
applied
sciences

Article

CoSiWiNeT: A Clock Synchronization Algorithm for Wide Area
IIoT Network

Rahul Nandkumar Gore *, Elena Lisova , Johan Åkerberg and Mats Björkman

����������
�������

Citation: Gore, R.N.; Lisova, E.;

Åkerberg, J.; Björkman, M.

CoSiWiNeT: A Clock Synchronization

Algorithm for Wide Area IIoT

Network. Appl. Sci. 2021, 11, 11985.

https://doi.org/10.3390/

app112411985

Academic Editors: Pedro Valderas

and Victoria Torres

Received: 23 October 2021

Accepted: 12 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of Networked and Embedded Systems, Mälardalen University, 72220 Västerås, Sweden;
elena.lisova@mdh.se (E.L.); johan.akerberg@mdh.se (J.Å.); mats.bjorkman@mdh.se (M.B.)
* Correspondence: rahul.nandkumar.gore@mdh.se

Abstract: Recent advances in the industrial internet of things (IIoT) and cyber–physical systems drive
Industry 4.0 and have led to remote monitoring and control applications that require factories to be
connected to remote sites over wide area networks (WAN). The adequate performance of remote
applications depends on the use of a clock synchronization scheme. Packet delay variations adversely
impact the clock synchronization performance. This impact is significant in WAN as it comprises
wired and wireless segments belonging to public and private networks, and such heterogeneity
results in inconsistent delays. Highly accurate, hardware–based time synchronization solutions,
global positioning system (GPS), and precision time protocol (PTP) are not preferred in WAN due
to cost, environmental effects, hardware failure modes, and reliability issues. As a software–based
network time protocol (NTP) overcomes these challenges but lacks accuracy, the authors propose
a software–based clock synchronization method, called CoSiWiNeT, based on the random sample
consensus (RANSAC) algorithm that uses an iterative technique to estimate a correct offset from
observed noisy data. To evaluate the algorithm’s performance, measurements captured in a WAN
deployed within two cities were used in the simulation. The results show that the performance of the
new algorithm matches well with NTP and state–of–the–art methods in good network conditions;
however, it outperforms them in degrading network scenarios.

Keywords: clock synchronization; industrial automation; industrial internet of things; wide area
networks; NTP; Kalman filter; RANSAC

1. Introduction

Due to the market and business evolution, industrial automation systems are evolving
from the rigid automation pyramid to a flexible and reconfigurable architecture. The
advances in cyber–physical systems (CPSs) and the industrial internet of things (IIoT)
are enabling this evolution [1]. The future industrial automation systems envision using
service–oriented architectures (SOAs) to deal with flexibility and reconfiguration issues.
This paradigm shift in the architecture of future industrial automation systems opens doors
for implementing advanced and futuristic applications that are difficult to realize with
existing automation systems [2]. The growing presence of distributed resources makes their
management complex and thus requiring efficient monitoring and controlling. Numerous
applications based on remote monitoring and control such as remotely controlling a valve
in a factory, predicting or preventing maintenance of factory assets based on periodic
collection and analysis of factory sensor data by third–party vendors, controlling the
production schedules in a factory based on the current inventory status of another raw
material–producing factory, are grabbing the attention of plant owners, industries, and
research institutes.

All such remote applications require factories to be connected to a remote site or an-
other factory over a wide area network (WAN), as shown in Figure 1. A WAN is a geograph-
ically distributed heterogeneous communication network that interconnects wired and

Appl. Sci. 2021, 11, 11985. https://doi.org/10.3390/app112411985 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2018-0996
https://orcid.org/0000-0002-7159-7508
https://doi.org/10.3390/app112411985
https://doi.org/10.3390/app112411985
https://doi.org/10.3390/app112411985
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411985
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411985?type=check_update&version=1

Appl. Sci. 2021, 11, 11985 2 of 18

wireless segments from public and private networks, in which several communication tech-
nologies such as fiber optic link, Wi–Fi, Bluetooth, and Power Line Communication (PLC)
are adopted.

Figure 1. Typical WAN in IIoT.

Remote monitoring and control applications need a common notion of time for data
consistency and coordination of activities among the factory and remote sites. A common
notion of time is achieved by a clock or time synchronization service that aligns the clocks of
all the devices on the network by distributing a common time to all nodes. The level of time
accuracy and precision varies by application requirements, whereas remote maintenance
of factory assets typically requires a second–level accuracy, while remotely controlling
the factory valves will require a microsecond–level accuracy. Thus, the success of remote
applications depends on the level of accuracy and precision of synchronization between
a factory and remote site. Network packet delay variation or jitter adversely affects the
clock synchronization accuracy. This effect is prominent in WAN as the different network
segments contribute differently to end–to–end packet delays, e.g., the jitter of a fiber optics
link is much less than the wireless links, resulting in variable end–to–end packet delays
over time. The interference and noise levels over a WAN are significantly high. The
unreliable communication networks result in higher events of missing packets and packet
delay variation (PDV) than factory LANs such as wireless sensor networks (WSN). Thus,
the heterogeneous nature and significant interference make it challenging to achieve an
adequate synchronization over a WAN [3] compared to LANs.

