Polarity takes the octahedral bar–joint framework (a) to the cubic sheetwork (b) [114].

Recall from Example 11 that the pure condition for the octahedron is that four opposite faces
meet in a point. Under polarity, this condition must become that the four opposite vertices of the
sheetwork cube are coplanar. If one set of four opposite vertices is coplanar, then the other four
vertices must also be coplanar.

Remark 4. For complete bipartite frameworks in P3 with vertices on a quadric, we have observed
that the polarity Φ about this quadric generates (up to weights) the projective momenta and centers
for a motion of the bar–joint framework (Section 7.3). This same polarity Φ also generates a
sheetwork with sheets that are tangent to the quadric at the vertices of the framework. For simplicity,
assume the quadric is the unit sphere. The sheetwork has a non-trivial infinitesimal motion, because
the bipartite framework did, by Theorem 12. We claim that the vertices and edges of the original
framework are (up to weights) the momenta for the motion of the sheetwork.

As noted in the introduction to this subsection, the polars of the momenta of the original
framework are (up to weights) the projective centers of a non-trivial sheetwork. Since the sheetwork
is also the polar of the bar–joint framework, the momenta of the sheetwork are, up to weights, the
original bipartite framework. The vertices of the original framework are centers of motion for the
sheets tangent at the vertices, and the edges of the bar–joint framework are momenta for the hinges
(up to weights). Together these form a linked pair of structures around the quadric for which one
gives the infinitesimal motions (momenta) of the other.

Remark 5. There is a polarity for infinitesimal motions of plane frameworks [113] which can now
be integrated into this discussion of sheetworks as polars of frameworks in P3, with proper attention
to centers of motion, and momenta as we have been developing them. We sketch this new connection.
We place a plane framework into the plane z = 1 in R3, with no vertex at the origin. We then
take a cone to the point at infinity up the z axis and take the polar about a right circular cylinder.
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This gives a sheetwork in P3. The original vertices become vertical planes and the bars become the
(vertical) intersection of the two sheets. The cone point becomes the plane at infinity as its sheet.

In the plane z = 0, we have lines for the original joints and points for the original bars, as a
cross-section of the polar sheetwork. In addition, the centers of motion of the sheets corresponding to
the vertices lie on the lines in the plane z = 0, and the centers of motion of the vertical lines pass
through the intersections of these lines. The infinitesimal motions of the original plane framework
now correspond to lifting or tilting the lines along the vertical planes, rotating about the point
centers of plane sheets, which are now in the plane. This polarity is the essential construction
of [113] and reappears in our companion paper [27].

There is a modification of sheetworks—the class of jointed-sheetworks—which is
closed under polarity (Figure 37.)

Figure 37. The opposite faces of a convex octahedron form an isostatic sheetwork (a), with the
octahedral framework as a model (b). A polar is the sheetwork on opposite vertices of the cube (c),
with the tetrahedral framework as a model (d). Figures are adapted from [114].

Definition 4. A jointed-sheetwork is a bipartite incidence graph G = (A, B; I) with an assign-
ment Pi of weighted plane segments (3-extensors) to the vertices in A and an assignment pj of
weighted points in projective space (1-extensors) to the vertices in B such that Pi ∧ pj = 0 (the
point lies on the plane) for each pair (i, j) ∈ I.

Since these jointed-sheetworks include bar–joint frameworks, all the same gaps in
combinatorial characterisations of independence and infinitesimal rigidity in R3 remain.

Notice that the entire presentation here was thoroughly projective, so the theory must
immediately include points, edges, and faces at infinity. It can also be presented with
point centers of motion for sheets and plane momenta for joints. These have not yet been
explored in appropriate detail.

With the same projective lens, there is an immediate transfer of infinitesimal and static
rigidity of sheetworks to Minkowski space both via polarity in that space and also with
a direct transfer of the rigidity analysis of each of the structures from Euclidean space.
Similarly, the infinitesimal and static rigidity of sheetworks transfer sheets to bar–joint
equivalence classes of sheets, in all projective metrics, including spherical frameworks.

In R3, polarity takes a pure condition on points for bar–joint frameworks to a polar
pure condition on faces for sheet structures. Analogously, there will be a pure condition
for point and sheet structures with variables for both points and faces in the polynomial.
Note that polarity within spherical space (and hyperbolic space) takes distance constraints
to angle constraints [69]. This is very different than polarity in the Euclidean space,
followed by direct transfers. We return to this connection in Section 8.4 for a special class
of frameworks: triangulated spheres.
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Remark 6. There are a number of avenues for further exploration of sheetworks. Some of these might
be recognized in actual models, if we have sufficient vision. Figure 38 illustrates transformations
among the various forms of sheetworks. We end with a few areas for further extensions.

1. There is a complete geometric theory of infinitesimal motions of sheetworks with projective
centers of motion. Each sheet has a point centre in the sheet, and the two centres on sheets at a
shared edge satisfy a compatibility condition which is the polar of the condition for bar–joint
frameworks. Does this offer additional insights?

2. What happens with points, lines and sheets at infinity?
3. What about four copunctual sheets—the polar of four coplanar points of a tetrahedron. The

polar will be four sheets through a single point, but with six specified hinge lines through this
point. What will the infinitesimal motions look like?

4. Are there any examples of sheetworks with finite motions where sheets remain as coplanar
sheets? Even the polar of the double banana—with two sheets joining two bodies—only has
finite motions which warp these joining sheets. For example, the polar of the double banana
shown in Figure 39b,c only has infinitesimal motions which bend the two sheets (d), though
as a triangulated model it does have a finite motion.

5. Consider the polar of K4,6 with the four points coplanar. The four points become four sheets
which are co-punctual, with no hinges (edges) among them. As the polar of 6-valent vertices,
these four sheets are hexagonal sheets. These sheets must meet in 6 four-valent sheets. This
type of geometry has yet to be explored.

6. The analogue of tensegrity frameworks are slotted sheetworks. (We will formally introduce
tensegrities in Section 12).

Figure 38. The opposite faces of an octahedron form an isostatic jointed-sheetwork (b), with the full
octahedron as a bar-and-joint model (a). A polar of (b) is (c) as the sheet cube (d). Figure (e) is the
different polar of (a) where the bars in (a) become 2-valent sheets and the vertices will polarize to
4-valent sheets. Figures are adapted from [114].
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(a) (b) (c) (d)

Figure 39. The polar of the double banana (a) as a sheetwork. Figure (b) is a top view of a model with a hexagon for a
degree 6 vertex joining the two halves. The two triangles polarize to rigid triangular prisms joined by the two hexagons
(c,d). This sheetwork has a finite motion which bends the two sheets along fold lines.

8.3. Substitution Principles

The fact that all isostatic frameworks on the vertices of a face are equivalent illustrates
a general substitution principle for subframeworks in a subspace [97]. These substitution
principles apply within all projectively based metrics. They are basically about equivalent
bases within subspaces of the rows of a matrix.

Theorem 13 ([97]). Suppose a framework in Pd has no non-trivial equilibrium stress and has
a subframework among k joints that is statically rigid in the affine space spanned by the joints.
Moreover suppose that a modified framework is created by replacing this subframework by a new
isostatic subframework on these k joints. Then the entire modified framework has no non-trivial
equilibrium stress.

The idea (and proof) is simply that the rows of the isostatic subframework are the
basis for a subspace and any such basis can be replaced by another basis that resolves the
same loads (Figure 40). These substitutions generate equivalence classes of frameworks, as
was found for hinged sheetworks and jointed sheetworks. The substitution principles also
arise naturally in Alexandrov’s Theorem in the next subsection.

(a) (b) (c) (d)

Figure 40. Substituting an isostatic framework on the line with another spanning tree (a), or substituting one plane isostatic
framework with another one on the same vertices (b–d) preserves the static rigidity of the larger framework.

These substitution principles extend immediately to all the projective metrics. The
principles also include points at infinity, if the matrices and rows include such points and
edges. Similar substitutions should extend to the broader classes of geometric matroids
(and matrices) which are found in Part 2 of this article.
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8.4. Cauchy, Alexandrov and Polarity

There is a cluster of rigidity theorems which were initially proven for convex triangu-
lated spheres in R3 [117,118], but have generalisations to a broader class of structures in
P3. There are higher dimensional extensions [97] with the 2-dimensional faces of a convex
polytope in Pd triangulated in their planes giving infinitesimal rigidity for the entire convex
polytope Pd [119]. The combinatorial analogue of Cauchy’s Theorem, which says that all
triangulated spheres are generically rigid (proven by vertex splitting from a triangle [120]),
transfers directly to bivariate splines on triangulated spheres (see Section 11 and [121]).

Definition 5. A strictly convex polyhedral framework is a framework formed by

1. placing a joint at each vertex of a strictly convex polyhedron,
2. placing a bar along each edge of the polyhedron.

We note that the graph G = (V, E) of any triangulation of the sphere, by Euler’s
formula, satisfies |E| = 3|V| − 6. Thus, such frameworks are isostatic in P3 if and only if
there is no non-zero equilibrium stress. The proofs in [97,118] show there is only the all
zero equilibrium stress.

Cauchy’s original proof was for a related theorem about the global uniqueness of
convex triangulated polyhedra, within the class of all convex triangulated polyhedra. We
give an infinitesimal rigidity version for an extended class of polyhedra which is found in
the book of Alexandrov [122] and was reworked with statics in [97].

Theorem 14 (Alexandrov [97,122]). A strictly convex polyhedral framework in P3 with joints
at the vertices and bars on the natural edges, and additional bars to triangulate each face polygon
which is not already a triangle, is isostatic (Figure 41).

Alexandrov further extended this geometric result by adding additional vertices along
the original convex edges of the polyhedron, and ensuring that these vertices are included
in isostatic frameworks in both of the faces at this edge [97,122]. This preserves infinitesimal
rigidity in P3.

(a) (b) (c)

Figure 41. A strictly convex triangulated polyhedron is isostatic (a). A more general strictly convex polyhedron (b) is
isostatic if all faces are triangulated (c).

Note that the geometric polar of a triangulated spherical polyhedron (or simplicial
polyhedron in P3) is a hinged sheetwork on a simple polyhedron, which fits within Alexan-
drov’s Theorem.

As theorems about the infinitesimal rigidity of bar–joint frameworks, the results of
Cauchy and Alexandrov transfer directly to spherical, hyperbolic, Minkowski and de
Sitter spaces. They also extend to include vertices and edges at infinity. Some variants of
Cauchy’s Theorem include sending a vertex to infinity, creating an open polyhedron with
edges fanning out to infinity.

We can extend these theorems to convex simplicial polytopes in higher dimensions.
The proof connects the 3-dimensional result to the vertex figure viewed as a cone of a convex
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polytope of the next lower dimension [97]. It is also related to Alexandrov’s theorem in
the sense that within their 3-space, the cells of a 4-polytope are statically rigid frameworks,
once all 2-faces are triangulated.

Definition 6. A strictly convex 4-polytopial framework is a bar–joint framework in P4 built
on a strictly convex 4-polytope by

1. placing a joint at each vertex of the polytope,
2. placing a bar on each edge of the 4-polytope.

We can give the 4-space analogue of Theorem 14.

Theorem 15 (Whiteley [97]). A strictly convex 4-polytopial framework, with all 2-faces triangu-
lated, is infinitesimally rigid in P4.

Clearly it follows that the graph G = (V, E) of the convex 4-polytope satisfies |E| ≥
4|V| − 10. As Kalai observed [119], this proves a case of the lower bound theorem for
4-polytopes. This infinitesimal rigidity of polytopes with 2-faces triangulated (or made
infinitesimally rigid in their plane) has been extended to arbitrary dimensions, giving
|E| ≥ d|V| − (d+1

2 ) for a convex simplicial d-polytope [97,119]. It would be valuable to
describe the rigidity of various forms of sheet structures in higher dimensions. In our
companion paper [27], we will explore the 2-dimensional analogue where collinear vertices
are spanned by a tree of edges; a “tree-line”.

There is a different polarity in hyperbolic and spherical geometry which does not
connect to sheet structures. However, the infinitesimal rigidity of sheet structures, as
implicitly bar–joint frameworks, does transfer to spherical space and hyperbolic space.
The polarity in the spherical and hyperbolic metrics takes distance constraints to angle
constraints [69]. This adds another rich layer to possible explorations, bringing in angles
which are not captured within the Euclidean space. We will include some additional partial
results on angles in Euclidean space when we look at Minkowski decomposition in our
companion paper [27].

Remark 7. There is a separate, but related, study of static and infinitesimal rigidity of appropriately
smooth surfaces, perhaps with some singularities [123]. These were recognized, at least implicitly, as
projectively invariant properties and there has been some transfer of methods, results, and questions
between the fields [65,124]. It is worth also pointing out a key difference for smooth surfaces. Static
rigidity and infinitesimal rigidity are not equivalent for smooth surfaces: the equivalence for finite
frameworks made an essential use of row rank = column rank for finite dimension matrices, but for
smooth surfaces the concepts correspond to the row and column dependencies of infinite-dimensional
matrices. This was already evident when static rigidity did not imply infinitesimal rigidity for
discrete infinite frameworks (Remark 1). There are further results and conjectures on projective
transformations, polarity, etc. in the smooth setting.

Part II

Projective Theory of Connected Body
Frameworks
9. Body-Bar Frameworks

By expanding vertices to be larger rigid structures or rigid bodies, we find the combi-
natorics of generic rigidity simplifies, and we can give full combinatorial characterisations
in all dimensions with efficient algorithms and with informative projective geometric con-
ditions for singularity [58,125]. This setting has been a playground for developing results
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which we can then work to extend back to bar–joint frameworks. The theory has also
been the basis for conjectures and then theorems about the rigidity of molecular structures,
particularly proteins [126] (Section 10.5). The full theory is projectively invariant and will
be presented with projective coordinates. This projective presentation is the only efficient
way to work with the algebraic representations for these structures.

Take a loopless multigraph G = (V, E) where V = {1, 2, . . . , |V|}. We define a body-
bar framework (G, p) in Pd, with each edge ab represented by the weighted 2-extensor
pa pb = ab = a ∨ b (with a < b) and its Plücker coordinates in Pd.

Definition 7. The rigidity matrix M(G, p) for the body-bar framework (G, p) in Pd has one row
for each bar and (d+1

2 ) columns for each body, with the columns for B1 followed by those for B2,
etc. If (a, b) is a bar with endpoints a in body Bi and b in body Bj, then the row corresponding to
(a, b) in M(G, p) has the 2-extensor ab in the (d+1

2 ) columns for Bi and ba = −ab in the (d+1
2 )

columns for Bj, and 0 in all other columns. (Under this definition, many frameworks are equivalent.
Indeed, all that matters is the 2-extensor, or line, ab, not the location of the two points a and b
on that line, as long as they are distinct.) A motion of (G, p) is an assignment of a center Zi to
each body Bi, 1 ≤ i ≤ m, so that the length of each bar (a, b) is instantaneously preserved, that is,
Z∗i · ab− Z∗j · ab = 0. (Recall the definition of dual extensors in Section 3.1). If we let Z∗ be the

vector (Z∗1 , Z∗2 , . . . , Z∗m) of length m(d+1
2 ) then we require that M(G, p)(Z∗)T = 0.

An equilibrium stress of a body-bar framework (G, p) in Pd is a row dependence of M(G, p).
A body-bar framework (G, p) in Pd is independent if the only equilibrium stress is zero on all edges.
A body-bar framework (G, p) in Pd is infinitesimally rigid if M(G, p) has rank (d+1

2 )(|V| − 1).

As noted above, there are many equivalent body-bar frameworks with the bars sharing
the same extensors, but perhaps using different points along the same lines. Multiplying
the bar-extensors by a scalar can correspond to sliding a pair of points along the line, at
a different distance or just to a different weighting of the projective points. Furthermore,
the bodies do not have any location. Any point can be assumed to lie on body Bi, and the
same point can be assigned to lie on another body along another line. When looking at an
application, or a coming figure (e.g., Figures 42 and 45) we will depict a set of locations for
the ends of the bars, but the analysis will apply to equivalent body-bar frameworks. This
equivalence is also projective, so the end of a bar, or an entire bar, can ‘lie at infinity’ in a
figure or an application of the results.

