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Abstract: For an automated driving system to be robust, it needs to recognize not only fixed signals
such as traffic signs and traffic lights, but also gestures used by traffic police. With the aim to
achieve this requirement, this paper proposes a new gesture recognition technology based on a graph
convolutional network (GCN) according to an analysis of the characteristics of gestures used by
Chinese traffic police. To begin, we used a spatial–temporal graph convolutional network (ST-GCN)
as a base network while introducing the attention mechanism, which enhanced the effective features
of gestures used by traffic police and balanced the information distribution of skeleton joints in the
spatial dimension. Next, to solve the problem of the former graph structure only representing the
physical structure of the human body, which cannot capture the potential effective features, this
paper proposes an adaptive graph structure (AGS) model to explore the hidden feature between
traffic police gesture nodes and a temporal attention mechanism (TAS) to extract features in the
temporal dimension. In this paper, we established a traffic police gesture dataset, which contained
20,480 videos in total, and an ablation study was carried out to verify the effectiveness of the method
we proposed. The experiment results show that the proposed method improves the accuracy of
traffic police gesture recognition to a certain degree; the top-1 is 87.72%, and the top-3 is 95.26%. In
addition, to validate the method’s generalization ability, we also carried out an experiment on the
Kinetics–Skeleton dataset in this paper; the results show that the proposed method is better than
some of the existing action-recognition algorithms.

Keywords: graph convolution network; attention mechanism; traffic police gesture recognition

1. Introduction

In just over a decade, automated driving technology [1,2] has achieved an impressive
breakthrough in theoretical research and technology application, and automated driving
vehicles are now regarded as a research hotspot by universities and research institutions
worldwide. At present, unmanned vehicles with automated driving technology can achieve
good autodriving functions in simple, closed-road environments. However, the existing
technology does not have the ability to understand complex and uncertain road scenes
as human drivers can; for example, the scenes with bad weather, such as heavy snow
or fog; irregular road situations, such as ponding water and narrow paths; and special
road scenes, such as emergencies and multivehicle confluence. The core problem is that
human-like understanding and interaction cognition in complex environments are difficult
to achieve, which seriously influences the safety and reliability of vehicles. However,
long into the future, automated driving vehicles and human-driven vehicles will coexist.
If the core problem we mentioned above cannot be solved, it will be very difficult for
automated driving vehicles to reach level L4 and above; these levels were set by J3016 [3].
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(J3016 is the taxonomy for driving automation proposed by the Society of Automobile
Engineers (SAE) International. It defines six levels of driving automation, ranging from no
driving automation (Level 0) to full driving automation (Level 5). Therefore, the key to
solving this problem is the creation of interaction cognition technology, which should aim
to understand traffic police body language in road driving.

It is hard to restore order with traffic signals and lights alone in emergency situations
such as traffic jams and pedestrians’ retrograde in junctions. These types of situations are
dangerous to both humans and cars; therefore, flexible gestures used by traffic police are
needed to help resume traffic flow. According to [4], under testing situations, driverless
vehicles should have the ability to understand traffic command gestures. In other words,
automated vehicles must recognize the gestures of traffic police correctly, and then, make
a driving decision that fits the gesture given by police in real time. If the communication
between automated driving vehicles and traffic police is unclear, or specifically, the vehicle
cannot recognize the gestures of traffic police, this means the vehicle cannot make good
decisions, which can cause accidents.

The gestures given by Chinese traffic police are made and governed by the Ministry of
Public Security of the People’s Republic of China. According to “Road Traffic Safety Law of
the People’s Republic of China” [5] and its enforcement regulations, there are eight kinds of
new traffic police gesture signals, as shown in Figure 1, which are stop, go straight ahead,
turn left, turn left waiting, turn right, lane change, slow down, and pull over. The gestures
used by traffic police are a set of normative gesture actions that are mainly actions of the
upper part of the body. The gestures used by traffic police consist of a series of continuous
actions; if one was to only distinguish gestures using their spatial features, this may lead
to an incorrect interpretation. Figure 2 displays two examples of different gestures (stop
and pull over); however, these two gestures have similar spatial features. On this occasion,
temporal consistency also aids effective recognition. Thus, spatial features and temporal
features should both be considered in the recognition of gestures used by traffic police.

Figure 1. Actions used in gestures used by Chinese traffic police.
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Figure 2. Two actions with similar spatial features belonging to different gestures.