Hardware–based and highly accurate clock synchronization solutions such as global
positioning system (GPS) and precision time protocol (PTP) are prominent candidates
for WAN. GPS is a satellite–based system that provides timing information to receivers
on Earth; however, signal stability cannot be guaranteed for GPS. Having GPS at all dis-
tributed resources is also a costly solution. In addition, GPS is vulnerable to environmental
conditions such as radio jams, resulting in signal loss and errors in synchronization. PTP
is a network packet–based synchronization method that uses hardware time–stamps to
compute delays. PTP requires hardware support to all the nodes to achieve a higher
accuracy. Thus, it is not a cost–effective solution. Moreover, the management of PTP
in a giant network such as WAN is challenging due to the complexity of the network
structure, the difference of regional environments, the numerous and dispersed nodes, and
limited fiber coverage. A software–based network time protocol (NTP) [4,5] is another
network packet–based clock synchronization technique that uses software time–stamps
to compute delays. NTP is easy to implement, deploy, and cost–effective compared to

Appl. Sci. 2021, 11, 11985 3 of 18

GPS and PTP. NTP is a promising clock synchronization solution for WAN, but it lacks in
accuracy required for emerging remote monitoring and control applications.

In order to address these challenges, this paper proposes a software–based, scalable,
yet accurate and precise clock synchronization algorithm for WAN called CoSiWiNeT
based on Random sample consensus (RANSAC) algorithm to effectively deal with outliers
in noisy offset data and predict correct clock offsets. For the evaluation of CoSiWiNeT, data
measurements in a real WAN connecting two cities separated by 107 km were conducted.
The results demonstrated that CoSiWiNeT outperforms NTP and state–of–the–art methods
by achieving around 40% improved performance.

The contributions of this paper are as follows:

(1) A scalable and precise clock synchronization algorithm based on RANSAC for hetero-
geneous WAN that provides improved synchronization over a degrading network
condition has been proposed.

(2) state–of–the–art methods typically use simulated network data or data from controlled
environments, e.g., laboratories. The proposed algorithm is evaluated by means of
simulation based on the data from real WAN with different degrees of network
qualities—from good to degrading networks.

(3) The algorithms’ performance was benchmarked against widely used in–practice time
synchronization protocols such as NTP as well as state–of–the–art methods based on
Kalman filter (KF) [6,7] and windowed least square (LS) [8] available in the literature.
The proposed algorithm’s greatly improved performance with methods from practice
and literature strengthens the new algorithm’s positioning.

The paper is organized as follows. First, related work is presented in Section 2.
Section 3 describes the measurements from WAN and characterizes them. Section 4 intro-
duces the CoSiWiNeT algorithm, and Section 5 evaluates its performance based on the
measured network data. The conclusions have been provided at the end.

2. Related Work

Performance of software–based clock synchronization in terms of accuracy and preci-
sion fails to match their hardware–based counterparts due to device–level inaccuracies and
unpredictable network conditions. Many methods have been described in the literature
focusing on the performance improvement of software–based clock synchronization.

A large section of literature lists clock synchronization methods for wireless sensor
networks divided into centralized and distributed synchronization. The centralized cate-
gory uses the receiver–to–receiver principle, where one reference sender broadcasts packets
and synchronizes a group of receivers with each other. They include Reference Broadcast
Synchronization (RBS) described by J. Elson et al. [9] and S. Ganeriwal et al. [10] and Flood-
ing Time Synchronization Protocol (FTSP) outlined by PulseSync [11] and several other
works [12,13]. In contrast to centralized approaches, distributed time synchronization proto-
cols rely on consensus algorithms to coordinate independent clocks in the network. They in-
clude Gradient Time Synchronization Protocol (GTSP) proposed by P. Sommer et al [14] and
Average TimeSynch (ATS) described by L. Schenato et al [15]. F. Tirado-Andrés et al [16]
present a methodology and a tool to choose an adequate time–synchronization strategy for
wireless IoT end devices. L. Tavares Bruscato et al [17] proposed low–energy algorithms to
converge the clocks of wireless sensor nodes quickly. More explicitly in the IoT domain,
Sridhar et al. describe the CheepSync time synchronization protocol [18] for Bluetooth
Low Energy (BLE) platforms. S. K. Mani et al. [19] developed a synchronization system,
including a lightweight client, a new packet exchange protocol called SPoT. In another
work, R. Gore et al. [20] proposed a lightweight clock synchronization algorithm called
CoSiNeT for IIoT field devices. Recently, low–power Bluetooth or Wi–Fi beacons [21] have
been proposed for synchronizing all the nodes of the network. All the above–listed meth-
ods are suitable for LANs where the field devices, e.g., temperature and pressure sensors,
actuators, and low–end controllers, are resource–constrained and require a lightweight
clock synchronization method in terms of memory and computation power.