Theorem 16 (Tay [58,125]). For a generic set of lines p and a body-bar framework (G, p) in Pd,
the following are equivalent:

1. (G, p) is infinitesimally rigid and independent as a body-bar framework;
2. |E| = (d+1

2 )(|V| − 1) and for all non-empty subsets of edges E′ on bodies V′, we have
|E′| ≤ (d+1

2 )(|V′| − 1);
3. G can be partitioned into (d+1

2 ) edge-disjoint spanning trees.

The projective motions of all of Pd are obtained by setting all Z∗ (see Definition 7)
equal to a given screw. These are always motions of (G, p). Since these motions form a
subspace of dimension (d+1

2 ), the maximum rank of M(G, p) is (m− 1)(d+1
2 ). We say (G, p)

is isostatic if M(G, p) has rank (m− 1)(d+1
2 ) and the rows are linearly independent.

There is a connectivity condition for body-bar frameworks which is sufficient for
infinitesimal rigidity in all dimensions.

Corollary 6 ([49]). If a multigraph is d(d + 1)-edge-connected, then almost all body-bar frame-
works on this graph in Pd are infinitesimally rigid.

We note that this connectivity is the minimum possible in general, as there are (d(d +
1) − 1)-edge-connected graphs which are generically flexible. These examples extend
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the example in [38] for d = 2. For bar–joint frameworks, 6-connectivity in the plane
is sufficient for rigidity by results of Lovasz and Yemini [38], who also showed that 5-
connectivity is not sufficient. It is a conjecture that d(d + 1)-connectivity is also sufficient for
generic rigidity of bar–joint frameworks in d-space. Moreover, the recent results of Clinch,
Jackson and Tanigawa [25] show that, when d = 3, 12-connectivity is sufficient (whereas
11-connected is not sufficient) for rigidity in the maximal 3-dimensional abstract rigidity
matroid. However there is currently no known k such that k-connectivity implies rigidity
for bar–joint frameworks when d > 2.

B1 cd
ef

B2

ab

B1 B2

B3

T1

T2

T3

S12

B1
\B2

(a) (b) (c) (d)

Figure 42. Some examples of isostatic body-bar frameworks in P2 (a,b) and in P3 (d). Figure (c) illustrates the 3 edge-disjoint
spanning trees in (b) guaranteed by Theorem 16.

9.1. Body-Bar Combinatorics

We offer more insight into the tree characterisation in Tay’s Theorem, following
the analysis in [58]. This is adapted using more recent approaches based on Laplace
decompositions, such as [106]. The second key ingredient is finding a special configuration
that is easily analyzed and is still infinitesimally rigid—in this case placing trees along
edges of a simplex. If we take the basic body-bar rigidity matrix, we can square it up
by deleting the columns corresponding to the last vertex (body), with no change in the
rank but a reduction in the kernel. A single body has exactly the trivial motions of the
framework, so this squaring-up is the same as a tie-down of this one body, so all trivial
motions are removed by this deletion without any loss of rank.

Example 26. Consider a body-bar framework on the line. On a line, a point has the full space
of trivial motions of a body—which has dimension 1. A framework is infinitesimally rigid if it is
connected, or equivalently contains a spanning tree (Figure 43).

B1 B5B2 B3 B4 B5B1 B2 B3 B4

(a) (b)

Figure 43. A body-bar framework on the line is infinitesimally rigid if it contains a spanning tree (a).
Such a tree can be replaced by a path along the line (b) by the analogue of substitution principles
(Section 8.3) or equivalently by row reduction in the rigidity matrix.

These trees are recorded in the body-bar rigidity matrix on the line as


B1 B2 B3 B4 B5

(1, 2) 1 −1 0 0 0
(1, 3) 1 0 −1 0 0
(3, 4) 0 0 1 −1 0
(3, 5) 0 0 1 0 −1

 ⇐⇒


B1 B2 B3 B4 B5

(1, 2) 1 −1 0 0 0
(2, 3) 0 1 −1 0 0
(3, 4) 0 0 1 −1 0
(4, 5) 0 0 0 1 −1

.

Notice that if we delete the last column for B5, the square matrix has a non-zero determinant.
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This is a model for larger d, just repeated (d+1
2 ) times. If we then reorder the remain-

ing (d+1
2 )(|V| − 1) columns by first taking the first coordinates B1

j for j = 1, . . . m − 1,

then the second coordinates B2
j for j = 1, . . . , m − 1, and so on until finally taking the

last coordinates B(d+1
2 )

j for j = 1, . . . , m− 1, then the determinant of the resulting square
matrix can be calculated by a block Laplace expansion using blocks for each of the m− 1
columns. The determinant is non-zero only if there is a non-zero term in this expan-
sion |L1||L2| . . . |L

(d+1
2 )
| 6= 0. These blocks for this non-zero term generate a decom-

position of the edges of the body-bar framework into (d+1
2 ) blocks which we write as

(A1
1, A2

1, . . . , A1
m−1), . . . , (A(d+1

2 )
1 , A(d+1

2 )
2 , . . . , A(d+1

2 )m−1), giving the matrix :

B1
1 . . . B1

m−1 B2
1 . . . B2

m−1 . . . B(d+1
2 )

1 . . . B(d+1
2 )

m−1



A1
1

L1 ∗ . . . ∗...
A1

m−1
A2

1
∗ L2 . . . ∗...

A2
m−1

...
...

. . .
...

...

A(d+1
2 )

1
∗ ∗ . . . L

(d+1
2 )

...

A(d+1
2 )

m−1

.

The determinant of any one of these diagonal blocks, which has rows which are multiples
of rows of the graphic matroid on the edges is non-zero if and only if the edges form a span-
ning tree on the bodies [49,58,127]. Thus, these terms generate the desired decomposition
of the edges into (d+1

2 ) spanning trees, partitioning the (d+1
2 )(m− 1) edges.

Conversely, if we have (d+1
2 ) trees T1, T2, . . . T

(d+1
2 )

partitioning the edges, then we can
create an isostatic body-bar framework by assigning each tree to a distinct extensor for the
edges of a projective simplex:

(1, 0, . . . , 0); (0, 1, . . . , 0); . . . ; (0, 0, . . . , 1).

This creates the following matrix:



Appl. Sci. 2021, 11, 11946 62 of 105

B1
1 . . . B1

m−1 B2
1 . . . B2

m−1 . . . B(d+1
2 )

1 . . . B(d+1
2 )

m−1



A1
1

[T1] 0 . . . 0...
A1

m−1
A2

1
0 [T2] . . . 0...

A2
m−1

...
...

. . .
...

...

A(d+1
2 )

1
0 0 . . . [T

(d+1
2 )

]...

A(d+1
2 )

m−1

.

In this matrix, each [Ti] is the signed incidence matrix of the tree Ti [58,127]. From
basic work on the cycle matroid (the matrix for rigidity on the line), this has a non-zero
determinant. Thus, for this position, which uses the lines of the edges of a K

(d+1
2 )

, we have
an isostatic body-bar framework.

Figure 44 illustrates this for d = 2 (a) and d = 3 (b) using the edges of a simplex
in projective space, with vertices at the origin and at infinity to simplify the Plücker
coordinates. With this image of the trees along the edges of a simplex, we see that it is
possible to specialise the geometry of the edges of independent body-bar frameworks and
maintain independence.

T2=(0,1,0)

T3=(0,0,1)

T1=(1,0,0)

(0,1,0)

(0,0,1) (1,0,0) T6=(0,0,0,0,0,1)

T2=(0,1,0,0,0,0)

T4=(0,0,0,1,0,0)
T3=(0,0,1,0,0,0)

T5=(0,0,0,0,1,0)

T1=(1,0,0,0,0,0)

(0,0,1,0)

(1,0,0,0) (0,1,0,0)

(0,0,0,1)

(a) (b)

Figure 44. Trees on the edges of a d-simplex, for d = 2 (a) and d = 3 (b). The vertices have projective coordinates and the
edges are given in Plücker coordinates.

For example, in 3-dimensions, if two bodies share edges in trees T1, T2, T3, these
bars can be made concurrent in a point (0, 0, 0, 1) in the larger framework forming a pin,
maintaining the independence. Which patterns of pins can a body-bar framework sustain?
We note that two bodies cannot share two pins, as that would become a redundant ‘hinge’.
Alternatively, the 3 bars connecting the same two bodies could share the other three trees
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T4, T5, T6, which are coplanar, so they form a ‘sheet’ connection between the bodies. Two
bodies could have both types of shared connections. We are not aware of a complete
analysis of which pin and sheet connections can occur in an isostatic body-bar framework.

It is a standard goal in the combinatorics of rigid structures to offer a recursive construc-
tion of all isotatic structures from a simple base case. For body-bar frameworks this type of
inductive construction is available, starting from a single body. This is implicitly described
in [128], where the larger goal was to capture all minimally redundant body-bar frame-
works. These inductions also build on the prior work of Tay and Whiteley [37,125,129,130].

9.2. Body-Bar Projective Conditions and Centers of Motion

White and Whiteley [58] present an analysis of the pure conditions for body-bar
frameworks in Pd with techniques of directed graphs analogous to those described in
Section 7.6. In that paper, there was a focus on how the conditions relate to infinitesimal
motions of bodies when an edge is deleted from a generically isostatic body-bar framework
or becomes dependent due to a special projective configuration.

Figure 45 illustrates a few simple special (singular) positions for body-bar frameworks
in the plane [58]. More generally, White [52,57] explores a number of applied geometric
results which can be well described in the projective Grassmann–Cayley algebra.

B1 cd
ef

B2

ab
S12

B1 B2
cd

ef

ab
S12
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S1

S2

(a) (b) (c)

Figure 45. Two plane bodies with 3 bars (a). The singular position is where the three bars meet in a
point (b) which is the relative center of motion. There are many choices for the centers of motion for
the bodies, provided that the relative center stays positioned at the projective point of intersection
(c). (Note here that while the bodies are drawn as circles, they can take any shape and can extend
arbitrarily far.)

Example 27. Figure 45a shows a generic rigid body-bar framework in the plane with two bodies
connected by 3 independent bars. The row of the rigidity matrix for a bar ab imposes the condition:
abS1 − abS2 = ab(S1 − S2) = ab(S12) = 0, where S1 and S2 are the centers of motion for the
bodies B1 and B2, and S12 is the relative center of motion of the bodies. Projectively, this says
that the relative center must lie on the line ab. This also holds for the bars cd and e f . There is a
non-trivial infinitesimal motion if and only if there is a projective point on all three bars (b). Given
such a point, we can choose an arbitrary center S1 and find a center S2 which produces this relative
center (c). If the three bars meet in a point S12, projectively (including all bars being parallel), then
there is a non-trivial infinitesimal motion, and vice versa. One vision of this is: holding body B1
fixed, body B2 can rotate about the point S12 which lies on all the bars.

Example 28. Consider the plane body-bar framework in Figure 46a. The pure condition for this
example has a projective construction as follows: writing C(G) = (a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f ), we
see that C(G) = 0 precisely when the three points of intersection determined by the pairs of bars are
collinear. In general, when we consider the relative centers of any three bodies in the plane with a
non-trivial infinitesimal motion, we obtain:

S12 + S23 + S31 = [S1 − S2] + [S2 − S3] + [S3 − S1] = 0

which is a simple accordion collapse where reordering the brackets gives middle terms (−Si + Si) =
0. Since [Si − Sj] is a projective point (with a weight) for the relative centre of the two bodies, this
equation says that the three relative centres must projectively add to 0. Projectively, three points can
only add to 0 if they are collinear.

This result also illustrates a more general theorem of Arnhold–Kempe [52,57]: If three bodies
are in motion in the plane, the relative centers of motion of the three pairs of bodies are
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collinear in the projective plane. Notice that this is a projective statement. Some, or even all, of
the relative centers can be on the projective line at infinity corresponding to relative translations. If
the bars in Figure 46a are parallel, then this is what happens to the relative centers.

B1 B2

B3

B1
B2

B3

S12 S23
S13 B1 B2

B3

S12 S23
S13

S3

S1

S2

(a) (b) (c)

Figure 46. Three bodies joined in pairs are generically isostatic (a). The pairs of bars force relative centers of motion, and the
condition for a non-trivial motion is that these relative centers are collinear (b). We have choices of the actual centers as
projective points, provided they satisfy the geometric condition for the relative centers (c).

The body-bar matrices have several simplifying features compared to the bar–joint
matrices. The columns of any single body effectively provide a handy tie-down. A further
simplifying feature of the body-bar matrices is that an entry aibj occurs in just one row
(recall Definition 7), and the determinant of a matrix after a tie-down is linear in the Plücker
coordinates of each bar.

The entire analysis of factoring for these pure conditions simplifies to finding the
subgraphs which are themselves generically isostatic in Pd [58]. Moreover, setting an
irreducible factor = 0, and taking a generic configuration within this algebraic variety only
creates a single equilibrium stress and a single non-trivial infinitesimal motion, which is
non-trivial on all pairs of bodies with edges in this factor. These body-bar frameworks
appear to behave exactly the way we wished Assur graphs would in higher dimensions.
Figure 47 illustrates the decomposition of a body-bar framework, taken from [58].

(a) (b)

Figure 47. A plane body-bar framework (a), with a decomposition into generically rigid components
with further connections (b) [58].

Example 29. Consider the example in Figure 47a as a body-bar framework in the plane. Whether
pairs of bars between two bodies meet in a shared point is not relevant, except to focus our vision.
There are two underlying minimal isostatic components which are boxed in part (b) of the figure.
Each of these will have a pure condition on just its bars. Then the two components can be joined to
form a larger isostatic body-bar framework. If we effectively contract the two minimal frameworks to
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form a single body, the remaining edges have an additional pure condition (actually one for joining
two bodies with three bars, which we saw above). Overall, each edge lies in exactly one condition,
and the overall pure condition will be the product of these three factors.

While making these connections, we observe that it could be timely to expand the full
range of investigations in [58] with the added perspective of recent results and techniques
from Assur graphs (Section 7.7). In particular, we conjecture that if a subgraph which is
generically isostatic has a realisation with exactly one non-zero stress on all edges, and a
single non-trivial motion between all pairs of bodies, then the subgraph has an irreducible
pure condition.

We note that polarity in P3 takes 2-extensors to 2-extensors. Overall, polarity in P3

takes bodies to bodies (dual bodies) and 2-extensor bars to 2-extensor bars. Therefore, po-
larity will preserve the infinitesimal rigidity of body-bar frameworks. So the configurations
that make a pure condition equal to zero will be closed under polarity in P3.

9.3. Projective Line Dependences and the Stewart Platform

Consider two bodies in d-space joined by (d+1
2 ) bars. This is infinitesimally rigid if and

only if these lines are independent in projective space. The Stewart Platform (Figure 48)
illustrates how the line geometry in P3 appears in the analysis of relative motions of two
bodies [6,131,132]. In particular, the Stewart Platform with a zigzag pattern of shared
vertices [133], as shown in Figure 48b, has independent connecting bars and is hence
generically isostatic. This is also called a hexapod.

A classic textbook [134], written for North American structural engineering students,
chose to simplify the communication of dependencies for 6 bars connecting a body to the
ground by only illustrating the singular configuration where all bars meet a single line
(Figure 48c—with line ab). This choice was because the more careful complete commu-
nication would have required more knowledge of projective geometry, which the author
knew but the engineering students did not. This lack of knowledge of projective geometry
may still hold true, at least in North America. This singular configuration with all braces
meeting a single line was at the heart of the Tay River Bridge disaster, also illustrated
in [102].

S12

B1
\B2

S12
B1

\B2
S12

B1
\B2

a

b

(a) (b) (c)

Figure 48. Two bodies can be linked in rigid ways (a,b) for almost all choices of the points and in
ways that are never infinitesimally rigid (c).

Consider the 6× 6 matrix formed by the coordinates of 6 lines joining two bodies in P3:



41 42 43 23 31 12
a1 ∨ b1 (a1b1)41 (a1b1)42 (a1b1)43 (a1b1)23 (a1b1)31 (a1b1)12
a2 ∨ b2 (a2b2)41 (a2b2)42 (a2b2)43 (a2b2)23 (a2b2)31 (a2b2)12
a3 ∨ b3 (a3b3)14 (a3b3)24 (a3b3)34 (a3b3)23 (a3b3)23 (a3b3)13
a4 ∨ b4 (a4b4)14 (a4b4)24 (a4b4)34 (a4b4)23 (a4b4)23 (a4b4)13
a5 ∨ b5 (a5b5)14 (a5b5)24 (a5b5)34 (a5b5)23 (a5b5)23 (a5b5)13
a6 ∨ b6 (a6b6)14 (a6b6)24 (a6b6)34 (a6b6)23 (a6b6)23 (a6b6)13





S41
S42
S43
S23
S31
S12

 =



0
0
0
0
0
0

.