Frequently used traffic police gesture recognition methods can roughly be divided into
contact methods, based on external devices, and noncontact methods, based on computer
vision. Contact methods based on external devices can recognize gestures used by traffic
police with high speed and precision, but in this method, traffic police officers need to wear
extra sensors, and the operation process is cumbersome, which increases the workload of
traffic police. In addition, the equipment is expensive, which also limits the promotion
of the application of this kind of method. Noncontact traffic police gesture recognition
methods based on computer vision mainly capture picture data or video data using vision
sensor equipment such as high-definition cameras to recognize gestures used by traffic
police through digital image processing. These types of methods have an advantage
in that the recognition process can be carried out without traffic police having to wear
any extra equipment. However, the existing traffic police gesture recognition methods
based on computer vision simply compile gestures into simple sequence data or pseudo-
images, which leads to the problem of the original features of the image data being lost. To
summarize, there are two main issues present in existing traffic police gesture recognition
technologies that should be addressed: one challenge is the construction of a traffic police
gesture dataset, as there has been no complete and public traffic police dataset until now.
The other challenge is the question of how to extract information regarding gestures used
by traffic police effectively. As the urban road transport environment is unpredictable, the
extraction of traffic police gesture features in video images may be influenced by many
factors such as light conditions, road conditions, etc., which directly affect the efficiency of
traffic police gesture recognition.
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To solve the problems outlined above, this paper designs a solution for use in the
collection of a traffic police gesture dataset on real roads and established a dataset which
is reasonable and valid. In addition, this paper proposes a traffic police gesture action
technology based on the GCN. First, the skeleton joint data of traffic police images were
obtained using the OpenPose algorithm. Then, an ST-GCN base network was used to
collect the spatial–temporal features of gestures used by traffic police. As the skeleton
map structure of the ST-GCN is predefined and only represents the physical structure of
the human body, it cannot effectively characterize the logical association factors between
gestures used by traffic police. Thus, this paper proposes the use of an AGS model to extract
the associated feature information in the node data of the skeletons traffic police members.
In addition, this paper proposes a TAS to extract the temporal sequence feature information
regarding gestures used by traffic police in the temporal dimension. In addition, joints
have different levels importance in different gesture actions. For gestures used by traffic
police, the key joints of action mainly focus on the six joints of the arm, which leads to the
problem of imbalanced distribution of information in the feature space. Thus, a spatial
attention mechanism was introduced into the improved ST-GCN model, and the attention
module was able to adjust the weight of key gesture joints dynamically, choose the effective
gesture node feature information, and improve the accuracy of the recognition of gestures
used by traffic police.

This paper extracted features of gestures used by traffic police with an improved
ST-GCN model and recognized actions in the gestures of traffic police. The contributions
of this paper are as follows:

1. We captured data regarding the gestures used by traffic police in real urban roads and
established a complete traffic gesture dataset, including actions used in the gestures
of traffic police on duty information regarding their labeling.

2. We addressed the problems that the skeleton graph of the ST-GCN basic model only
represents the physical structure of the human body and that the global information
regarding the gestures used by traffic police is lost; an AGS was proposed to extract
the associated feature information regarding traffic police’s skeleton joint data.

3. Features in the temporal dimension are crucial to the recognition of gestures used
by traffic police; the TAS was proposed in the AGS to collect the temporal sequence
feature information regarding gestures used by traffic police in a time series.

2. Related Work
2.1. Traffic Police Gesture Recognition

The worldwide use of traffic police gesture recognition technology can roughly be
divided into two kinds of methods: methods based on external devices and methods
based on computer vision. Methods based on external devices collect gesture features by
placing sensor equipment on traffic police’s bodies to collect traffic information regarding
actions used in gestures. For example, Ref. [6,7] both collected important information
such as the motion trail of traffic police’s arms and the position of hands, etc., through
accelerometers, then recognized the actions of gestures used by traffic police according to
these. Traffic police gesture recognition methods based on computer vision are noncontact
methods which do not require equipment to be worn and are convenient. Literature [8,9]
has proposed a method that can be used to recognize gestures used by traffic police in
complex environments. First, dark channel prior and kernel density estimation are used to
extract the torso and arms of the police as the foreground region. Then, the coordinates of a
pixel in the upper arms and forearms of traffic police are determined by the max-covering
scheme method. Finally, the pose and action of the traffic police are recognized through
the geometrical relationship of the rotation joint. Guo et al. [10] proposed a five-part body
model to recognize gestures used by traffic police in complex scenes; it differed greatly from
the former methods which required a pretraining process or 3D measuring equipment to
construct a human body model. They used the max-covering scheme to learn the five-part
body model automatically. Literature [11,12] has proposed a method based on cumulative
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block intensity vector (CBIV) using the n-frame cumulative difference to collect the features
of traffic police.