Appl. Sci. 2021, 11, 11985 4 of 18

In the case of WAN, remote systems that need to be synchronized are typically not
resource–constrained in terms of computation power and memory. The higher noise and
interference levels in WAN result in higher PDV compared to field IoT LANs. To deal with
higher PDV, a computationally heavy clock synchronization algorithm can be realized for
WAN. Several methods [22–26] have been proposed that extensively use the Kalman filter–
based clock filter algorithm to estimate the server clock state (phase and frequency) from
time offset measurements. The Kalman filter is ideal for random Gaussian errors in offset;
however, it is sensitive towards packet delay outliers and occasional large spikes in offset.
P. Jia et al. [27] proposed a digital–twin–enabled model–based scheme to achieve clock
synchronization in IIoT environments. The success of this scheme depends on accurate
clock modeling so that its behavior under dynamic operating environments is predictable.
A batch least square (LS) based estimator to minimize the clock skew has been described
by many works [28–30]. However, in LS, when the skew changes as a result of the ignored
frequency drift term, its time offset estimates quickly deviate from the true values.

3. WANs: Time Data Measurement and Analysis

Delay and offset measurements in a WAN connecting two cities apart by 67 miles
physical distance and 15 hops in network distance were conducted. The heterogeneous
communication network includes mainly fiber–optics–based networks and various wire-
less networks such as Wi–Fi towards the endpoints. Four different network traces that
represented different network conditions ranging from good to fair were selected. In this
paper, the detailed measurement and analysis of the first two traces depicting deteriorating
network conditions have been showcased, skipping traces from good network conditions.
However, the results for all four traces have been summarized.

3.1. Network Data Capture Method

A client/server–based software application and two computers as depicted in Figure 2
to capture time–related network data were used.

Figure 2. Network data capture setup.

The software tool running on the static host or client computer sends periodic timing
requests containing the start time T1, to the static server computer via a communication
network. The server acknowledges the request at the local time T2. The server then sends
a reply at the time T3 using the same timing packet with timestamps T2 and T3. The host
receives the timing packet back at time T4. Thus, the host machine accumulates T1, T2, T3,
and T4 timestamps corresponding to all periodic timing requests and responses over the
same network for a particular period in a log file. The timestamps were used to calculate

Appl. Sci. 2021, 11, 11985 5 of 18

uncorrected time offset and round trip delays (RTD) between host and server machines
using the formulas below.

Time offset =
T4 − T3

2
+

T1 − T2

2
, (1)

RTD = (T4 − T3)− (T1 − T2). (2)

This study did not consider the effect of coding languages and operating systems in
software tool implementation on measurements as these factors are estimated to introduce
a negligible difference in measurements.

3.2. Trace 1: Wide Area Network

A WAN was analyzed by exchanging timestamps at a periodic interval of 1 s be-
tween client and server machines placed in two different cities. The corresponding raw,
uncorrected offset and RTD values between a client and server are shown in Figure 3. The
offset values have a mean of 261.1542 ms and a standard deviation of 29.0630 ms. The
variation is due to occasional peaks up to 776.9609 ms corresponding to errors (marked in
red circles) due to incomplete or missing timing requests and responses. RTD values over
time are distributed with a mean of 10.9815 ms and a standard deviation of 22.7386 ms. The
peak–to–peak RTD value is 540 ms owing to higher peaks of the order of 545 ms towards
the end in line with downward peaks in offset values.

Figure 3. Trace 1: Time data measurement.

3.3. Trace 2: Wide Area Network

The same WAN was analyzed at different times by exchanging periodic timing mes-
sages between the same client and server machines in two cities. The resulting raw,
uncorrected offset and RTD value over time are shown in Figure 4. The offset values are
distributed with a mean of 638.5867 ms and 34.3873 ms standard deviation. The higher
variation in offset is due to two outliers in the order of 1147 ms when two errors (marked
in red circle) were observed during timing message exchange, and an undershoot in the
beginning. The occasional peaks and an undershoot resulted in a higher peak–to–peak
offset of 1147.9437 ms in otherwise stable offset values. RTD values are distributed with
a mean of 20.5277 ms and 57.6120 ms standard deviation. The higher variation in RTD is

Appl. Sci. 2021, 11, 11985 6 of 18

due to one overshoot in the order of 1308 ms when there was an abrupt change in offset
in the beginning, represented by an undershoot. This single peak resulted in a higher
peak–to–peak RTD of 1298 ms in otherwise stable RTD values.