Any non-zero solution to this matrix equation will be the six coordinates of a screw,
which is a relative screw center for a motion of one of the bodies while the other body is
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fixed. In the language of the Theory of Screws [6,59,131], the bars are null lines of the screw.
The null lines of a screw form a line complex which includes a pencil of lines through every
point in space. If the screw solution is itself a line, then all the bars of the line complex
intersect this line, forming a singular line complex, with the pencil of lines formed by joining
some point to this line.

More generally, some configurations of lines are linearly dependent and therefore will
support stresses. Others are independent in the sense that no linear combination will be
dependent. The sums of such lines will create screws, but only some independent lines
will generate additional lines as sums of the generators, rather than screws. We offer a brief
illustration of the larger theory, nicely presented in [131].

Example 30. We offer a short summary when independent lines generate other lines as linear
combinations. 6 independent lines will generate all lines, and all 2-extensors (screws) as linear
combinations.

When working with examples of frameworks, it is valuable to be able to detect the projective
geometric dependence of bars. This is well presented in [131,132]. We will summarize some key
observations about how dependencies of lines appear in 3-space. We begin with two lines and work
up to six lines (Figure 49).
Two independent lines.

If two lines in 3-space are skew (not intersecting) then no other line will appear among the
linear combinations. If two lines intersect, then all lines through this intersection in their plane will
appear as linear combinations forming a projective pencil. This is projective, so if the lines are
parallel meeting at infinity, then other coplanar and parallel lines lie in the same projective pencil.
Three independent lines.

If three lines are mutually skew, then they will lie on a ruling of a quadratic surface. Linear
combinations will be other lines on the regulus of this quadratic surface. Four lines on this regulus
will be dependent. This is something engineers have been trained to watch for, at least visually.

If three lines lie together in a plane, but are not mutually concurrent, then all other lines in the
plane will be a linear combination of these three lines, As a dual, if three lines are concurrent, but
not coplanar, they are independent and a fourth line through this point is dependent (Figure 49b,c).
Figure 49c also shows four dependent lines since the two lines at A generate a plane pencil which
includes the line AB, as does the plane pencil at B. With this common line AB, the four lines are
dependent.
Four independent lines—line congruences.

Consider the lines in Figure 49c. The added plane at point C has lines which cannot be
combinations of lines in the previous planes in Figure 49c.

A symmetric pattern for four independent lines is through (A,B,C) plus one line in each of
the planes. The linear combinations of lines in a general line congruence will generate a single line
through each point in space [131]. Another way to generate a line congruence is to take three lines
generating all lines in a plane plus one line transversal to the plane. Dually, we could have three
lines through a point plus one line not through the point. Again, each of these generates one line
through each point in space, with additional lines for the special points in the generating plane.
Five independent lines—line complexes.

If we take one line, and all lines intersecting it, we find the singular line complex which
has one plane pencil through every point (finite or infinite) in 3-space (Figure 49d). There are
more general line complexes. If we take a screw S, then the set of other screws S∗ which satisfy the
equation S∗ ∧ S = 0 are the null lines of a screw mentioned above. As a single linear equation in
the 6-space of screws, the solution space has dimension 5. Classical geometry [131,132] shows that
this space is generated by sets of 5 lines, and for any point in space there is a pencil of lines. Dually,
in any plane, there will be a pencil of lines.
Six independent lines.

Will generate all lines as linear combinations. Figure 48a,b gives some examples of 6 lines
which are independent, at least generically.
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In [58], the calculations with pure conditions for body-bar frameworks were used to
calculate relative centers of motion when an edge was deleted or changed in length. There
is more to be explored here within the projective lens.

p
A

C

A
B C

A
B C D

(a) (b) (c) (d)

Figure 49. (a) two independent intersecting lines generate a plane pencil (red lines) which are linear combinations of the
original lines. (b) shows three independent lines which generate two plane pencils. (c) shows four independent lines which
generate three plane pencils that share a common line. (d) shows five independent lines which share a common line and
generate four plane pencils sharing a common line which is the center of the singular line complex.

Example 31. Figure 50a gives another sample of 6 independent lines, for generic lines within the
visible projective geometric conditions of three lines through point p and three lines in a distinct
plane P. In (b) the dark blue lines are independent (subsets of (a)), while the red line l is in the spatial
pencil of lines through p – a linear combination of the dark lines. In (c) the dark lines are again
independent – generating all lines in the plane (red l) as linear combinations. in (d) the point p is
placed into the plane P, so the shared line l (or any line in this plane pencil) is a linear combination
of both the lines through p and the lines in plane P – the six lines are dependent by their projective
geometry. Thus this configuration always is dependent with these projective conditions and there is
a maximum of 5 independent lines

The polar of the configuration in (a) is an equivalent configuration to (a). The polar of (b)
is a configuration equivalent to (c) and the polar of (d) is again equivalent to (d). In general, the
independence of bars in body-bar frameworks is invariant under polarities which take the bars to
new lines.

There is a rich vein of projective geometry and projective insights in the design and analysis
for body-bar frameworks [59,132]. Viewing the design choices and analysis through a projective
lens is an essential point of view.

P

D'
p

lp

l l

(a) (b) (c) (d)

Figure 50. (a) shows 6 independent lines in space which generate all lines in space. (b) shows 3 lines through a point p
which generate all lines through p, such as the added red line l. (c) shows three lines in a plane P which generate all lines in
that plane, such as the added red line l. (d) shows 6 dependent lines when the point p in (b) lies in the plane P in (c) and
they each generate the common line l.

9.4. Static Rigidity and Stresses in Body-Bar Frameworks

We can transfer the entire theory of statics to body-bar frameworks. One approach is
to replace bodies by rigid bar–joint sub-frameworks. Instead, we will directly transfer the
definitions, with illustrations from dimensions 2 and 3. Recall that forces are expressed
with 2-extensors, which are also used for rows of the body-bar rigidity matrix.
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Informally, the rows of the body-bar rigidity matrix share an important property: the
equilibrium property says the sum of the entries within a single row, including all the 0
entries, is a ∨ b + b ∨ a + 0 = 0. This property extends to all linear combinations of the
rows, so an assignment of a wrench (sum of 2-extensors; recall Section 3.2) to all the bodies
can only be in the row space if it satisfies the equilibrium property.

Definition 8. Given a body-bar framework (G, p) in Pd, a load on (G, p) is an assignment W of
a wrench (sum of 2-extensors) to each body. An equilibrium load on a body-bar framework is a
load W such that ∑i∈V Wi = 0. The linear combinations in the row space of the matrix satisfy the
equilibrium condition. A resolution of an equilibrium load is an assignment of a scalar ρe to
each edge e and its row Re, such that ∑e ρeRe = W.

Example 32. Consider the body-bar framework in Figure 51 with an equilibrium load (a). In (b)
we graphically confirm this is an equilibirium load since the lines of three forces meet in a point and
the free vectors add to 0. In (c) we recognize that the two bars joining to bodies generate a fan of
possible lines for a resolution, going through the point of intersection, and three of those lines can be
used to resolve the load. In (d) we give the resolving responses in the three lines which fully resolve
the equilibrium load on the statically rigid body-bar framework in the plane.

2
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F3
F1

(a)

F1 F2
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(b)

2
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F2
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(c)
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a

b
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2
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F1 F31
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F13
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Figure 51. Given a body-bar framework with a load (a), we can graphically confirm it is an equilibrium load (b). With the
two bars joining a pair of bodies, a resolution will use a line through their crossing point (c) and give forces along these lines
(d) to resolve the load.

In line with the theory for most types of finite structures with a rigidity matrix, infinites-
imal rigidity requires that the column rank is (d+1

2 )(|V| − 1) and static rigidity requires
that the row rank is also (d+1

2 )(|V| − 1). This immediately gives the following result.

Proposition 8. A body-bar framework in Pd is infinitesimally rigid if and only if it is statically
rigid in Pd.
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Example 33. Consider the bicycle wheel in 3-dimensions (Figure 52). This can be represented as
a body-bar framework with two bodies and the spokes as bars. However, the material of the thin
spokes will only support forces in tension. For infinitesimal rigidity, we need a proper equilibrium
stress which is positive on the spokes. With this sign restriction it is a tensegrity framework
(Section 12). For example, we may only need 7 spokes which span the space of bars to make the
wheel rigid – which can be enough bars to sustain an equilibrium stress ω between two bodies. If ω
is a positive equilibrium stress on the 7 bars, then any load on the wheel and axle can be resolved on
6 independent bars. Adding a sufficiently large multiple of the positive equilibrium stress ω on the
7 bars, the load is now resolved on the spokes, with all coefficients positive. This gives a flavour of
what we will explore further in Section 12.

This rigidity is not quite projective but it is locally projective: any small projective transforma-
tion will preserve the signs of the equilibrium stress and keep the body-bar framework statically rigid
with a positive equilibrium stress on the 7 bars. We note that this approach requires only one bar
beyond the minimal 6 for static rigidity—not the 12 tensegrity members that Buckminster Fuller
speculated.

Figure 52. A bicycle wheel is a body-bar framework in 3-dimensions, but with spokes that can only sustain tension.

A cut set S ⊂ E of a body-bar framework is a subset E′ of edges whose removal
separates the graph of the framework into two or more distinct components. The following
theorem is folklore among civil engineers and gives a useful property of such cut sets [29].

Proposition 9 (Cut Set Equilibrium). Let S′ = {(pi, qi) : 1 ≤ i ≤ k} ⊂ S be the edges of a cut
set S of a framework (G, p) which are directed into a connected component of G− S. Then for any
equilibrium stress ω on the framework, ∑k

i=1 ωi(pi ∨ qi) = 0, where ωi ∈ ω.

For insight, consider a single body as the component. This property is immediate for
a single body from the equilibrium condition. For an inductive proof, one then moves out
to adjacent bodies and adds the individual equilibrium conditions and observes that can-
cellation occurs on any edges that now lie inside the larger component, leaving the correct
equilibrium on the wider cut set for the expanded component. This cut set equilibrium
condition is used by engineers to test whether a minimal framework, by count, is statically
rigid. The proposition also holds in the more general context of bar–joint frameworks in Pd.
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9.5. Coning Body-Bar Frameworks

We are not quite ready to present a full analysis which mixes bodies and bars and
takes a one-point cone, which would require an analysis of a combined body, bar, and
single point framework. Such a geometric vision is behind why the results on body-bar
frameworks will transfer to the spherical metric, and why coning may be interesting.

Imagine that we have a body-bar framework (G, p) in Pd and a new point O ∈ Pd+1.
If we initially envision or ‘place’ O in body v1 and add d + 1 bars from this point to each of
the other bodies, then in an underlying bar-and-joint model of the body-bar framework,
we have a cone framework in Pd+1 and infinitesimal rigidity is preserved. This gives one
interpretation of the body-bar framework transferred to the spherical metric.

If we split the point O ∈ Pd+1 into a set of new vertices, one for every bar, this will
retain the infinitesimal rigidity with all bars distinct and no lines of bars are assumed to
meet. More directly, the added bars can be partitioned into d + 1 additional spanning
trees. Any trees will work and we can have any duplication we wish. For example, we
may choose the trees so that each of them forms a fan from the body v1, giving a total
of (d+1

2 ) + (d + 1) = (d+2
2 ) spanning trees. By Tay’s Theorem 16, this is sufficient for

infinitesimal rigidity in Pd+1 (see Figure 53).

B1 B2

B3

B1 B2

B3

B1 B2

B3

(a) (b) (c)

Figure 53. An isostatic body-bar graph for the plane (a) has several cones to 3-space. In (b) we have
just inserted three spanning trees (in red). In (c) we have added the new point O to B1 and then split
it to create the added 3 red spanning trees.

What about the converse? If we have a generically isostatic body-bar graph in Pd+1,
with (d+2

2 )-spanning trees, removing any d + 1 spanning trees leaves (d+1
2 ) spanning trees.

Therefore, for any choice of the deleted trees, we have a generically isostatic body-bar
graph in Pd by Theorem 16.

Remark 8. As noted before, it does not matter which two distinct points along the line of a bar are
designated as the endpoints at the respective bodies, as long as they are distinct. In particular, we
could select a hyperplane for each body, and choose the endpoints of bars to the body to lie at the
intersection of the line of the bar and the body’s hyperplane, at least generically. Things change
when we go down one more dimension and place the bodies in a projective space of co-dimension 2.
That is explored in the next section.

9.6. Rod and Bar Frameworks in 3-Dimensions

Tay [125,129] and Tanigawa [135] studied further interesting variants of body-bar
frameworks, in which projectively smaller bodies, such as rods or collinear rigid bodies
in P3, are linked with bars. They are worth describing, briefly, because they occur in
applications and they have good combinatorial characterisations. In Section 10.7, we will
return to rod and pin frameworks in the plane. Rods in P3 start with 5 degrees of freedom,
as a rotation of a rod about its axis is trivial. This suggests that the constraint count for a
multigraph G = (R, E) of rods R and bars E joining pairs of rods will be |E| ≤ 5|R| − 6.

Example 34. Consider the simple rod and bar frameworks in Figure 54. With 2 rods joined by
three bars, the count is |E| = 3 < 5× 2− 6 = 4. Even clamped together one rod rotates about this
pin (see the light line in Figure 54a). When we add a 4th bar, we can use the four bars to complete
a tetrahedron, as in Figure 54b. This realisation generalises to other realisations where the 4 bars



Appl. Sci. 2021, 11, 11946 71 of 105

spread out but continue to each contact the lines of the two bars. The projective condition for failure
to be independent and infinitesimally rigid is that the four connecting bars are coplanar, or that all
four bars are concurrent. These are polar of one another, as the configuration is also self-polar. If we
have 3 rods connected as in Figure 54c, then we have two conditions for each of the tetrahedra, and
an added projective condition that if the line of the final bar ab intersects the line of the middle bar,
then the configuration is infinitesimally flexible and stressed.

R1 R3

ab

R2

(a) (b) (c)

Figure 54. Two rods in space can be joined with three bars. Even formed as a clamp (a), this structure
is flexible. With four bars (b) it is generically rigid: |E| = 4 = (2× 5− 6) = 5|R| − 6. Three rods can
be joined in several patterns with 9 bars (c).

The rigidity matrix for this structure is obtained from the body-bar rigidity matrix,
with a row for each bar, and 6 columns for each rod. However, there is one extra trivial
motion for each rod, namely the rotation around the axis of the rod [135].

Theorem 17 (Tay [129], Tanigawa [135]). For a graph G = (R, E), the following are equivalent:

1. the graph has isostatic realisations as a rod-bar framework in P3;
2. the graph satisfies |E| = 5|R| − 6, and for all subgraphs with at least two rods we have

|E′| ≤ 5|R′| − 6;
3. the graph has a 6Tree5 partition into 6 disjoint trees, 5 at each rod.

This theorem actually extends to all dimensions where ‘rod’ becomes a shorthand for
body where all vertices lie in a projective subspace of co-dimension 2 in Pd, as a rod does
in P3 (Figure 55).

Theorem 18 (Tay [129], Tanigawa [135]). For a graph G = (R, E), the following are equivalent:

1. the graph has some isostatic realisations as a rod-bar framework in Pd;
2. the graph satisfies |E| = ((d+1

2 )− 1)|R| − (d+1
2 ) and for all subgraphs with at least two rods

we have |E′| ≤ ((d+1
2 )− 1)|R′| − (d+1

2 );
3. the graph has a (d+1

2 )Tree((d+1
2 )− 1) partition into (d+1

2 ) disjoint trees, (d+1
2 )− 1 at each rod.
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(a) (b) (c)

Figure 55. Three rods in P3 are generically rigid with three triples of connecting bars (a), and still
infinitesimally rigid with the triples each concurrent (b), even with the rods crossing effectively as
clamps (c).

Tanigawa proved an extended theorem with bodies, rods and bars in 3-space [135].
The variant of body–hinge frameworks (see sections below) where hinges can connect
more than two bodies was also analysed and proven by Tay and by Tanigawa. When a bar
(or other rod) meets a rod at infinity, they form what Tay called a ‘slip joint’ [125,129]. In
these papers, this is modeled as a slider along the bar. These slip joints are also found in
physical models in mechanical engineering.