Compared with the action recognition methods based on video image data, skeleton-
data-based action recognition technology has strong robustness when used in complex,
dynamic scenes. Using sensors such as Kinect (2012) [13], ASUS Xtion PRO LIVE (2011)
RGB-D cameras [14], etc., skeleton data can be collected easily. Ma et al. [15] used Kinect2.0
to collect data from 10 volunteers and constructed a traffic police command gesture skeleton
joint dataset. They used convolutional operation to analyze the location change of skeleton
joints to extract features in the temporal dimension and extract spatial features by analyzing
the relative position of skeleton nodes at the same time. The extracted spatial–temporal
features of gestures used by traffic police were used to train the ST-CNN model and achieve
the recognition of gestures used by traffic police. Zhang C. et al. [16] constructed a traffic
police gesture model based on joints and skeletons after analyzing the hinged feature of
gestures used by traffic police. Furthermore, a convolutional pose machine (CPM) was
introduced to extract the key joints of gestures used by traffic police to collect the relative
length of the skeleton in gestures used by traffic police and its angle between acceleration
of gravity as the spatial context feature. Meanwhile, long short-term memory (LSTM) was
used to extract the features of gestures used by traffic police in temporal series. At last,
the spatial features and temporal features were integrated to recognize gestures used by
traffic police.

As the skeleton joint graph has the characteristic of graph structure data, the ST-
GCN [17] was the first to use the GCN model to collect skeleton data concerning spatial–
temporal features in a human skeleton topology graph, which achieved the aim of recogniz-
ing human actions. Most of the following recognition models were designed and modified
based on the GCN model, for example, actional–structural graph convolutional networks
(AS-GCNs) [18], two-stream adaptive graph convolutional networks (2S-AGCNs) [19], and
channelwise topology refinement graph convolution (CTR-GCN) [20].

2.2. Graph Convolutional Neural Networks

With regard to graph structure data, the present model of transferring the graph
into a set of vectors in the data preprocessing stage cannot guarantee the integrity of
graph structure information, and the obtained results heavily depend on the results of
graph preprocessing. Marco Gori [21] et al. first proposed the graph neural network
(GNN) model, constructed the learning process on graph data directly, and mapped
nodes and edges of a graph to a low-dimensional space through the model. The spectral
network [22] was the first method used to introduce convolution into the GNN, which
defined convolution operation in the Fourier domain, but this method leads to potential
intensive operation, and the convolution kernel has no characteristic of locality. Mikael
Henaff [23] et al. introduced parameters with smoothing factors, which afforded locality to
the convolution kernel of the spectral network. The graph convolution kernel defined by
spectral network depends on the Laplacian matrix of the graph; thus, parameters cannot
be shared in other graphs, and the complexity of network calculation is high. Michael
Defferrard [24] et al. proposed ChebNet based on the polynomial convolution kernel,
which greatly improved computational efficiency. Adaptive graph convolutional neural
networks (AGCNs) [25] learn not only the relationships between the nodes of the original
graph structure but also the possible potential relationships between the nodes. However,
the convolution kernels of the abovementioned models depend on the basis vector of the
Laplacian matrix’s features, which depend on the structure of the graph. That means that
this kind of model is trained for specific structures, cannot be applied to different structure
graphs directly, and has poor generalization capability. At the same time, methods based
on spectral decomposition need to process the complete graph in the calculation. There
is a high time complexity in matrix decomposition, which makes it difficult to extend to
large-scale graph data to learn. David Duvenaud [26] et al. proposed neural FP, which
uses different weight matrices for nodes with different amounts of degree. However, when
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the scales of nodes are large and the degrees of nodes are various, this model cannot be
applied because there are too many parameters. Mathias Niepert [27] et al. tried to sort
the nodes, selected a fixed amount of neighbor nodes, and convolved them, imitating
the method of the convolutional network, which transferred the learning problem of
graph structure into the traditional Euclidean data learning problem. Federico Monti [28]
proposed MoNet, which used pseudo-coordinates to transform GNN models into Gaussian
kernel hybrid models. Geodesic convolutional neural networks (GCNN) [29], anisotropic
CNN (ACNN) [30], GCN [31], diffusion-convolutional neural networks (DCNN) [32], etc.,
can be regarded as MoNet models. William Hamilton [33] et al. proposed a universal
inductive reasoning framework that sampled and aggregated neighbor node features to
generate a representation of a node.

3. Methods
3.1. Traffic Police Gesture Recognition Network

The traffic police gesture recognition method proposed in this paper was based on the
ST-GCN. Figure 3 shows the complete process of traffic police gesture recognition:

1. Use openpose algorithm to process collected videos containing gestures used by
traffic police; extract skeleton data.

2. Construct the AGS on the collected skeleton data, extract the spatial–temporal features
of gestures used by traffic police with the improved ST-GCN, and recognize gestures
used by traffic police.