A special case of interest is where pairs of rods are clamped together at shared points.
For this special case of rod and clamp frameworks we have necessary counts for independence
and infinitesimal rigidity. However, a full combinatorial theory has not yet been developed
for these structures. A rod and clamp framework in 3-space consists of 1-dimensional
rods (collinear bodies), and selected pairs of rods are clamped together at common points.
This may be modelled by placing three bars between each selected pair of rods so that
they go through a common point. In such a framework each rod has 5 degrees of freedom
and each incidence of two rods (pinned or shared vertex) removes 3 common degrees of
freedom (relative translations), so we conjecture that the constraint count for independence
is 3|I′| ≤ 5|R′| − 6 (where |R′| is the number of rods and |I′| is the number of incidences of
pairs of rods). More generally, if we allow more than two rods to be incident with a point,
then this can be modeled using incidence structures S = (V, R; I), where I ⊆ V × R, and
the constraint count becomes 3|I′| ≤ 3|V′|+ 5|R′| − 6. In the following we consider some
basic examples.

Example 35. Consider the example in Figure 56. In (b), we have 6 rods and 8 clamps, each on
two rods. The counts are |R| = 6 and 3|I| = 24. This gives 3|I| = 24 = 30− 6 = 5|R| − 6.
Experimentally, this is infinitesimally rigid. If we remove one rod (c) we have |L| = 5 and 3|I| = 18
and hence 3|I| = 18 < 25− 6 = 5|R| − 6 so the structure must be infinitesimally flexible. Adding
back the last rod with two clamps is adding 5 degrees of freedom and 6 constraints. The lines of the
rods can still be generic. However, if we ask for one further intersection (a), then the 6 lines must be
rulings of a quadric surface by classic projective geometry. It is known that this configuration is
finitely flexible. (This is actually a question from an old undergraduate Tripos exam from Cambridge
in the 1870s.)
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(a) (b) (c)

Figure 56. Three lines meeting three lines in nine points of intersection form a projectively special position (a) on a quadric
surface which is known to be flexible. Releasing the last intersection to make the lines more generic (b) yields a structure
that is infinitesimally rigid. Figure (c) counts to be infinitesimally flexible.

As an extension of this example, every Km,n with m, n ≥ 3 will be flexible, even though
these will appear to be over-counted by increasing gaps between 3|I| and 5|R| − 6. In
addition, if we have K4,4 minus one edge, then a classical theorem of projective geometry
called the 16th point theorem guarantees that the 16th intersection must occur.

Remark 9. The algebraic structure of these rod and clamp frameworks is not quite the same as for
the previous types of frameworks. In 3-dimensions, we can make generic choices for the two points
a, b defining the line of a rod. The points along the rod for the endpoints of a bar can be defined by
choosing a generic scalar λi and taking the point xi = λa + (1− λi)b. Repeated for all rods and
all bars, we have 2|R|+ 2|E| choices for the variables. Entered into the rigidity matrix this gives
an implicit definition of ‘generic’ configurations. The failure of the Km.n frameworks points to a
subtle gap where a generically rigid subgraph (K3.3 minus one incidence) does not guarantee the
extended graph has generic realisations which are rigid as the meaning of generic has shifted. Coning
into higher spaces will transfer this issue to all higher spaces. This also suggests that plane-point
incidence structures in 4-space, as well as point-line and line-plane incidence structures in 4-space
also deserve a fresh analysis.

10. Body–Hinge Frameworks
10.1. Body–Hinge Basic Transfer

For d = 3 the following result was conjectured in 1976 by Janos Baracs, a structural
engineer leading the Structural Topology Research Group [136]. The proof of the theorem
was then observed independently by Tay [125] and Whiteley [49]. In view of the essential
difficulties which remain for spatial bar–joint frameworks it is a pleasant surprise that these
hinge structures retain their combinatorial simplicity.

Recall that a (d− 1)-extensor is a (d+1
2 )-dimensional vector which satisfies the Plücker-

relations. (A (d− 1)-extensor is dual to a 2-extensor.) Recall also that a screw is a general
(d+1

2 )-dimensional vector, or a sum of (d− 1)-extensors.

Definition 9. A body–hinge structure (or body–hinge framework) (G, H) in d-space is a
graph G = (V, E) together with a mapping H from E into the space of (d − 1)-extensors of
projective d-space: H(e) = He = Hij if a1(e) = i is the initial vertex of e and a2(e) = j is the final
vertex of e. An infinitesimal motion of a body–hinge structure is an assignment of screw centers
Si to each vertex vi of the graph such that for every oriented edge (i, j): Si = −Sj = ωeHe for some
scalar ωe. A body–hinge framework is infinitesimally rigid if every infinitesimal motion is trivial,
with all bodies receiving the same centre.

Notice that Si = −Sj = ωeHe is a set of ((d+1
2 )− 1) equations, and a hinge is equivalent

to ((d+1
2 )− 1) bars. The body–hinge framework can only be infinitesimally rigid in Pd if

we replace each hinge by ((d+1
2 )− 1) bars and the resulting body-bar framework contains a
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subset with the required (d+1
2 )(|V| − 1) edges for body-bar rigidity. Following the body-bar

analysis, this subset must partition into (d+1
2 )(|V| − 1) trees, such that the edges from any

hinge are in distinct trees, with up to ((d+1
2 )− 1) bars between any two bodies connected

by a single hinge.
What is less obvious is that if this replacement gives such a tree partition into

(d+1
2 )(|V| − 1) trees, such that the edges between a pair of bodies are in distinct trees,

with up to ((d+1
2 )− 1) bars between any two bodies, then there is an infinitesimally rigid

geometric realization with the edges between any two bodies all incident with a single line
– the line of a geometric hinge [48]. This realization is found when the trees are realized
along the edges of a simplex in P2. This is illustrated in Figure 57 for d = 3. With the 6 trees
realized along the edges of a tetrahedron, up to 5 of the trees meet a single edge (T4), which
becomes the line of a hinge sharing these 5 trees.

T6

T2
T3

T4T5

Figure 57. Any 5 trees on edges of a tetrahedron are all incident on a shared hinge line.

These observations, with some additional details, are captured in Theorem 19.

Theorem 19 (Tay–Whiteley [48]). For a graph G the following are equivalent:

1. G has realisations as an infinitesimally rigid body–hinge structure in Pd.
2. G contains (d+1

2 ) spanning trees which use any hinge edge at most (d+1
2 )− 1 times.

3. There is a subset of edges E with ((d+1
2 )− 1)|E| ≥ (d+1

2 )(|V| − 1) such that for any partition
V∗ of the vertices the contracted subgraph G∗ = (V∗, E∗), where E∗ is the set of edges
induced by V∗, satisfies ((d+1

2 )− 1)|E∗| ≥ (d+1
2 )(|V∗| − 1).

In some previous papers, the notation ((d+1
2 )− 1)G was used for the multigraph where

all edges of G are expanded to ((d+1
2 )− 1) edges joining the same vertices as a multigraph.

10.2. Body–Hinge Motion Assignments

This presentation is adapted and extended from the initial 3-dimensional projective
analysis in [53]. The initial presentation was projective and therefore included sliders at
infinity as hinges in P3. We present the basic results in the form of a natural generalisation
to all dimensions. An analogous approach also occurs in the study of cofactors for splines
and we will see that results and methods transfer (Section 11).

Given two bodies Bi, Bj and a hyperplane for the hinge Hij, this becomes a geometric
constraint on the centers of motion (codimension 2 extensors) Si of the bodies:

Si − Sj = ωijHij.

The edge ij is directed, as is Hij. The same equation can be written as Sj − Si = ωijHji

with Hji = −Hji since ωji = ωij. Given any body–hinge framework in Pd, we can track
what happens around a cycle C : 〈B1; H12; B2; . . . : Bk; Hk1; B1〉. We observe that the
hinge equations collapse the entries Si so that the equation becomes the cycle condition
∑(ij)∈C ωij Hij = 0. We call such an assignment of scalars a motion assignment of the
body–hinge structure.
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Proposition 10. Any infinitesimal motion of a body–hinge framework in Pd gives a unique motion
assignment. Conversely, any motion assignment of scalars which satisfies the cycle condition on all
cycles gives an infinitesimal motion for the body–hinge framework, unique up to a trivial motion for
an initial body.

In P3, starting with a spherical polyhedron which has vertices, edges and faces, and
making the faces into bodies, the cycles for the motion assignment are all generated by the
cycles around vertices. This is a key property of any simply-connected topological surface.
In addition, in P3, the hinges as 2-extensors are also candidates for stresses on bars and
there is a transfer between motion assignments and equilibrium stresses. This connection
will reappear and will be extended as a key property in Section 10.6.

Proposition 11 (Crapo and Whiteley [53]). Any infinitesimal motion of a body–hinge framework
in P3 on the faces and edges of a polyhedral manifold gives a unique motion assignment which is an
equilibrium stress on the framework of vertices and edges. Conversely, given a spherical polyhedron
with an equilibrium stress on the vertices and edges of the polyhedron, the scalars form a motion
assignment for an infinitesimal motion of a body–hinge framework on the faces and edges of the
polyhedron.

Figure 58 shows some cycles where this correspondence transfers to give results for
infinitesimal rigidity (a) and for infinitesimal (actually finite) flexibility (b).

b

a

(a) (b)

Figure 58. Two body–hinge cycles of length 6 in 3-space, one isostatic (a) forming an octahedron, and
one geometrically singular (b) with all hinges meeting a single line through two vertices.

For more general oriented topological surfaces in 3-space, such as a torus, the topology
can be realised geometrically as a polyhedral body–hinge framework in 3-space with
vertices, edges as hinges, and faces as discs. A motion assignment to the hinges and faces of
the polyhedron which satisfies the cycle conditions still implies an equilibrium stress in the
corresponding bar–joint framework on the vertices and edges. However the converse does
not hold. Given an equilibrium stress on the vertices and edges of the toroidal polyhedron,
there are cycles of faces and edges on a toroidal polyhedron which do not disconnect
the graph. Therefore the transferred equilibrium stress scalars may not satisfy the cycle
condition for a motion assignment on such a cycle.

10.3. Coning for Body–Hinge in Pd

Coning a body–hinge framework (G, H) in Pd involves picking a point O in Pd+1 and
adding it as a point on all bodies and expanding all hinges as Hij ∨O to create a new
body hinge framework (G, H ∗O) in Pd+1. With the cone point O ∈ Pd+1, not in Pd, and
any cycle C in the body hinge framework, a motion assignment ∑ij∈C ωijHij = 0 in Pd

implies ∑ij∈C (ωijHij) ∨O = 0 or ∑ij∈C ωij(Hij ∨O) = 0 in Pd+1. Therefore, every motion
assignment of the original body–hinge framework becomes a motion assignment of the
coned framework (G, H ∗O).
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Conversely, a motion assignment for (G, H ∗ O), ∑ij∈C ωij(Hij ∨ O) = 0 in Pd+1

implies
∑

ij∈C
ωij(Hij ∨O) = ∑

ij∈C
(ωijHij) ∨O = 0.

Since O is not in Pd, and therefore not in the span of ∑(ij)∈C (ωijHij), this implies
∑(ij)∈C (ωij Hij) = 0 for every cycle. Therefore the motion assignment transfers back
to the original body–hinge framework. We summarize this as a theorem:

Theorem 20. Take a body–hinge framework (G, H) in Pd and its cone to O ∈ Pd+1 − Pd. An
assignment ω for the hinges is a motion assignment for (G, H) if and only if it is a motion
assignment for the cone body–hinge framework (G, H ∗O).

Therefore coning preserves infinitesimal rigidity and static rigidity of the body–hinge
framework.

What about a general cross-section of a body–hinge framework (G, H ∗O) in Pd+1?
This cross-section of a hinge with a hyperplane A is the dimension of a hinge in Pd, with a
weighted extensor. The cycle condition ∑ij∈C (ωijH∗ij) = 0 transfers to the cycle condition
∑ij∈C (ωij H∗ij) ∧ A = 0. We conclude that the cross-section inherits any motion from the
original body–hinge framework.

10.4. Molecular and Body-Plate Frameworks

The molecular conjecture (now a theorem) was raised in earlier explorations of the
combinatorics of body–hinge structures [34,37,50]. The initial and probably most interesting
example is in 3-dimensions, where actual molecules form molecular frameworks of atoms,
fixed length bonds, and rotations around the bonds. The resulting mathematical model is a
body–hinge framework with the special property that all the hinges at an atom meet in a
central point. This connection, and the fact that generic body–hinge frameworks have a fast
pebble-game algorithm for checking generic rigidity, meant that the molecular conjecture
became the object of significant exploration and study [126]. We will describe more about
the applications in the next section.

Definition 10. A molecular body–hinge framework is a body hinge framework in P3 such that
for each body, all hinges of the body are concurrent in a point.

In chemistry, modeling atoms as bodies, all bonds between atoms are hinges passing
through the center of the atom [126,137]. Double bonds are not hinges but force the two
atoms to behave as a single body in larger molecular body–hinge frameworks. Assuming
fixed angles between the bonds (hinges) we have a body for each atom, although there are
some nuances for hydrogen atoms which with one bond are not a full body: we would not
notice spinning about this single bond [126].

Definition 11. A panel–hinge framework is a body–hinge framework in Pd such that, for each
body, all hinges of the body are in a hyperplane.

It is a simple observation that if we take the polar of a (not necessarily generic)
molecular structure in R3 we obtain a body-plate framework in R3. This simple projective
geometric connection via polarity does not extend to higher dimensions. That includes
geometric configurations with hinges, plates, or molecular centers at infinity. However
there is a general theorem for panel–hinge frameworks in all dimensions. A body–hinge
framework being generic will mean the hinge lines are formed by two generic points
whereas a generic panel–hinge framework uses generic hyperplanes for the panels.
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Theorem 21 ([50]). A graph is generically infinitesimally rigid as a body–hinge framework in Pd

(resp. independent, flexible) if and only if it is generically infinitesimally rigid (resp. independent,
flexible) as a panel–hinge framework in Pd.

Corollary 7. A generic panel–hinge framework in Pd is infinitesimally rigid if and only if the
multigraph ((d+1

2 )− 1)G contains (d+1
2 ) spanning trees.

Corollary 8 (Molecular Theorem [50]). A graph is generically infinitesimally rigid as a body–
hinge framework in P3 (resp. independent, flexible) if and only if it is generically infinitesimally
rigid (resp. independent, flexible) as a molecular framework in P3.

This entire theory is projectively invariant. We can incorporate hinges at infinity, as
well as the centers of molecules at infinity. As results on infinitesimal rigidity (and static
rigidity), these definitions and results for flat-body hinge frameworks, and the Molecular
Theorem, transfer directly to the other metrics which share the projective foundation.

10.5. Applications to Protein Structures

The paper [126] presents a short summary of how biomolecules, including proteins,
can be analysed using the geometry and combinatorics of body–hinge frameworks and the
Molecular Theorem. Other helpful papers for this are [137–140].

Example 36. Rings of atoms, particularly carbon rings, are important parts of many organic
molecules (Figure 59). We start with an analysis of some simple counting for rings of 7, 6, and 5
molecules.

For a ring of 7 atoms with hinges around the ring, we have a body–hinge framework G =
(B, H) with 5|H| = 35 < 36 = 6(7− 1) = 6(|B| − 1). The ring is generically flexible, as are
all longer rings. For a ring of 6, such as Cyclohexane (see Figure 59a), we have 5|H| = 30 =
6(6− 1) = 6(|B| − 1). The body–hinge structure, and the molecular framework, will be generically
isostatic. The figure shows added hydrogen atoms, so that each carbon is bonded to 4 other atoms
and all the bonds are single bonds which allow rotation. For a ring of 5, such as in Proline (see
Figure 59b), we have 5|H| = 25 > 24 = 6(5− 1) = 6(|B| − 1). The body–hinge structure, and
the molecular framework, will be redundant and globally rigid. Proline is one of the 21 amino acids
that are the building blocks of proteins, and it plays a particular role in forming rigid substructures
in a larger protein.