Figure 3. The complete process of traffic police gesture recognition.

The traditional ST-GCN model designed a universal skeleton representation for action
recognition: a spatial–temporal skeleton graph. The nodes of the skeleton graph are human
joints, and edges in the graph have spatial–temporal features. Edges can be divided into
two categories: the connection between the human joints using bones is the first kind of
edge, and the connection of the same node in different frames is the second kind of edge, as
shown in Figure 4. In the spatial–temporal skeleton graph of the ST-GCN, the second kind
of edge connects the same joints, which have a linear relationship, meaning it overcomes
the requirement for the manually designed extraction of joint features or the design of
traversal rules of joints in traditional methods.
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Figure 4. The spatial–temporal graph of skeleton sequence.

However, there are some drawbacks to the ST-GCN method, which are as follows:

1. The skeleton graph, which is the physical structure of the human body, is predefined.
It cannot ensure that it is the best skeleton graph for traffic police gesture recognition;
for example, the dependency between the two hands of a traffic police member cannot
be captured.

2. There are layers in the structure of GCN; different semantics are contained in different
layers. However, the graph topology structure of the ST-GCN model is fixed in all the
network layers and extracts the feature of the same topology, which causes them to
lose the flexibility of information modeling.

3. A fixed graph structure cannot be the optimal representative method for different
gesture actions; joints have different levels of importance in different gestures.

Based on the analysis above, this paper extended the topology structure of the traffic
police skeleton graph and learned features of gestures used by traffic police from the spatial
dimension and temporal dimension. The attention mechanism was also introduced to
learn the importance of each joint in different traffic gestures. The network model of traffic
police gesture recognition proposed in this paper is shown in Figure 5.

Figure 5. The architecture of traffic police gesture recognition network.
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3.2. Spatial Graph Convolution

To better explain the module, here, we describe it from skeleton data in a single frame.
The skeleton graph of the ST-GCN in the same frame only represents the physical structure
of the human body, which is not the optimal representation with regard to gestures used by
traffic police. For example, the spatial locations of hands are crucial in traffic police gesture
semantic representation, which have potential contact. Thus, in this paper, an AGS was
constructed to find the potential features in human joints. The left figure in Figure 6 shows
the connection method of the ST-GCN; the right figure of Figure 6 is the spatial–temporal
graph extended by this paper, which connects several neighbor joints. The skeleton graph
constructed in this paper is a nondirectional spatial–temporal graph in the same frame,
G =< V, E >, which contains skeleton sequence data of N joints and T frames. The set for
nodes is shown in Equation (1):

V = {vti|t = 1, · · · , T, i = 1, · · · , N} (1)

In Equation (1), vti represents the i joints in t frame, t means the serial number of
frame, and i means the number of joints. There are two kinds of edges in the skeleton
graph, and no manual distribution is added in the process of connecting edges, which
means that the model can deal with more datasets and improves its universality.

Figure 6. The proposed skeleton graph on spatial dimension.

In the traditional convolution method, the output of a single channel in the spatial
position x can be represented as Equation (2):

fout(X) =
K

∑
h=1

K

∑
w=1

fin(P(x, h, w)) ·W(h, w) (2)

The size of convolution kernel is K× K, fin is input feature graph, P(·) is the sampling
function, and W(·) is the weight function. For the sampling function, images have the same
number of neighbor pixels. Sampling function P(·) means the selection of the surrounding
neighbor pixels centered on the X pixel. However, in skeleton graphs, the number of
neighbor nodes is different: the neighbor nodes set is defined by Equation (3):

B(vti) =
{

vti
∣∣d(vtj, vti

)
≤ D

}
(3)

In Equation (3), d(vtj, vti) represents the shortest path from skeleton joints vtj to vti;
take D = 1. Sampling function P : B(vti)→ V is shown in Equation (4):

p
(
vti, vtj

)
= vtj (4)

The sampling function in this paper takes the self-learning method to avoid loss
in long-distance cross-information from partial convolution, for example, cooperating
information between hands.
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Compared with the sampling function, the weight function is more complicated. A
rigid mesh exists around the center of the image, and neighbor pixels have a fixed spatial
sequence. However, there is no potential sequence in skeleton graphs. The skeleton graph
in one frame is shown as in Figure 7a, in which root joints were painted in red. The ST-
GCN proposed three partitioning strategies, which were Uni-labeling (Figure 7b), Distance
partitioning (Figure 7c), Spatial configuration partitioning (Figure 7d), respectively. Here,
we use the spatial configuration partitioning strategies from the the ST-GCN model, as
shown in Figure 7d. This strategy divides the set into three subsets: root joints themselves
(green nodes in Figure 7d), joints closer to the skeleton center of gravity than root joints
(blue nodes in Figure 7d), and joints further from the skeleton center of gravity than root
joints (yellow joints in Figure 7d). The specific indication is shown in Equation (5).