Figure 59c focuses on the core ring in a form chemists call the chair. Since the angles are all
fixed, if we join 3 alternate atoms, we have an implied triangle, and the other 3 atoms form an
additional triangle. This is now the edge skeleton of a convex octahedron which is isostatic in that
geometry (by Cauchy’s Theorem). Figure 59d is in the form the chemists call the boat. It is flexible
with a full finite flex, due to the half-turn symmetry [138]. It takes some deformation of lengths
and angles to switch between the chair and the boat. This is called an energy barrier in molecular
modeling.

In biomolecules, function depends on both having a shape and having some flexibility.
So the rings of size > 6 are not common, and many rings of length 6 occur—sometimes
linked together.

Example 37. In ‘mad cow disease’ a protein ‘prion’ switches shape to become too rigid—not able
to be recycled, both building up as junk in the brain and offering a template for other copies of
the protein to refold in the rigid form. The misfolded variant has more rigidity and aggregates by
binding with other copies of the same protein along the beta sheets that then resist recycling. In
cystic fibrosis, mutations in a gene cause the CFTR protein to become dysfunctional—essentially
they become too floppy, so that the body recycles it before it can take a functional shape. Good
functioning of proteins happen on the boundary of having a functioning shape and being able to
make small changes in shape [126,137].
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There are extended fast programs, built from the Molecular Theorem and body–hinge
models, to predict which parts of a protein are rigid and which are flexible [19,20]. This
software can analyze a biomolecule with 400,000 atoms in a minute—a quick and somewhat
approximate prediction which is helpful and much faster than the many week molecular
dynamics simulations. This information is valuable in drug design, because the drug may
work by removing a functioning motion (as in HIV inhibitors) or even in deforming the
protein so that some other part becomes active (allostery, or shape change at a distance).

(a) (b) (c) (d)

Figure 59. Two models of molecular rings: Cyclohexane (a) C6H12 and Proline C5H9NO2 (b). (Colour code: Carbon: grey;
Hydrogen H: white; Nitrogen, N: blue; Oxygen, O: red.) Simplified rings of 6 carbons have two configurations: the ‘chair’
(c) which is rigid, and the ‘boat’ (d) which is flexible.

Example 38. Consider the initial drug treatment for HIV (Figure 60): the inhibitor reduces the
flexibility of a critical functional motion of the protease, which is critical to the replication of the HIV
virus by clipping one of the virus components. This drug shuts down the replication by rigidifying
the functional motion.

(a)

(b) (c)
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Figure 60. Two configurations of the HIV Protease protein (a) open and (b) closed with a docked drug. In (c) we see a
simulation of the flexibility of the open form, extracted from the rigidity and flexibility in (a) which the drug will inhibit
(rigid in (b)). Basic ptrotein figures produced by the groups of Professors Mike Thorpe and Leslie Kuhn [137].

There is a rich and growing literature on applications of rigidity to drug design, and
to validating protein models [141].
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10.6. Block and Hole Polyhedra

Given that we do not have a full combinatorial characterisation or efficient algorithm
for which graphs will be isostatic generic frameworks when d ≥ 3, we continue to search
for classes of frameworks which can be well characterised. We have described results for
triangulated convex polyhedra (therefore spherical) at one end and bipartite frameworks
at the other end of a spectrum. Here we summarise some results for frameworks adapted
from spherical polyhedra by shifting some edges around, usually preserving the overall
count |E| = 3|V| − 6 (Figure 61).

2

block

hole

(a) (b)

Figure 61. A triangulated sphere (a). Removing some edges creates holes (dotted), and replacing the
edges elsewhere creates blocks (shaded) (b). Figure by Elissa Ross, reused with permission. [107].

We extract some results and examples from two basic papers [107,108]. The main
theorems of [107] apply only in 3-dimensions, and use methods of the previous sections
drawing on two key observations. (i) As we saw above, the scalars on hinges (line segments)
for body–hinge frameworks in 3-dimensions have a relevant analogue with scalars on bars
which form equilibrium stresses in a ‘related’ framework. (ii) The second observation,
already seen in the background of Cauchy’s Theorem and Alexandrov’s Theorem [53,97]
(Section 8.4), is the connection between equilibrium stresses on bar–joint frameworks and
infinitesimal motions on panel–hinge structures connected through the topology of spheres
as simply connected manifolds: any face-edge cycle in the manifold cuts the graph of
vertices and edges into two (or more) components, so the equilibrium condition of a stress
across a cut set (including the cycle around vertices of the polyhedron) corresponds to the
cycle condition for a cycle of faces and hinges crossing the same edges.

The paper [107] presents the theory in essentially projective terms, so that the results
and methods transfer easily to our setting of body–hinge frameworks. An abstract spherical
polyhedron can be constructed from a spherical drawing of a 3-connected planar graph
G, adding the regions created in the drawing as the ‘faces’ of the polyhedron. This face
structure is unique, given 3-connectivity of the planar graph.

Definition 12. A block and hole polyhedron P with vertex set V, edge set E, and face set F is
an abstract spherical polyhedron whose faces F = (BP,HP,TP) are partitioned into three mutually
disjoint sets, BP,HP, and TP. The set BP contains the faces designated as blocks and the set HP

contains the faces designated as holes. The remaining faces are triangulated on their vertices, and
the collection of resulting triangular faces forms the set TP.

Recall Example 21 where we saw both a rigid n-gon block and an open n-gon hole,
which do not share vertices. Let P be a block and hole polyhedron, and let P be obtained by
replacing each block with a hole and each hole with a block. Let G(P) and G(P) represent
the graphs of P and P, respectively. The key properties of the block and hole frameworks
do not depend on which isostatic subframework is inserted for each block, provided that
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the boundary polygon of the original face is used as part of the isostatic framework. This is
captured by the isostatic substitution principle given in Theorem 8.3.

Definition 13. Let P be a block and hole polyhedron. The static framework graph GS(P), is the
graph of a block and hole polyhedral framework with the added isostatic frameworks for each block.
Since we do not pay attention to the isostatic subframeworks on the blocks, we consider GS(P) to
be a representative framework among an equivalence class of graphs (with various isostatic blocks
inserted into the block faces).

With this in mind, in the remainder of this section we will be non-specific about which
isostatic subframework is used in place of a block, with the exception that we do assume
that the original polygon of the face is present among the edges of the isostatic framework.

Let p be an embedding of the graph into P3, and let G(P, p) and G(P, p) be the em-
bedded frameworks of P and P, respectively. For simplicity in thinking about infinitesimal
motions represented by scalars on edges of the graph(s), we focus on separated block and hole
polyhedra where any vertex contacts at most one block and one hole. Generalizations and
constructions which extend the correspondence to more general block and hole polyhedra
are given in [107]. Note that G(P, p) is separated if and only if G(P, p) is separated.

The graph GS(P) will be used to track the equilibrium stresses of frameworks on P.
The graphs GS(P) and GS(P) exist for every block and hole polyhedron (see Figure 62c,d).
At a configuration p they form bar–joint frameworks with well-defined spaces of equi-
librium stresses, which we denote by S(GS(P, p)) and S(GS(P, p)). The space of residual
unresolved equilibrium loads for these frameworks (our proxy space for the bar–joint
infinitesimal motions), is denoted by M(GS(P, p)) and M(GS(P, p)).

As an intermediary analysis of the infinitesimal motions, we use an induced body–
hinge structure on (P, p) in place of M(GS(P, p)) to track these connections. This body–
hinge structure is composed of rigid bodies (surface faces and bodies, but not holes), and
edges between rigid faces of the underlying spherical block and hole polyhedron P (which
become hinges) to form the body–hinge polyhedron GM(P) (Figure 62e,f). For a particular
configuration p, we denote the vector space of motion assignments on this structure by
M(GM(P, p)). As we will see, for block and hole polyhedra P satisfying certain conditions,
the spaces M(GM(P, p)) and M(GS(P, p)) are isomorphic.

Theorem 22 (Swapping Theorem [107]). Assume G(P, p) is a separated block and hole polyhedron.

1. If a block and hole polyhedral framework G(P, p) has a non-trivial infinitesimal motion as
a panel–hinge structure, then the swapped block and hole structure G(P, p) has a static
equilibrium stress in the same configuration;

2. If a block and hole polyhedral framework G(P, p) has a static equilibrium stress, then the
swapped block and hole structure G(P, p) has a non-trivial infinitesimal motion in the same
configuration;

3. G(P, p) is isostatic if and only if G(P, p) is isostatic.

This is a geometric theorem, which implies a weaker combinatorial theorem. The
graph of a block and hole polyhedron is generically isostatic if and only if the graph of the
swapped polyhedron is generically isostatic.

Example 39. We can have only blocks and one hole (no identified surface triangles): P =
(BP, {H}). As a hinge structure, this is a disc of rigid panels (blocks), leaving the ‘exterior’
as a single hole (see Figure 63). The swapped structure P = ({B},HP) has one block, which we
often think of as a rigid ground, and the rest is a bar–joint framework on the edges of the polyhedron.
These maps give a variant of the isomorphism between the motion assignments of GM(P) and the
equilibrium stresses of GS(P). Such ‘panel discs’ are encountered implicitly in a number of studies
such as [96], as well as some recent work on structures built on quad-graphs [142] in discrete
differential geometry.
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1. 5-gon block,
4-gon hole

2. 4-gon block,
5-gon hole

Description

a) P b) P

Shaded areas define blocks, dot-
ted faces are holes, and the re-
maining triangular faces are un-
shaded.

c) GS(P) d) GS(P)

Shaded areas and dashed edges
represent blocks, the edges of
which will uniquely resolve any
external load. The graph GS

consists of the dark edges, the
dashed edges, and sufficient ad-
ditional edges between pairs of
block vertices to create an iso-
static framework on these ver-
tices.

e) GM (P) f) GM (P)

The wiggly lines indicate edges
of the polyhedron that are not
hinges (the edges that form the
boundary of the holes). The re-
maining edges of the polyhedron
(in the shaded region) define the
faces of a panel structure.

1

Figure 62. Examples of block and hole polyhedra, and their associated graphs for tracking stresses GS(P) and tracking
hinge motions GM(P). Figure by Elissa Ross, reused with permission [107].

A more recent exploration of these types of frameworks is given by
Cruickshank et al. [143]. A graph is (3, 6)-tight if it satisfies the natural conditions from
the Maxwell count: |E| = 3|V| − 6 and for every subgraph with at least 3 vertices,
|E′| ≤ 3|V′| − 6.

Theorem 23 (Cruickshank, Kitson, and Power [143]). Let GS(P) be the static framework graph
with a single block and finitely many holes, or, a single hole and finitely many blocks. Then the
following statements are equivalent:

1. GS(P) is generically isostatic in P3;
2. GS(P) is (3, 6)-tight;
3. GS(P) is constructible from K3 by vertex splitting operations and isostatic block substitution.

In [108], Finbow-Singh and Whiteley conjectured that (2) is equivalent to (1) for all
separated block and hole frameworks.

If we develop the pure condition for an isostatic block and hole polyhedron P, as a
bar–joint framework, there will be a factor for each block, which may depend on which
generically isostatic graph was inserted. If we factor out these block factors, we are left with
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a form of pure condition for the triangulated surface—the surface polynomial T(P). This
was observed earlier in Example 21. In this example, we observed the surface polynomial
was the same after we swapped.

v1 v2

v3v4
block

v6 v5

v8v7
hole

1

v1 v2

v3v4
block

v6 v5

v8v7
hole

1

2

block

hole

(a) (b) (c)

Figure 63. Figure (a) depicts a block and hole polyhedron P consisting only of blocks. Figure (b)
shows the graph GM(P) (in which degree two vertices have been removed), and (c) depicts the graph
GS(P) of the swapped polyhedron. This graph can also be viewed as a pinned graph. Figures by
Elissa Ross, used with permission [107].

Conjecture 3 ([107] Conjecture 5.1). Given a generically isostatic block and hole polyhedron
P, the surface polynomial of P is the same as the surface polynomial of the swapped polyhedron
T(P) = T(P).

The second paper [108] describes ways of demonstrating that a block and hole poly-
hedron is, at least generically, isostatic by a range of inductive constructions, as well as
corresponding reduction processes for locating a simple isostatic base structure from which
to induct up to the desired example. These inductions are combinatorial, with an empha-
sis on vertex splitting (Figure 64). Therefore they will apply over a range of projective
realisations, frameworks, and metrics. The inductive constructions in that paper can be
applied to a much broader array of spatial frameworks than block and hole polyhedra.
This is worth exploring in the future, but is not sufficiently projective to take up more
space in this paper. We mention that a class of examples in that paper, called ‘towers’, were
sufficiently transparent to provide initial examples of how infinitesimal motions of one
part of a framework would transmit through to infinitesimal motions elsewhere: a form of
mathematical allostery [126]. They also provided illustrative examples for motions of finite
and infinite tubes, which also occur in biology of proteins [144].

(a) (b)

Figure 64. Given a pair of edges from a shared vertex (a), a vertex split opens this up to a pair of
triangles, with one new vertex (b). If we are working in part of a triangulated surface, this expands
the triangulated surface, preserving infinitesimal rigidity in 3-space. Under appropriate conditions,
we can contract such a shared edge to find a smaller infinitesimally rigid framework [108].
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A review of all the methods for block and hole polyhedra, including swapping, con-
firms that the results apply across all projective metrics: spherical, Minkowski, hyperbolic.
For the spherical metric on S3, we also see a form of coning into P4, where the cone of a
hole is the cone point attached to the face cycle and the cone of a block is a block in P4.

10.7. Lower Dimensional Bodies: Pinned Rods in the Plane

In the background of studies of the molecular conjecture, a 2-dimensional analogue
was proven [145]. (Some early examples were presented in [146].) A plane rod configuration
for an incidence structure (V, R; I) is a realisation in P2 where each element of R represents
a rod (an infinitesimally rigid body in the plane with all joints collinear), and these rods
are pinned together at selected crossing points which are the vertices. These are special
plane examples of the “hinged panel structures” in which a pin may connect more than
two bodies. The obvious count for such a rod-configuration to be independent is 2|I′| ≤
2|V′|+ 3|R′| − 3 for all induced incidence structures with |V′| ≥ 2 vertices, since each
vertex gives 2 variables, each rod gives 3 variables, and each incidence represents 2 linear
constraints on these variables.

We can take any rod configuration with at least two distinct joints for each rod and
build an auxiliary bar framework with the same properties. We replace each rod by a string
of edges, and an auxiliary joint off the line, and a cone of auxiliary edges from this vertex to
all vertices on the rod. The independence or infinitesimal rigidity of a rod configuration is
equivalent to the independence or infinitesimal rigidity of such an auxiliary bar framework.

Theorem 24 (Whiteley [145,146]). An incidence structure S = (V, R; I) has realisations as an
independent rod configuration in the plane if and only if 2|I′| ≤ 2|V′|+ 3|R′| − 3 for all induced
incidence structures with |V′| ≥ 2 vertices.

It is non-trivial to extend this to characterise rigidity. This was done by Jackson and
Jordán [145] in the case in which exactly two rods meet at a vertex.

Theorem 25 (Plane Rod Configurations [145]). Let G be a graph and 2G the graph obtained
from G by replacing each edge with 2 parallel edges between the same vertices. Then G has an
infinitesimally rigid rod configuration in the plane if and only if 2G contains three edge-disjoint
spanning trees.

Two recent preprint [147,148] continus the exploration of these structures.

10.8. Summary Table

Table 1 pulls together the geometric objects and incidences, with the known necessary
conditions and possibly sufficient conditions for independence. Constructing this table
also became a way to identify gaps that might be addressed and areas of future work. Yes
(=) is shorthand for this becomes necessary and sufficient when equality is achieved for
the whole structure. Equality is only possible for all sizes of the whole structure if there is
no multiplier on the LHS.
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Table 1. Structures with distance constraints, and necessary counting conditions. Pins and clamps mean shared vertices of
larger bodies.

Table of Geometric Structures and Distance Constraints: Euclidean, Minkowski

Dim. Geometric Objects Necessary Counts Suff. Sect.

d = 1 point line (bar–joint) |E′| ≤ |V′| − 1 Yes (=)
d = 1 line pin-rod |P′| ≤ |F′| − 1| Yes (=)

d = 2 point edge (bar–joint) |E′| ≤ 2|V′| − 3 Yes (=) [13,14]
d = 2 bar face (body-bar) 2|P| ≤ 3|B| − 3 Yes Section 9.1 [58]
d = 2 point face (body-pin) 2|P| ≤ 3|B| − 3 Yes Section 10
d = 2 pinned rods 2|I′| ≤ 2|V′|+ 3|F′| − 3 Yes Section 10.7 [145]

d = 3 bar–joint |E| ≤ 3|V| − 6 No [34]
d = 3 body-bar |E| ≤ 6|B| − 6 Yes (=) Section 9.1 [58]
d = 3 rod and bar |E| ≤ 5|R| − 6 Yes (=) Section 9.6 [135]
d = 3 body–hinge 5|H| ≤ 6|B| − 6 Yes Section 10 [58]
d = 3 flat-body hinge 5|H| ≤ 6|B| − 6 Yes Section 10.4 [50]
d = 3 molecular body hinge 5|H| ≤ 6|B| − 6 Yes Section 10.4 [50]
d = 3 body-pin 3|P| ≤ 6|B| − 6 No
d = 3 clamped rods 3|P| ≤ 5|R| − 6 No Section 9.6
d = 3 edge-face (sheetworks) |E| ≤ 3|F| − 6 No Section 8.2 [114]
d = 3 point-face (sheetworks) |I| ≤ 3|V|+ 3|F| − 6 No Section 8.2 [114]

d > 3 bar–joint |E| ≤ d|V| − (d+2
d+1) No [34]

d body-bar |E| ≤ (d+2
d+1)(|B| − 1) Yes (=) Section 9.2 [58]

d body–hinge [(d+2
d+1)− 1]|H| ≤ (d+2

d+1)(|B| − 1) Yes Section 10 [58]
d flat-body hinge [(d+2

d+1)− 1]|H| ≤ (d+2
d+1)(|B| − 1) Yes Section 10.4 [50]

d rod and bar |E| ≤ (d+2
d+1)− 1]|R| − (d+2

d+1) Yes Section 9.6 [135]

Part III

Maximal Abstract Rigidity Matroids and
Multivariate Splines

Over the last 35 years, there has been a growing recognition of the strong similarity in
combinatorics, geometric techniques, and results in two distinct fields, each projectively
invariant:

1. the projective and combinatorial theory of frameworks, both bar–joint and panel–
hinge in P3; and

2. bivariate C1
2 splines for a polygonal decomposition ∆ of a disc in the plane, written

S1
2(∆) in approximation theory [23]. This focuses on finding a piecewise degree 2

surface (C2) for each polygonal cell so that they fit together over the edges with
globally continuous first derivatives (C1) across the whole surface. This space of
splines is sometimes studied as the row dependencies (cofactors) of a rigidity type
cofactor matrix based on the edges and vertices of the cell decomposition [22,24].

Over the years this similarity became a lens for a deeper analogy through which
tools, conjectures and results were transferred between the fields and were written up
both in publications and in circulating preprints [21,24]. For example, vertex splitting
was first derived as a technique for C1

2-cofactors while proving the generic version of
Cauchy’s Theorem for bivariate C1

2 splines [121]. The technique was then transferred to
rigidity theory [120] as a now standard basic inductive technique. A very recent result [149]
presents a direct algebraic transfer between Cd−2

d−1 splines on a conic in the plane and rigidity
in Rd along the moment curve (nd, nd−1, . . . , n).
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We will use the notation Cr
d-cofactors throughout this section, except when we are

directly relating to the broader approximation theory literature over cell decompositions,
where Sr

d(∆) will be used. One advantage of the cofactor notation is that it applies to the
underlying graph and can be extended to broader classes of graphs than the vertices and
edges of a cell decomposition.

We will only sketch some of the basic similarities through the matrix patterns and
methods as it would take another 50 pages plus to replicate all the rigidity results which
immediately transfer [22,24]. It would take even more space for the further extensions,
which a careful comparison now opens up.

Whiteley conjectured [21,34] that the C1
2-cofactor matroid is (a) combinatorially equiv-

alent to the 3-dimensional rigidity matroid on the same graph, and (b) the C1
2-cofactor

matroid is the maximal abstract 3-dimensional rigidity matroid. Using some subtly easier
tools in the cofactor context, which arise because the vertices of the graphs remain in the
plane, conjecture (b) has recently been confirmed [25] (see Section 11.3 and Theorem 27
below). This same maximality question for rigidity in R3 remains open; another example
of the power of the analogies between the combinatorial and projective theories of splines
and rigidity.

11. Multivariate Splines and Cofactor Matroids

Multivariate splines are widely recognized as affinely invariant across work in ap-
proximation theory and they are becoming recognized more generally as projectively
invariant [23,24]. The recent preprint [25] offers an alternative proof of the projective in-
variance for C1

2-splines using an analogue of motions for splines. There is an opening for
increasing the transfer of projective techniques between the fields, which we will explore
through constructions such as coning, points at infinity, etc. We note that some recent work
on multivariate splines is directly using polarity as a tool for investigating the dimensions
of spaces of splines [115]. This is a playground for asking new questions and exploring
transfers of techniques.

11.1. Smoothing Cofactors for Splines and Compatibility Conditions

We first present the basic cofactors of bivariate splines following a pattern which
strongly matches with the approach above for motion assignments for body–hinge frame-
works. This connection informed some methods used in [23,150].

We initially consider the faces and edges of a planar graph realised in the plane,
without crossings, and ask about the space of all surfaces which are piecewise quadratic
over each face, and when two faces share an edge, they meet with continuous 1st derivatives
(common tangent planes) forming the S1

2-bivariate splines. The compatibility condition below
describes algebraically when the two faces meet over the line pi pj with a continuous 1st
derivative at the shared line. It offers a basic equation central to our analysis.

Lemma 2 (Chui and Wang [150]). Two bivariate quadratic polynomials Sj and Sk meet with
continuous 1st derivatives over the line Ajkx + Bjky + Cjk = 0 if and only if, for some scalar βjk

we have
Sk − Sj = βjk(Ajkx + Bjky + Cjk)2.

With projective coordinates for the vertices pi, pj and the variable affine point X =

(x, y, 1), the equation of the line from pi to pj is written [pi pjX]. The βij are termed
smoothing cofactors. For simplicity, we assume j < k, giving an orientation to each edge, and
reversing the orientation, the equation Sj − Sk = −βkj[pi pjX]2 implies that βkj = −βjk. As
before, when we have an oriented cycle of faces and edges C, the compatibilty equation is
∑(ij)∈C βjk[pi pjX]2 ≡ 0. This is called the conformality condition when applied to a face-edge
cycle around a vertex of an oriented manifold (Figure 65).

This is a polynomial identity, with 6 different powers xiyj i, j ≤ 2: x2, xy, y2, x, y, 1,
which must hold identically for these 6 powers, analogous to the 6 coordinates of the
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2-extensors in P3. We can ask about which lines are dependent or independent in the plane,
with these C1

2-cofactor conditions.

b

a F1

F2

F6 F4F5

F3

a1

a2

a3 b3
b1

b2

(a) (b) (c)

Figure 65. Cycles of 6 faces for C1
2-splines. (a) is generically dependent. (b) is a subset of an octahedral graph which is

generically independent. (c) is a special projective condition for dependence of the octahedral graph of the Morgan–Scott
split decomposition of the exterior triangle and therefore of the cycle. The first two parts are spline analogues in the plane of
the body–hinge frameworks in Figure 58.

Example 40. Consider Figure 65. Any three lines through a point are independent but any four
lines through a point are dependent (a), with the line joining ab as the dependent 4th line at each
of a and b, as we will confirm in the next section. A generic set of 4, 5, or 6 lines in the plane is
C1

2-cofactor independent, including a generic cycle of the form (b). See also the figures and examples
in Section 11.4 for generic triangulated spheres [24,121]. However a set with three lines meeting in
each of the two points a, b is C1

2-cofactor dependent, as the line joining the two vertices is a linear
combination of each of the triples (a).

If the 6 lines form the zig-zag of an octahedron (b,c) the projective condition for dependence
has been identified in multiple analyses [24,151]. As illustrated in (c) the projective condition is the
plane concurrence of the lines a1b1, a2b2, a3b3. We do not know what other projective conditions
will make 4, 5 or 6 lines C1

2-cofactor dependent. This is a problem for future work. It would be
possible to take the determinant of the 6× 6 matrix below, which must be projectively invariant,
and seek the relevant projective condition.

An extended approach for splines which is highlighted in approximation theory is
the investigation of row dependencies which are polynomials of bounded degree. This
moves to algebraic geometry and homology theory. There are some key results in recent
papers [115,152]. More generally, this cofactor condition extends to higher bivariate splines
with piecewise degree d polynomials with continuous rth derivatives from the space of
Sr

d-splines with smoothing cofactors which are polynomials of fixed degree. The following
is the corresponding extension of the basic result of Lemma 2.

Theorem 26 (Chui and Wang [150]). Two bivariate polynomials of degree d, Sj and Sk, meet with
continuous rth derivatives over the line Ajkx + Bjky + Cjk = 0 if and only if, for some polynomials
βjk of degree ≤ d− (r + 1):

Sk − Sj = βjk(Ajkx + Bjky + Cjk)r+1 = βjk[pj pkX]r+1.

If d > (r + 1), these βjk are no longer scalars and this is no longer a matroid. However,
this is an algebraic structure of cofactor matrices that has both similarities and differences
to our standard rigidity matrices with linear dependencies [22,24]. There is a growing
literature for counting the generic dimension for the spaces of splines for various r, d [23].
The polynomial coefficients continue to satisfy the conformality conditions for any oriented
cycle of faces and edges in the plane, and these spaces are projectively invariant [22,24].
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11.2. The C1
2-Cofactor Matroid on Plane Graphs: An Analogue of Rigidity in P3

We can drop the three equations corresponding to the terms 1, x, y under the index for
each vertex vi [23]. To see this, we note that for edges at vi, we have

0 = [pi pkX]2|X=pi and 0 =
∂[pi pkX]2

∂x
∣∣
X=pi

and 0 =
∂[pi pkX]2

∂y
|X=pi .

Therefore, if we have cofactors for the edges at vi which make all the higher powers add to
0, then the whole sum is identically 0. This reduction is true for all r but we will focus on
C1

2 and we write Dij for the vector ((xi − xj)
2, (xi − xj) · (yi − yj), (yi − yj)

2). With this in
hand, we can present the C1

2-cofactor matrix as

M(C1
2)(G, p) =


i j

...
ij 0 . . . 0 Dij 0 . . . 0 −Dij 0 . . . 0

...

.

The maximal rank for this matrix, for any graph on n vertices, will be 3n− 6. Moreover
the matrix has the same pattern as the 3-dimensional rigidity matrix. We can use this matrix,
along with vertex splitting, to state a combinatorial version of Cauchy’s Theorem for C1

2
splines, which was, essentially, conjectured by Billera and was proven in [34].

Proposition 12 (Whiteley [22,121]). Given the graph of a triangulated sphere with n vertices,
realised at a generic configuration in P2, the rank of the C1

2-cofactor matrix is 3n− 6 = |E|.

11.3. C1
2 Is the Maximal Abstract 3-Rigidity Matroid

There is a recent theorem, confirming an earlier conjecture, that places these matroids
central to the exploration of abstract 3-rigidity [25,26], see also [21,35,153,154]. For a
matroid M, let clM denote the closure operator of M.

Definition 14 (Graver [153]). A matroid M on Kn is an abstract d-rigidity matroid if the
following two properties hold:

(R1) If E1, E2 ⊆ E(Kn) with |V(E1) ∩ V(E2)| ≤ d − 1, then clM(E1 ∪ E2) ⊆ Km where
m = |V(E1) ∪V(E2)|;

(R2) If E1, E2 ⊆ E(Kn) with clM(E1) = Kn1 where n1 = |V(E1)|, clM(E2) = Kn2 where n2 =
|V(E2)|, and |V(E1) ∩V(E2)| ≥ d, then clM(E1 ∪ E2) = Km where m = |V(E1 ∪ E2)|.

The generic d-dimensional rigidity matroid for Kn, Md(G), is an example of an abstract
d-rigidity matroid. Nguyen [154] showed that an equivalent definition of an abstract d-
rigidity matroid is that every copy of Kd+2 is a circuit, no smaller circuits exist and the rank
is d|V| − (d+1

2 ).

Theorem 27 ([25]). The generic C1
2-cofactor matroid on Kn is the unique maximal abstract 3-

rigidity matroid on E(Kn).

The equality |E| = 3n− 6 for bases in the C1
2-cofactor matroid immediately implies

that the graph G contains a vertex of degree 3, 4 or 5. The proof of the theorem uses
a sequence of construction steps to add such vertices to smaller maximal independent
sets (outlined as a conjecture in [37] and extended in [25]). The proof shows that this
matroid is the unique maximal abstract rigidity matroid in the sense that if a set of edges
is independent in any abstract 3-rigidity matroid, then it is independent in the generic
C1

2-cofactor matroid on the complete graph Kn. In particular, any independent set in any
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framework on Kn in P3 will be independent in the generic C1
2-cofactor matroid on the

complete graph Kn. The recursive proof technique gives the following construction.

Corollary 9. All bases in the maximal abstract 3-rigidity matroid can be derived from a triangle
by an inductive construction using the following steps:

1. 0-extensions (i.e., vertex addition) (Figure 66a);
2. 1-extensions (i.e., edge splitting) (Figure 66b);
3. X-replacement (Figure 67a);
4. double V-replacement (Figure 67b).

v2v1

v3

v3

v0

v1 v2

Always, if 
noncollinear

Always,

Almost all
placements

Always, for  
some pair

v2v1

v3
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v3
v4

v0

(a) (b)

Figure 66. Inductive methods to add degree 3 (a) and degree 4 (b) vertices to C1
2 independent sets.
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Figure 67. Two ways to add degree 5 vertices. (a) is X replacement and (b) is double-V replacement.
At least one of these will apply when a degree 5 vertex is removed/added for an independent graph.

In a broad sense, this is an extension of Laman’s proof of the characterisation of generic
rigidity in 2-dimensions by induction based on the first two steps above, as |E| ≤ 2|V| − 3
guarantees there are vertices of degree at most 3. It is not yet proven whether the generic
rigidity matroid for d = 3 is also maximal. A key gap is the absence of a proof that
X-replacement preserves generic rigidity when d = 3. It appears that, with that added
step, the proof for double-V replacement will extend to generic rigidity. A key unsolved
problem that remains is to find fast deterministic algorithms for the rigidity of generic
frameworks with maximal rank for generic rigidity or for the C1

2-cofactor matroid.
There are pure conditions for C1

2-splines in the plane which capture the projective
geometric conditions for dependencies for generically independent graphs [24]. For ex-
ample, for the graph of an octahedron, the pure condition is that one of the triangles is
collinear or that three edges joining opposite vertices are concurrent [24]. In part, it is
realizing the projective geometric complexity of determining the dimensions of bivariate
splines spaces that encouraged people to abandon their use for automated selection of
control points for surfaces, as there are alternative forms of splines, such as box splines,
which are combinatorially stable for all general position configurations, without projective
geometric analysis.

11.4. Transferring Pure Conditions

Given the strong analogy between 3-dimensional rigidity and C1
2-splines, there has

been an extensive, if incomplete, investigation of pure conditions for the C1
2-cofactor
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matroid [24]. The results for block and hole polyhedra also transfer and some of them were
anticipated in [24]. The analogy of the two projectively invariant theories is still full of
surprises and invitations to further work.

These pure spline conditions will now be polynomials in the brackets for P2, [abc].
The pattern of the spline matrices are amenable to the same Laplace decomposition as used
for calculating pure conditions in Section 7. The same directed graphs make the terms of
the Laplace decomposition visible. The short summary here will focus on the C1

2-cofactor
matroid with the analogy to pure conditions in P3. Extensions to Cr

r+1-cofactors should
follow but have not been explored in detail, though all examples of (projective) singularities
have some interest in approximation theory [23,115]. In this decomposition, the basic term
for the three rows under vertex 1 will have the final form [24]:∣∣∣∣∣∣

D12
D13
D14

∣∣∣∣∣∣ = 2[p1 p2 p3][p1 p2 p4][p1 p3 p4]. (10)

For the tie-down, we will adapt the basic matrix for testing the independence of
6 edges

(p1, p2), (p3, p4), (p5, p6), (p7, p8), (p9, p10), (p11, p12)

in the C1
2-cofactor matroid:



2, 0 1, 1 0, 2 1, 0 0, 1 0, 0
(p1, p2) (x1 − x2)

2 (x1 − x2)(y1 − y2) (y1 − y2)
2 (x1 − x2) (y1 − y2) 1

(p3, p4) (x3 − x4)
2 (x3 − x4)(y3 − y4) (y3 − y4)

2 (x3 − x4) (y3 − y4) 1
(p5, p6) (x5 − x6)

2 (x5 − x6)(y5 − y6) (y5 − y6)
2 (x5 − x6) (y5 − y6) 1

(p7, p8) (x7 − x8)
2 (x7 − x8)(y7 − y8) (y7 − y8)

2 (x7 − x8) (y7 − y8) 1
(p9, p10) (x9 − x10)

2 (x9 − x10)(y9 − y10) (y9 − y10)
2 (x9 − x10) (y9 − y10) 1

(p11, p12) (x11 − x12)
2 (x11 − x12)(y11 − y12) (y11 − y12)

2 (x11 − x12) (y11 − y12) 1

.