lti
(
vtj
)

0 i f rj = ri
1 i f rj < ri
2 i f rj > ri

(5)

Weight function is shown in Equation (6):

w
(
vti, vtj

)
= w′

(
lti
(
vtj
))

(6)

Taking the redefined sampling function and weight function in Equation (2), graph
convolution in the frame can be obtained as in Equation (7):

fout(vi) = ∑
vtj∈B(vti)

1
Zti(vtj)

fin
(

P
(
vti , vtj

))
·W
(
vti, vtj

)
(7)

In Equation (7), Z(·)is the regular term and the cardinal number of the relative subset.

Figure 7. Partitioning strategies for constructing convolution operations.

The movement trail of traffic police gestures mainly occurs on the upper body of the
human. Different joints have different levels of influence in each gesture. For example, the
joints of the arm are more important because the range of motion is larger. This leads to
the number of less-effective or noneffective features being far larger than the number of
effective features, affecting the recognition of gestures used by traffic police. Based on this,
inspired by the process of attention mechanisms, this paper introduces the convolutional
block attention module (CBAM) [34]. The CBAM module enhances the effective features in
the channel domain and spatial domain at the same time, while the attention mechanism
in the channel domain adds weight to features in each channel; the value of weight means
the importance of the channel feature, that is, which channels in the input are valid. For
simplicity’s sake, the operation in the spatial domain can be understood as finding the key
joint of the graph and extracting effective feature information.

As shown in Figure 8, in the channel domain, to model the dependency between
channels and aggregate spatial features, we used average pooling and max pooling to
obtain two different channel background descriptions, Fc

avg andFc
max. Then, we used the
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multilayer perceptron to calculate the two different channels above and summed them
element-by-element. Finally, we generated the final channel attention traffic police gesture
feature graph MC through the activation function, as shown in Equation (8):

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max)))
(8)

In the equation above, σ is ReLU activation function, W0 is the first layer of the fully
connected layer, and the length of the output vector is r× C . W1 is the second layer of the
fully connected layer, and the length of the output vector is C.

Figure 8. Channel attention module.

As shown in Figure 9, to extract feature information regarding key nodes from the
spatial domain, first average pooling and max pooling must be taken with regard to the
input traffic police gesture features. Then, the feature extracted must be spliced and the
convolution taken once to ensure the output traffic police gesture features are in the same
dimension as the input traffic police gesture features. The calculation of spatial attention
mechanism (Ms) is shown in Equation (9):

MS(F) = σ
(

f 7∗7([AvgPool(F); MaxPool(F)])
)
= σ( f 7∗7(

[
Fc

avg; Fc
max

]
)) (9)

σ represents Sigmoid function, and f 7∗7 means that a convolution kernel with a size of
7× 7 is used in the convolution layer.

Figure 9. Spatial attention module.

3.3. Temporal Graph Convolution

ST-GCN methods only connect the same joints in different frames in the temporal
dimension, which can only extract the trace relationship of the same joints in neighbor
frames. However, gestures used by traffic police consist of a set of different actions, so
simply extracting the relative action features in neighbor frames is not enough to describe
the semantics of whole gestures. Here, we connect the same joints in several frames
to a joint in one frame to better extract rich traffic police gesture features, as shown in
Figure 10. The left of Figure 10 is the temporal graph of the ST-GCN; the right of Figure 10
is the extended skeleton graph proposed by this paper. To better explain, the right of
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Figure 10 only illustrates the connection situation of the adjacent five frames; all the joints
are connected similarly in real operation.

Figure 10. The proposed skeleton graph on temporal dimension.

Here, we designed a TAS module; its structure is shown in Figure 11. It was used
to extract traffic police gesture features in the temporal dimension. The TAS studies the
dynamic features of each joint through every frame separately in the temporal dimension.
Every joint is recognized as independent from one another; the TAS collects the relevance
between frames by comparing the dynamic change of the same joint in the temporal
dimension and mines the features ignored in the traditional ST-GCN model.

Figure 11. Temporal attention module.