For what configurations is the determinant of this matrix equal to zero? This is an
analogue of the tie-down matrix in rigidity theory. We now have a sequence of steps
reconstructed and transferred from [85] and bar–joint frameworks (Section 7.4) to verify
that there is also a unique pure condition for an isostatic graph in the C1

2-cofactor matroid.
Recall that a framework (G, p) in P2 is in general position if no 3 points lie on a line. The
following lemma adapted from [85] applies immediately.

Lemma 3. A general position realisation of a C1
2-cofactor graph, (G, p) in P2, is C1

2-isostatic if and
only if there exists a tie-down T which produces an invertible extended matrix M(C1

2)(G, p, T).

1. Let G be a C1
2-cofactor graph. Represent the tie-down bars aixi of a realisation of G,

(G, p), in P2 with the 6 coefficients of the squared lines [ai, xi, X]2. We can construct a
square 6× 6 matrix with determinant S(T) in the bracket algebra which is non-zero
if and only if the tie-down will not support a row dependence in these rows in the
extended matrix (the tie-down rows are independent). These are the non-degenerate
tie-downs with S(T) 6= 0.

2. The non-degenerate tie-downs include all 6 plane patterns from Figure 26 for generic
points ai, xi.

3. Suppose G is C1
2-isostatic in P2 and T is a non-degenerate tie-down. Then the de-

terminant of the extended C1
2-cofactor matrix is an element S(G, T) of the bracket

ring B on the set of vertices of G ∪ T. This follows because the terms in the Laplace
decomposition by the columns of vertices are themselves bracket polynomials.

4. For a non-degenerate tie-down the polynomial S(T) is a factor of the larger determi-
nant S(G, T) so that S(G, T) = S(T)ST(G) for some ST(G).

5. For two non-degenerate tie-downs T, T′ the residual factors ST(G) = S′T(G), so there
is a unique pure condition S(G). This again uses a lemma that moves one tie-down
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edge at a time along an edge of G, provided the moves preserve the non-degeneracy
of the tie-down.

These steps allow us to use the same proof technique that White and Whiteley [85]
used for bar–joint frameworks to prove the following transferred theorem.

Theorem 28. Suppose G is C1
2-isostatic in P2. Then there exists an element of the bracket ring on

the vertices of G such that any realisation, (G, p), has a non-trivial smoothing cofactor if and only
if the bracket polynomial evaluated at p is 0: S(G)(p) = 0.

S(G) is clearly a projectively invariant polynomial, and can include all projective
points, including points which would be infinite in Euclidean space. The following alge-
braic property of the polynomial S(G) is valuable in working out the pure conditions, as
we will illustrate below.

Proposition 13. Let G = (V, E) be a C1
2-isostatic graph in P2 and take a vertex vi ∈ V of degree

k. Then the pure condition S(G) is of degree 2k− 3 in the variable entries for pi.

This degree count is verified by examining the Laplace term from the columns for pi.
The 3 rows contribute 3 = 2× 3− 3 occurrences of pi, all additional rows with pi contribute
2 occurrences each and hence the net count is 2k− 3.

If there is a triangle with vertices a, b, c in the C1
2-isostatic graph G then [abc] is a

common factor of the pure condition. For a triangulated disc (the most common setting
for studying cofactors), we can factor out all of these triangle factors to leave the reduced
pure condition [24]. Note that for a triangle, the factor [abc] is confirming that any collinear
triangle will increase the dimension of the space of splines.

Example 41. Consider the graph in Figure 68a which is called the Morgan Scott split in the study
of S1

2-splines and their C1
2-cofactors [151]. This graph of a triangulated sphere, with an exterior

triangle of free vertices, is generically a basis in the C1
2-cofactor matroid on the interior vertices and

hence has 3-directed orientations, see (b),(c). We present the calculation in [24], though there are
other equivalent calculations in papers such as [151].

If we write out the pure condition, and reduce it by the 8 simple triangle factors (saying no
triangle is collinear) then we are left with the projective condition [24]:

([bb′c′][caa′]− [c′aa′][cbb′]) = 0 or (aa′) ∧ (bb′) ∧ (cc′) = 0.

This projective condition says that, provided the triangles are not collinear, the graph is dependent
in the C1

2-cofactor matroid if and only if the three edges joining opposite vertices of the octahedron
are concurrent. This pure condition is algebraically irreducible, though it factors in the Grassmann–
Cayley algebra.

This example is the start of an inductive class of pure conditions.

Theorem 29 (Whiteley [24]). Given a triangulated triangle ∆ which arises from the graph of the
octahedron (the Morgan Scott split) by a sequence of 3-dimensional 1-extensions, the reduced pure
condition C∗(∆, p) is an irreducible polynomial over the complex numbers.

The following is a general conjecture which has an analogue for pure conditions in P3.
Note that, for combinatorial reasons, if the graph is not 4-connected, then the reduced pure
condition will factor, as it does for pure conditions for rigidity of frameworks in P3.



Appl. Sci. 2021, 11, 11946 91 of 105

c'

b c

b'

a

a'

c'

b c

b'

a

a'

c'

b c'

c'

a

a'

c'

b' c

b'

a

a'

(a) (b) (c) (d)

Figure 68. The Morgan Scott split (an octahedral graph) (a), with the two 3-directed orientations (b,c) and the projective
condition for dependence (d).

Conjecture 4 (Whiteley [24]). The reduced pure condition C∗(∆, p) on a triangulated sphere ∆
is irreducible over the complex numbers if and only if the interior graph is 4-connected.

As we saw in Figure 68, the 3-directed graphs used for Assur decompositions and pure
conditions in 3-dimensional rigidity can be used to, again, generate terms in the Laplace
decomposition and the pure conditions for the C1

2-cofactor matrix. This time we work with
the C1

2-cofactor matrix for a graph with free boundary – vertices with no constraints on the
coefficients. These free vertices play the role of pinned vertices for rigidity.

Example 42. Consider the examples in Figure 69. These figures are a transfer of the examples
from Figure 30 with the same graph but distinct pure conditions. For the C1

2-cofactor analysis,
part (a) shows turquoise vertices which are considered free in approximation theory – they impose
no constraints on the coefficients. These vertices do not index columns in the C1

2-cofactor matrix.
The 3-directed arrows are applied to interior vertices and there are only two distinct 3-directed
coverings, which are illustrated in (b). The single interior directed cycle is reversed to obtain the
second covering. For the graphs in (a) and (b), the pure condition can also be found by direct
calculation [24]. The interior quadrilateral will remain a single polynomial surface in the resulting
lifting as a spline. With no collinear triangle, the reduced pure condition becomes

([b1a1b2][b2a2b3][b3a3b4][b4a4b1]− [b1a2b4][b2a3b1][b3a4b2][b4a1b3]) = 0.

It would be good to know a geometric construction to directly determine when this is satisfied.
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Figure 69. A C1
2-cofactor graph with free vertices (analogues of pinned vertices in frameworks) shown in turquoise (a) and

with a 3-directed covering (b). Figure (c) is a more general example with (d) showing a 3-directed covering for computing
the pure conditions for singularity. The larger interior polygons will be single polynomials in the spline.

The exploration of pure conditions and reduced pure conditions for the C1
2-cofactor

matroid invites further exploration. It continues to be true that a subgraph which is a
basis will generate a factor, but the question of whether other factors, beyond triangles,
occur has not yet been explored. However, we recall that this theory continues to be
fundamentally projective, and vertices and even edges at infinity fit the theory, and the
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pure conditions. The theory of C1
2-cofactor matrices continues to apply to configurations

with points at infinity.

11.5. Transferring Theorems to the C1
2-Cofactor Matroid

The major transfer between the C1
2-cofactor matroid and rigidity in P3 is based on

the transfer for motion assignments of body–hinge frameworks and smoothing cofac-
tors for splines. As an overall observation, the result that the C1

2-cofactor matroid is the
unique maximal abstract 3-rigidity matroid implies that independence results for graphs
in P3 immediately transfers to the C1

2-cofactor matroid. We mention a few examples and
conjectures.

As the geometric exploration of the C1
2-cofactor matroid on manifolds in [24] antic-

ipated, the combinatorial techniques later used for block and hole polyhedra in papers
such as [108,143] transfer immediately between the matroid for P3 and the C1

2-cofactor
matroid. The core topological conditions for triangulated spheres, and their topological
modifications, as well as the inductive techniques such as vertex splitting immediately
transfer. However there is not a direct geometric transfer between the two matroids, but
all the investigations in [24] support the conjecture that the swapping of blocks and holes
in graphs with spherical topology also transfer. To pursue this, the full analogue of static
rigidity must be made explicit, including the analogue of equilibrium loads and resolutions
of loads, named impressions and expressions in [24].

There is a major gap in this transfer. A key part of the projective (and Euclidean) theory
of rigidity has been the study of infinitesimal motions (kernel of the rigidity matrix) as a
companion to the statics (cokernel of the rigidity matrix). For the C1

2-cofactor matrix, the
investigation of the kernel is under-developed, both combinatorially and geometrically. To
clarify this gap, we record a set of generators for the trivial kernel. For example, from [22],
for the C1

2-cofactor matrix for the graph G on n vertices, we offer the set:

T1 = (1, 0, 0, 1, 0, 0, 1, 0, 0, . . . , 1, 0, 0),

T2 = (0, 1, 0, 0, 1, 0, 0, 1, 0, . . . 0, 1, 0),

T3 = (0, 0, 1, 0, 0, 1, 0, 0, 1, . . . 0, 0, 1),

T4 = (2x1, y1, 0, 2x2, y2, 0, 2x3, y3, 0, . . . , 2xn, yn, 0),

T5 = (0, x1, 2y1, 0, x2, 2y2, 0, x3, 2y3, . . . 0, xn, 2yn),

T6 = (x2
1, x1y1, y2

1, x2
2, x2y2, y2

2, x2
3, x3y3, y2

3, . . . x2
n, xnyn, y2

n).

We call the subspace generated by (T1, . . . , T6) the trivial kernel of the cofactor matrix. This
list was originally ad hoc. It should be connected to the 6-space of trivial splines and the
range of heights that the space generates. Part of addressing the gaps is to interpret this
kernel in geometric terms such as the trivial splines (the same quadric over all vertices).
One of many challenges is to even give comparable generators for the kernel for the higher
Cr

r+1-cofactor matrices. Without a package of geometric tools for the kernel, we will miss a
foundational understanding for a stronger analysis of the dimensions of spline spaces. We
anticipate that a geometric theory of the kernel will provide new tools and insights that
have the potential to open up future work in the rigidity theory of bar–joint frameworks.
The recent paper [25] offers an alternative analysis for the kernel as a critical step of their
proof is written in terms of properties of the kernel, expressed in projective terms.

Some key questions hanging over further work on such transfers are: When do the
transferred results provide new insights into the dimensions of spline spaces and questions
in approximation theory? When do the analysis of pure conditions provide new insights
into singularities for the Cr

r+1-cofactor matrix? When do new results for the C1
2-cofactor

matrix address the analogues of currently unsolved problems for rigidity in P3? Much of
this mathematics is available and accessible, but basic questions are: (i) are there insights
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for applications, and (ii) are there additional results which we would like to transfer to
generic rigidity?

We can generalise bivariate (and multivariate) splines to include vertices and even
edges at infinity. At this point, these do not have alternative Euclidean representations
for vertices at infinity for cofactor matrices, but we can hold them in our imaginations as
points on the equator on the (projective) sphere.

11.6. Coning Splines: Abstract 4-Dimensional Rigidity Matroids and Multivariate Splines

First we note that the same reduction technique used above will reduce the columns
for the C2

3-cofactor matrix to 4 columns per vertex, with an overall kernel of dimension 10.
It is conjectured in [21] that the C2

3-cofactor matroid is the maximal abstract 4-dimensional
rigidity matroid and some evidence is offered for this conjecture. For generic configurations,
there are graphs, such as K6,6, which are known to be independent in the C2

3-cofactor
matroid and known to be dependent in the 4-dimensional generic rigidity matroid [35].
The C2

3-cofactor matroid uses cubes for the line coefficients and hence we evade the trap of
dependence which is guaranteed in the 4-dimensional generic rigidity matroid for select
bipartite bar–joint frameworks imposed by quadric surfaces for distance in P4. Since we
are exploring projective techniques in this paper, we note two relevant forms of coning for
these spline matroids [21,23,24].

1. In ([21] Theorem 5.3) it was verified that coning transfers maximal rank and
independence from the C1

2-cofactor matroid to the C2
3-cofactor matroid on graphs at generic

configurations in the plane. This is support for the conjecture mentioned above. Our
expectation is that all graphs shown to be independent in Pd will be independent in Cd−2

d−1 .
We propose it is appropriate to extend any analysis of independent sets in Pd to also explore
the same graphs in the corresponding spline matroid [155].

2. Multivariate splines also offer a different coning up a spatial dimension from
bivariate Cs

s+1-splines to trivariate Cs
s+1-splines [23]. Note the indices are unchanged in this

coning. This is a geometric theorem and follows the exact pattern described for body–hinge
frameworks in Section 10.3. In particular, the space of trivariate splines around a vertex in a
3-dimensional tetrahedral decomposition of a ball are isomorphic to the space of bivariate
splines on a generalised triangulation of a disc in the plane (a triangulation where triangles
may overlap) [23].

This coning up in spatial dimension and projecting down from the central vertex of
a vertex figure are dual. In particular, coning on a plane triangulation produces a vertex
figure for a tetrahedral decomposition and projecting down creates what is now called a
generalized plane triangulation, since the projected triangles can now overlap [23]. These
operations open up the significance of the projective invariance of multivariate splines
as a tool within approximation theory. In particular, when we can preserve properties
and spaces while coning up, we can move the higher dimensional cone around in the
higher dimensional space, and re-project to create a projective image of the original spline
realisation. This process also applies to general C1

d-cofactors showing their projective
invariance and should extend to Cr

d-cofactors in arbitrary dimensions.
Although not usually presented this way, the coning reminds us that we can transfer

the theory of Cr
d-cofactors to a cone and onto splines presented over a decomposition of the

sphere. There is future work to confirm what appears to be a natural transfer.

11.7. Using Projective Rigidity Style Techniques for Cr
d

In [22,23], the techniques adapted from rigidity style reasoning through the similar
patterns for cofactor matrices were extended to examine a larger class of splines: the dimen-
sions of the spaces of Cr

d(∆)-splines with d ≤ (3r + 1)/2 and of C1
3(∆) [156]. Furthermore,

known, by other methods, is the dimension of Sr
d(∆)-splines for d ≥ 3r + 1. This leaves the

important cases of Sr
d(∆), (3r + 1)/2 < d < 3r + 1 as open problems.

Much of this work is nicely presented with homology, with projective coefficients, as
described for example in [21,34,157]. In this approach, statics (and cofactors) correspond to
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homology, and infinitesimal motions and their equivalent concepts correspond to cohomol-
ogy. We are not aware of explorations of the equivalent of ‘centers of motion’ for spline
matrices.

These possibilities are mathematically interesting but may not connect to current
problems in approximation theory, or current problems in rigidity theory which formed
its roots. There is an active research programme around the singularities and dimensions
of bivariate spline spaces for Sr

d as well as the higher dimensional studies for trivariate
splines. Although much of the work on multivariate splines is normally cast in affine terms,
the essential projective nature of the geometry of bivariate and trivariate splines comes
through on the margins and can become part of the toolkit.