This paper borrows the ideas used in the temporal convolution network (TCN) [35]
and applies its mode of processing spatial features to the temporal domain. A TAS module
can capture the dependency relationship in temporal sequence. It can extract partial
features in temporal sequence by forming a sequence of feature vectors with feature vectors
captured in each time frame. The convolution calculation is layerwise; it calculates the
frames from every moment at the same time. From Equation (3), we can see that the
selection of the convolution domain relies on the joints’ distribution in space, and division
is based on the distance of joints; convolution domain is determined by the distance
between joints.

Based on these considerations, we directionally transposed the input data and ex-
changed the feature data in the spatial dimension and temporal dimension, which trans-
formed (N, M, C, T, V) into (N, M, C, V, T). N is batch_size, and C is the number of chan-
nels, taking C = 3. T is the figure for frames, and V is the number of skeleton joints.
M is the amount of people that appeared in each frame of the video, which was M = 1
here because there was only one traffic police member in the video of traffic police on
duty. In sequence data frames, we used the downscaling operation through convolution
summation, which achieved temporal graph convolution, that is

MT(F)NCTW = ∑
K

∑
V

FNKCTV ·AKVW (10)

N, K, C, T, V, W represent Batch_Size, KernelSize, channels, the number of frames, the
number of skeleton joints, and the number of people, respectively.
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Finally, the batch normal operation and dropout operation were performed on the
features extracted, the amount of midfeature and data redundancy were reduced, the
process of training was sped up, and the performance was improved. In the temporal
dimension, the characteristics of the connection between skeleton joints are listed below:

• Unlike the connection of skeleton joints in a frame, the connection of skeleton joints
in the temporal sequence itself is used as a parameter to train. Furthermore, it can
self-learn through a fully connected matrix and learnable weight hyperparameters.

• The size of the convolution kernel determines the connection effect between frames
and enriches the contact between frames. It can be regarded as a dynamic recognition
process from a certain point of view.

4. Experiments
4.1. Dataset
4.1.1. Traffic Police Gestures Data

In a real pathway, five cameras from five directions were used to collect traffic police
gesture video data, whose video window size was 840× 480, and which was stored in
the format of AVI. In total, 20,480 videos were captured; each camera filmed 512 videos
for each gesture among them. Eight kinds of gestures were used by traffic police: stop,
straight ahead, turn left, turn left waiting, turn right, lane change, slow down, and pull
over. Eight volunteers were invited to participate during data collection, and their age,
gender, and height were different; each of the participants were labeled separately in the
dataset. Specifically, we used five cameras set in the same horizontal height to capture
five different horizontal views for one gesture action, which were 90 degrees left, 45 degrees
left, 0 degrees front, 45 degrees right, and 90 degrees right. Furthermore, each of the
volunteers were asked to only complete each traffic police gesture action once. In the
dataset, each camera was assigned a consistent number, and each number had its own
filming angle. To further increase the diversity of the data, different conditions with
regard to distances between cameras and participants, lighting conditions, junction scene,
and clothes of the participants were added. In the dataset, the gestures used by traffic
police were divided into a training set, validation set, and a test set in the proportion of
approximately 7:2:1 for each gesture. Since there are only eight kinds of gestures in Chinese
traffic police gesture, taking top-1 and top-3 to validate our method is better (top-1 means
to take the largest probability vector as the predicted result. If the classification result is
correct, then the prediction is correct; otherwise, the result is wrong. Top-3 means if the
correct result appears in the top 3 largest probability vectors, then the prediction is correct,
otherwise the result is wrong). Figure 12 shows some data samples in the dataset; Table 1
shows exact condition settings in data collection.

Figure 12. Part of the traffic police gestures dataset.
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Table 1. The condition settings of data collection.

Condition Settings

People Eight volunteers differing in age, gender, and height
Light conditions Four light conditions: in the morning, noon, late afternoon, and evening

Scene Four scenes: with pedestrians, no pedestrian, T-junction, and criss-cross crossing
Clothes Two kinds of clothes: summer clothes and winter clothes

Cameras Five cameras from different angles
Gesture Eight kinds of standard traffic police gesture as the national standard
Distance 5 m, 70 m

Total amount 20,480

4.1.2. Kinetics–Skeleton Dataset

Kinetics–Skeleton dataset [36–38]: Kinetics–Skeleton is divided into three parts: Kinetics-
400 [36] contains 400 action categories, Kinetics-600 [37] contains 600 action categories, and
Kinetics-700 [38] contains 700 action categories. Each of the actions has 400–1150 video clips,
and the length of each video clip is around 10 seconds. Action types include single-person
actions, for example, painting, drinking, laughing, and punching; two-person interaction
actions, such as hugging, kissing, and shaking hands; and normal actions such as opening
gifts, mowing the lawn, and washing dishes. There are 306,245 videos in Kinetics-400. The
training set has 246,245 videos in total, 250–1000 video clips are contained for each category.
There are 495,547 videos in Kinetics-600. The training set has 392,622 videos in total, and
each category contains 450–1000 video clips. There are 650,317 videos in Kinetics-700. The
training set has 545,317 videos in total, and each category contains 450–1000 video clips.
In every part of the Kinetics–Skeleton dataset, each action category has 50 videos in the
validation set, and the testing set has 100 videos for each action category. Each action
category in the Kinetics–Skeleton dataset contains a kind of behavior, but a particular
video may contain several kinds of actions. For example, “texting” while driving or “hula
dancing” while “playing ukulele”. In these cases, the video will only be labeled with one
tag, thus it will not exist in two action classes at the same time. Therefore, the accuracy of
the top-5 is more appropriate (top-5 means that if the correct result appears in the top 5
largest probability vectors, then the prediction is correct, otherwise the result is wrong).
Some of the data in Kinetics–Skeleton are shown in Figure 13.

Figure 13. Part of the Kinetics–Skeleton dataset.

4.2. Evaluation Result
4.2.1. Implement Detail

This paper used two Nvidia GeForce GTX 1080Ti graphics cards to parallel train the
model during the training process; the deep learning framework used was PyTorch1.6. The
original learning rate was 0.1, the CosineAnnealing method was used to adjust the learning
rate, and batch_size was set as 256. Finally, we used the information cross-entropy loss
function to perform deviation iterative calculation specifically to instantiate loss function
in each module and summarize all the loss. In the positive iteration process, to avoid
contingency, we chose training samples randomly and made the skeleton frame data of
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each video 150 frames by cutting the redundant frames or playing it repeatedly if the
number of frames was not enough.

4.2.2. Ablation Study

To prove the effectiveness of the improved modules in the proposed method, we
performed an ablation study on the traffic police gesture dataset. This paper improved the
ST-GCN base network from the spatial dimension and temporal dimension.

This paper introduced an attention mechanism and the AGS in the spatial dimension.
In Figure 14, it is shown that the model-introduced attention mechanism and the model-
introduced AGS both possessed lower loss than the base ST-GCN network in the training
set and validation set, and the training speed was faster. It can also be seen from Figure 15
that there was an enhancement of accuracy in every improved model.

Figure 14. The trend of loss on spatial dimension.

Figure 15. The trend of accuracy on spatial dimension.

Gestures used by traffic police consist of several gestures in order; their features in
the temporal dimension are critical to traffic police gesture recognition. In the temporal
dimension, we designed a TAS module to capture logical association feature information
in the temporal dimension. As shown in Figure 16, the loss of the model that integrated
the TAS module fell quicker and was more likely to reach a plateau. Figure 17 also shows
that its accuracy was also much higher than the base ST-GCN network.
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Figure 16. The trend of loss on temporal dimension.

Figure 17. The trend of accuracy on temporal dimension.

As shown in Table 2, the first set of data are related data of the base network, which this
paper is based on. The second set of data verify the recognition efforts of different modules
related to gestures used by traffic police. The third set of data combine different modules,
and the fourth set of data show the effort of the final solution proposed in this paper.

Table 2. The accuracy of traffic police gesture test set.

ID ST-GCN CBAM AGS TAS Top-1 (%) Top-3 (%)

1
√

79.16 91.72

2
√ √

84.19 94.6
3

√ √
83.72 94.6

4
√ √

86.7 95.72

5
√ √ √

86.05 94.6
6

√ √ √
86.5 95.44

7
√ √ √

86.7 95.72

8
√ √ √ √

87.72 95.26

Table 2 shows that networks that combine the CBAM, AGS, and TAS modules sepa-
rately are better than the base network; the top-1 improved by 5.03%, 4.56%, and 7.54%,
respectively. The experiment shows that the introduction of the CBAM can overcome
the data imbalance distribution problem on the feature level to a certain extent, which
readjusts the weight of different joints, enhances the effective features of gestures used
by traffic police, and inhibits the less-effective or non-effective features. The AGS is not
limited to the physical structure of humans; it can self-learn the potential relationship
between skeleton joints, which improves the accuracy of traffic police gesture recognition
effectively. The TAS module shows outstanding performance among all modules, because
gestures used by traffic police consist of a series of actions and it can extract the trajectory
features between actions, enriching the features of traffic police gesture. The experiment
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results also verify the fact that information in the temporal dimension is critical in traffic
police gesture recognition; while performing an ablation study on different modules, we
found the accuracy of all module combinations to be improved, which further proves the
effectiveness of every module. The method proposed in this paper had the highest accuracy
among all, improving the top-1 by 8.56%.