Part IV

Concluding Connections
Throughout the paper, we have used a number of projective transformations to explore,

extend, connect and gain insight into the concepts being explored. There are some other
central studies in rigidity which connect to the important parts of this paper but which
may not be sufficiently projective to embed in earlier sections. Tensegrity frameworks are a
key example which reflect important ways to build structures with tension members and
their dual, compression members. We will describe this extension in a subtly projective
form in the next subsection, but without including points at infinity where sign switches
become ambiguous between tension members going out towards a point at infinity in one
direction or an ‘equivalent’ compression member in the opposite direction to infinity.

12. Projective Tensegrities

Tensegrity frameworks [158] are really exploring the statics of frameworks with
restrictions on the signs of the coefficients of equilibrium stresses. In a thoroughly projective
approach, the points are already equivalence classes of coordinates under multiplication by
non-zero weights. We informally presented an example of a tensegrity framework in the
bicycle wheel (Example 33). For tensegrities we want to distinguish weights on points by
their signs and extend this to tracking the signs on edges [29]. This will be presented in the
vocabulary of projective statics. A recent book of Connelly and Guest gives an extended
presentation of tensegrity frameworks with a rich set of connections [159].

Definition 15. A tensegrity framework in Rd, (G, p), is a signed graph G = (V; E−, E+, E0),
and a realisation p ∈ Rd such that pi 6= pj if ij ∈ E = E− ∪ E+ ∪ E0. The members in E− are
cables, the members in E+ are struts, and the members in E0 are bars. An infinitesimal motion
of a tensegrity framework (G,p) is an assignment p′ : V → Rd|V|, of velocities p′(vi) = p′i to the
joints, such that

1. (pi − pj) · (p′i − p′j) ≤ 0 for cables ij ∈ E−;
2. (pi − pj) · (p′i − p′j) ≥ 0 for struts ij ∈ E+;
3. (pi − pj) · (p′i − p′j) = 0 for bars ij ∈ E0.

An infinitesimal motion p′ is trivial if there is a skew symmetric matrix S and a vector
t, such that p′i = Spi + t, for all vertices vi. An infinitesimal motion is strict if in addition
(pi− pj) · (p′i − p′j) 6= 0 for each edge in E− ∪ E+. A proper equilibrium stress is an assignment
ω of weights to the edges of a tensegrity framework such that:

1. ωij < 0 for cables ij ∈ E−;
2. ωij > 0 for struts ij ∈ E+;
3. ωij is arbitrary for bars ij ∈ E0.
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Theorem 30 (Roth and Whiteley [36]). A tensegrity framework (G, p) in Rd is infinitesimally
rigid (equivalently statically rigid) if and only if the underlying bar–joint framework is statically
rigid and has a proper equilibrium stress.

Example 43. Consider two points on the sphere. When we add the antipodal points we have two
pairs with four segments joining the pairs. In a tensegrity setting two of these will be cables (dashed
segments) and the other two will be the opposite sign struts (Figure 70a).

-a
-b

b a
P(b)=P(-b) P(a)=P(-a)

-a
-b

b a
P(a')=P(-a') P(b')=P(-b')

-a'

-b'a'

b'

(a) (b) (c)

Figure 70. A pair of points on a sphere lie on a circle defined by the two points and the center of the
sphere. The points and their antipodes end up as the same pair of points in the projection to the line.
With their antipodal points a strut extends to two struts and two cables between the pairs (a). When
projected from the center, the strut in (a) goes to a strut (b). After a rotation (c), it is the cable that
appears in the projection.

When projected from the center of the circle (or sphere) onto a line (or hyperplane) this signed
constraint may become a strut ab (b) or a cable ab (c) depending on how the circle is turned relative
to the line. In the following theorem, this orientation is represented by the choice of which projective
hyperplane is ‘infinity’.

In general, on the sphere, the two antipodal points will have the same projection, and there
is some simplification in the geometry if the antipodal pairs are grouped as a single ‘point’. This
identification of antipodal points creates the elliptical model of the projective space. Any switching
of a point and its antipode on the sphere preserves infinitesimal and static rigidity in this elliptical
metric, as is explored in [160]. This is again a thoroughly projective perspective that offers insights
into the rigidity behaviour of projections into Euclidean space. This also clarifies that there is an
ambiguity about how we handle the sign of an edge which has a vertex at infinity. There will be two
directions to infinity with different signs. So we will not include points, or edges at infinity here.
Therefore we write Rd rather than Pd. This is open to future developments and refinement.

Theorem 31 ([36]). Let G = (V, E) where E = E− ∪ E+ ∪ E0. Suppose p = (p1, p2, ..., p|V|)
and q = (q1, q2, ..., q|V|) are realisations of G in Rd related by a projective transformation M of Rd.
If (G, p) is a tensegrity framework, define (G′, q) = ((V; E′−, E′+, E0), q) by replacing every cable
ij ∈ E− (resp. strut ij ∈ E+)) for which the line segment pi pj intersects the hyperplane H sent to
infinity by M, by a strut in E′+ (resp. cable in E′−), leaving all other members unchanged. Then G
is statically rigid if and only if (G′, q) is statically rigid (Figures 71 and 72).

We have already seen that coning of projective frameworks takes an equilibrium stress
to an equilibrium stress. This means we have the tools to transfer definitions and theorems
on tensegrity frameworks to definitions and theorems on the sphere. On the entire sphere,
we can replace a vertex by the antipodal vertex, reversing the weight of the vertex. These
tensegrity definitions and the results extend to body-bar frameworks, as we saw informally
in the static analysis of Example 33 and Figure 52.
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Figure 71. The projection of a plane tensegrity framework (a) changes the sign of all edges that
crossed the line in (a) which is projected to infinity in (b).

(a) (b)

Figure 72. The projection of a 3-dimensional tensegrity framework (a) to (b) changes the sign of all
edges that crossed the plane in (a) which is projected to infinity in (b).

The polar of a tensegrity edge in a 3-dimensional framework is a sheetwork edge
with directional slots replacing the hinge lines (see Figure 73). This analysis is best tracked
though statics [114], though it can also be tracked in (projective) kinematics.

(a) (b)

Figure 73. The polar of a tensegrity edge in a 3-dimensional framework is a slotting of the two sheets
which blocks one direction of forces along the hinge (a) but permits motions sliding in the other
direction along the hinge, as well as rotations around the hinge line (b).

There is a more thoroughly projective presentation of tensegrity frameworks in [114],
which we will not repeat here.
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13. Further Explorations

We offer a few short sections which point to other topics in rigidity and splines, and
which have some projective flavour, but either do not have a solidly projective theory, such
as global rigidity, or would take us too far from standard questions in rigidity, such as
geometric homology. There is always more that can be said.

13.1. Skeletal Rigidity, Geometric Homology and f -Vectors

There is a way to embed rigidity of frameworks and the geometry of bivariate
splines as forms of homology with geometric coefficients extended to faces of general
complexes [21,34]. The extension of stresses and rigidity to cell complexes in higher di-
mensions was motivated, primarily, by efforts to prove upper (and lower) bounds on the
face numbers of polytopes, in particular the so-called g-conjecture [119], which is now a
theorem [161].

In the homology setting for statics, we notice that statics starts with coefficients
on edges being mapped to geometric coefficients on the two vertices—the ‘boundary
operation’ applied to edges giving coefficients on the vertices. The chains—sums of edges
with coefficients—which map to 0 are the equilibrium stresses. So statics is a form of
geometric homology. If we look at the infinitesimal motions, we assign coefficients to the
vertices, and we map up from chains of these velocities at the vertices to edges, with the
image of a vertex going to all edges with this vertex—a geometric co-boundary, so that
chains going to 0 are the infinitesimal motions. So while statics is homology, mechanics is
cohomology [21].

There are extensions of this to chains of larger geometric elements of the skeletons
of cell complexes, with projectively invariant coefficients. These are captured in the term
skeletal rigidity [162,163]. There is much geometry contained in these geometric homolo-
gies which has not yet been thoroughly explored. Nor have all the possible geometric
interpretations and applications of the homological results [164] been investigated. A
recent paper [161] applies this type of homology within a proof of the g-theorem.

As the analogy in [21] describes, the work with bivariate splines, and the further
extensions to multivariate splines [157], connect both rigidity and splines in homological
presentations and methods. Implicitly, any geometric concepts presented with matrices
can be recast with the matrices becoming homological maps. Conversely, the homological
maps are linear, so each level of mapping has an associated matrix. Recasting the concepts
as homology can benefit from tools such as the Mayer–Vietoris sequence in homology
to describe operations such as gluing to combine two structures sharing substructures
into a larger structure with traceable properties [164]. All of these are possible areas for
further work. The elephant in the room for possible explorations such as these is: what
questions about the geometry of these structures are of significant interest in applications
beyond being of purely mathematical interest? There is continuing work on splines which
uses homological methods with the promise of resolving some decades old questions in
approximation theory [152].

13.2. Global Rigidity, Universal Rigidity and Superstability

Rigid frameworks may have many equivalent realisations, but what happens if the
framework is unique (up to isometries)? This is the question of global rigidity, which we
now consider from the projective viewpoint.

Two frameworks are equivalent if they have the same edge lengths. A framework (G, p)
in Rd is globally rigid if every equivalent framework (G, q) in Rd arises from (G, p) from an
isometry of Rd. A deep result of Gortler, Healy and Thurston [165] confirmed that generic
realisations of a graph are either all globally rigid or none of them are. A graph is called
generically globally rigid if all its generic frameworks are globally rigid. Hendrickson [166]
proved two natural necessary conditions for generic global rigidity: (d + 1)-connectivity
and redundant rigidity. Here a graph is redundantly rigid if it remains rigid after any single
edge is removed. These conditions are also sufficient in 2-dimensions [167] but do not
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characterise global rigidity in Rd for any d ≥ 3 [168,169]. In some special cases, such as
body-bar frameworks, redundant rigidity is necessary and sufficient for generic global
rigidity [128].

Global rigidity has also been considered for linearly constrained frameworks [170].
In this context natural analogues of Hendrickson’s conditions hold and a natural stress
matrix condition is sufficient for generic global rigidity. Moreover in 2-dimensions there is
an efficient combinatorial characterisation of generic global rigidity. More general slider
constraints and projective ideas should be explored. As discussed, linear constraints model
sliders where the points at infinity are pinned. It would be interesting to extend these
global rigidity results to different types of sliders, as was done for infinitesimal rigidity
in [78]. It would also be valuable to generalise the results of [170] to higher dimensions
and to allow non-generic linear constraints.

We will also mention an additional concept. A framework (G, p) in Rd is dimensionally
rigid if there are no equivalent frameworks with a higher dimensional span. Note that
dimensionally rigid frameworks can be flexible, but this notion was shown to be important
in the study of global and universal rigidity by Alfakih [171]. (Universal rigidity is an
extension of global rigidity where we require that all equivalent frameworks in RD, for any
D ≥ d, are congruent.)

Global rigidity is almost projectively invariant in the following senses [172,173].

1. Dimensional rigidity is projectively invariant [171].
2. Transfer of metric: a graph G is generically globally rigid in Rd if and only if it is

generically globally rigid in the spherical space Sd, the hyperbolic space of dim d, and
the Minkowskian space of dim d [11,69,173].

3. Coning: a graph G is generically globally rigid in Rd if and only if the cone graph is
generically globally rigid in Rd+1 [173].

4. Open projective neighborhoods: if a framework (G, p) is globally rigid, then within
the projective images, an open neighborhood of projectively equivalent frameworks
shares the global rigidity [173].

We explored the projective conditions for a generically isostatic graph to have a non-
trivial infinitesimal motion. If the graph is redundantly rigid then we would anticipate
that there are several polynomial conditions for there to be an infinitesimal motion. Some
unusual cases arise for bipartite graphs such as K5,5 in R3. For K5,5, the 10 points lying on a
conic gives a non-trivial in-out infinitesimal motion (Theorem 7.3). This has been exploited
by Connelly [168] to show that K5,5 realised ‘near’ a sphere is not globally rigid, though it
is redundantly rigid in R3 and 4-connected.

This transfer of metric has an underlying base in the projective invariance of infinites-
imal motions, and the related construction of averaging in which two non-congruent
frameworks can be averaged to create an infinitesimally flexible framework, and we can de-
average any framework with a non-trivial infinitesimal motion to create two non-congruent
frameworks [69]. This combined process is also called the Pogorelov map, as it is implicit
in their work [11,69,173]. These transfers of metric also apply to generically globally
rigid body-bar and body–hinge frameworks in all dimensions. Universal rigidity also has
flavours of projective rigidity but without direct transformations. See [174] for details.

There are special position frameworks which are globally rigid, but not infinitesi-
mally rigid. This global rigidity and uniqueness of the realisation is directly tied to an
equilibrium stress which can give an energy function for which the realisation is a global
minimum [158,172]. While the existence of the equilibrium stress is projectively invariant,
as we saw above, the details of the energy function, and the signs needed for a minimum
are not projectively invariant. There are also examples of non-generic frameworks which
are globally rigid in the plane, but some cones of the framework are not globally rigid [173].

13.3. Interesting However, Not Projective: Finite Motions

Whether a given framework has finite motions preserving the given distances is, in
general, not a projective property. If the finite motion appears because the framework is
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independent but under-counted, then this essentially combinatorial property is projectively
invariant (independence and the counting of constraints are projectively invariant). If we
have such a finite motion, then it transfers to other metrics, and it is preserved by coning.
However, once the framework is not independent (has an equilibrium stress) then the
equilibrium stress is projectively invariant, transferred across metrics, but whether there is
a finite motion is not projectively invariant, or even affinely invariant.

Example 44. Consider two examples of K3,3 realised in the plane with the two bipartite sets each
lying on a line (Figure 74). Two lines form a conic, so there is an equilibrium stress and an infinites-
imal motion by the argument of Section 7.2. If the two lines are perpendicular (Figure 74a), the
infinitesimal motion extends to a finite motion. If the two lines are not perpendicular (Figure 74b),
then the motion is only infinitesimal and the framework is rigid in the plane. This finite motion
extends to the cone of the framework, and therefore to the sphere.

(a) (b)

Figure 74. K3.3 on two lines is dependent, with an infinitesimal motion. When the lines are per-
pendicular (a) this extends to a finite motion. After an affine transformation (b) the motion does
not extend.

Some examples of finite motions, such as the Bricard octahedra [90], are due to
particular symmetries, which again are not projectively invariant. However the symmetries
are simple enough to transfer to the other projective metrics and therefore the finite motions
also transfer. This dependence of symmetries and special positions also applies to the
examples of flexible spheres [91].

13.4. Interesting However, Not Projective: CAD Constraints and Angles

Another important area of application for geometric constraints is the analysis of
CAD constraints and the design of algorithms for detecting when the constraints being
applied are dependent [72,175]. Two things happen in CAD when the next constraint is
dependent: (i) there are more degrees of freedom than anticipated; and (ii) the numerical
value assigned to the dependent constraint is not a free choice and is unlikely to be correct.

These are important problems for applications, but they mix angles and lengths and
other constraints in ways that are not projectively invariant or even affinely invariant. While
their study shares a number of techniques (e.g., restricted tree coverings) and approaches
(e.g., pure conditions), it belongs to a wider geometric study than covered in this paper,
where we tried to focus on questions where projective invariance and associated projective
techniques open up and inform the analysis.

14. Companion Paper: Projective Geometry of Scene Analysis, Parallel Drawing and
Reciprocal Drawing

In a companion paper [27], we will describe three related projective concepts for
graphs in Rd and their extensions to Pd whose theory, methods, and applications overlap
and extend the work presented here:

1. scene analysis and liftings of pictures in Rd−1 to scenes in Rd which project to these
pictures;



Appl. Sci. 2021, 11, 11946 100 of 105

2. parallel drawings of configurations in Rd;
3. reciprocal diagrams which entwine a configuration for a polyhedral graph with a

configuration for the (spherical) dual polyhedral structure.

Historically, and geometrically, these concepts are entwined through the basic projec-
tive geometric operations of polarity, duality, projection and cross-sections [3,4,51,62,63].
We will see that there are a range of areas of application and mathematical studies where
these concepts and related questions arise. In important ways, this first paper is incomplete
without these wider connections. We will also see that, under a projective lens, lifting and
parallel drawing are essentially polar.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app112411946/s1, Video S1: TransferSphereEuclidean.mov, Video S2: DesarguesMinkowski.mov,
Video S3: SlidersInfinity.mov.
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