Eight kinds of gestures used by traffic police consist of different actions, including
repetitive actions and one-time actions. To analyze the difficulty level of each traffic police
gesture recognition, experiments were performed on eight kinds of gestures used by traffic
police, as shown in Table 3.

Table 3. The accuracy for every traffic police gesture.

Traffic Police Gesture Stop Straight Ahead Turn Left Turn Left Waiting

Top-1 (%) 97.96 89.68 83.09 86.90
Top-3 (%) 99.32 92.06 94.12 97.24

Traffic Police Gesture Turn Right Lane Change Slow Down Pull Over

Top-1 (%) 86.73 75.86 90.58 83.20
Top-3 (%) 97.35 95.86 98.55 92.00

In Table 3, it is shown that the recognition accuracy of lane change is relatively low
because in the key gesture of the lane change gesture, arms are perpendicular to the torso,
which makes the key joints coincide in the skeleton graph, and the spatial–temporal features
of the gesture action are hard to extract. Figure 18 shows the similarity that exists between
gestures used by traffic police. Gestures with deeper colors depict higher similarity, which
makes confusion more likely.

Figure 18. The traffic police gesture dataset for traffic police gesture recognition network sorted by
classwise accuracy.
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4.2.3. Comparison with the State-of-Art Result

To more effectively verify the effectiveness and generalization capability of our model,
this paper used the Kinetics–Skeleton dataset to perform experimental verification, as
shown in Table 4.

Table 4. Benchmark comparison for Kinetics–Skeleton model.

Methods Top-1 (%) Top-5 (%)

Feature Encoding [39] 14.9 25.8
Deep LSTM [40] 16.4 35.3

Temporal Conv [41] 20.3 40.0
ST-GCN [17] 30.7 52.8

Ours-Conv-Chiral [42] 30.9 52.6

Ours 32.11 54.31

“Feature Encoding” [39], which is shown in the table, is a method based on manually
designed features that sort every frame of a video in temporal order and extract the feature
of actions. Action recognition methods based on manually designed features are designed
for specific actions, cannot be applied to other actions, and have poor generalization
capability. They can only be applied to situations such as simple actions or a single scene.
The deep LSTM [40] proposed by Shahroudy et al. divided the human body into five parts:
the torso, two arms, and two legs. The LSTM is used to extract the context features of
each part and merge them to a whole action feature to recognize actions. The temporal
ConvNet [41] proposed by Kim and Reiter adjusted the TCN network encoder used in
temporal action localization, introduced methods used in residual models, extracted the
spatial–temporal features of actions, and enhanced the interpretability of the model’s
parameters and features. Inspired by the methods used in parameter-shared and parity
symmetry, Raymond A [42] et al. designed equivalent transformation layers of frequently
used layers in the deep network and proposed Ours-Conv-Chiral, which reduced the
calculation of the model effectively. Deep LSTM, Temporal ConvNet, and Ours-Conv-
Chiral are all deep learning methods which encode the action sequence or map it to
pseudo-images to extract the feature of action, leading to the original feature of data being
lost and affecting the accuracy of action recognition. Table 4 compares the recognition
performance of top-1 and top-5; it can be seen that methods based on the graph network
are generally better than the former methods based on manually designed features and
deep learning. This paper improved the graph network model; the accuracy of top-1 and
the accuracy of top-5 in the proposed model are 32.11% and 54.31%, respectively, which
are superior values compared to other advanced models.

5. Conclusions

In this paper, we used skeleton data of traffic police to construct graph structure
data as an input source of the model; using the ST-GCN as a base network, the spatial–
temporal features of gestures used by traffic police were extracted, and finally, gestures
used by traffic police were recognized. As the ST-GCN has a disadvantage in that it only
learns the physical structure of the human body but ignores the potential relationship
between joints in frames, we proposed the AGS to learn the potential relationship between
nodes of traffic police skeletons. Based on the fact that the importance levels of nodes are
different in different traffic police gestures, the attention mechanism was introduced to
strengthen the weight of key nodes, to inhibit the nodes with little information volume or
no information volume, and to improve the accuracy of traffic police gesture recognition.
Another disadvantage is that joint feature information in the temporal dimension of the
same joint in frames is too simple. This paper proposed the TAS to solve this, in which
features in the temporal dimension are enriched by connecting the same joints in different
frames to the same joints in one frame, which improves the accuracy of recognition.
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The method proposed in this paper can only recognize gestures used by traffic police
in simple scenes; in the future, we will continue to study traffic police gesture recognition
methods that can be applied in complex scenes, which means we should extend the
existing traffic police gesture dataset we established and locate and detect traffic police in
complex scenes.
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