Figure 4. Trace 2: Time data measurement.

3.4. NTP Measurement in Wide Area Network

The same WAN was also analyzed by exchanging NTP messages at a variable polling
interval decided by the NTP algorithm between two machines placed in two different
cities. The server machine was configured as a ‘NTP server’ and the client machine as
a ‘NTP client’. The NTP server itself was synchronized to the nearby stratum–2 public
server from the NTP pool infrastructure. The ‘NTP client’ synchronizes to the ‘NTP server’
by continuously exchanged NTP messages carrying timestamps. The time and frequency
offsets resulting from the NTP algorithm were stored in various log files such as loopstats
and peerstats. These values were used for comparing NTP performance with other clock
synchronization methods.

3.5. Summary: Network Time Data Measurement

All the measured network traces by their network types, and communication medium
have been summarized in Table 1.

Table 1. Measured network traces.

Trace Nr Timing
Requests

Erroneous
Timing

Requests
TRER * Network

Condition **

1 5000 14 0.0028 Fair

2 1160 2 0.0017 Fair

3 4000 3 0.00075 Fair (Low)

4 7500 0 0.0000 Good

* Timing request error rate (TRER) = Timing requests with errors
Total no. of timing requests ; ** Good: TRER = 0; Fair: 0.05 > TRER > 0; Poor:

TRER > 0.05.

The lowest timing request error rate (TRER) are 0 for ‘Trace 4’ and 0.00075 for ‘Trace 3’
of WAN measurements. ‘Trace 1’ and ‘Trace 2’ have comparatively higher TRER. Typically,
heterogeneous WANs comprising of multiple segments of wired and wireless networks
from public and private domains are non–deterministic and susceptible to various noise

Appl. Sci. 2021, 11, 11985 7 of 18

sources, often missing and delaying packets. Thus, a finite TRER includes one or more
failures in exchanging timing requests and responses and indicates a possible deterioration
of the network. A criteria to define network conditions (good, fair, or poor) based on
that network’s TRER value were developed. Using this criterion, traces 1 and 2 were
defined as from a ‘Fair’ network, trace 3 from a ‘Fair (Low)’ network, and trace 4 from a
‘Good’ network.

4. CoSiWiNeT: RANSAC–Based Clock Synchronization Algorithm

Unpredictable communication network performance often leads to delayed, incom-
plete, or missing data packet transfers, resulting in a noisy clock offset and delay measure-
ments. Curve or line fitting algorithms for clock synchronization are being explored for
their ability to deal with the effects of network bursts and surges. However, curve fitting
becomes challenging in the presence of noisy data, outliers, and missing data. Furthermore,
data may not always fit the model precisely because of measurement or detection noise
and intra–class variability. A clock synchronization algorithm called the CoSiWiNeT based
on RANSAC was proposed, which performs better than LS methods in the presence of
outliers or noisy offset data.

CoSiWiNeT converts an estimation problem in the continuous domain into a selection
problem in the discrete domain. For example, if there are 100 data points to fit a line, LS
would use 2 points, whereas there are 100C2 or 4950 possible ways to fit a line. CoSiWiNeT
chooses the best suitable pair among 4950 options. To do so, the CoSiWiNeT algorithm
iteratively executes two steps: hypothesis formation and evaluation of framework, as
shown in Algorithm 1.

Algorithm 1 CoSiWiNeT algorithm
Inputs:
Measured offset, U = {Θi}
Function f computes model parameters p given a sample S from U, f (S) : S← p
Minimum number of offset samples required to estimate model parameters, n
Maximum number of iterations, k
Error tolerance threshold, t
Minimum valid consensus threshold, d
Outputs:
Model parameters fit best to offset data, p∗

1: k = 0
2: Best error E∗= large value
3: for i← i : 1 : k do
4: Hypothesis formation:
5: Select random sample space Sk ⊂ U with sample size

∣∣Sk
∣∣ = n

6: Compute model parameters pk = f (Sk)
7: Hypothesis Evaluation:
8: for every sample S′k 6= Sk do
9: Compute error Ek

10: if Ek < t then
11: Inliner list I∗ ← CS′k
12: end if
13: end for
14: if I∗ > d then
15: Corresponding model parameters p′ ← pk
16: if Best error E∗ > Current error Ek then
17: Best error E∗ = Ek
18: Best fit model parameters p∗ ← p′

19: end if
20: end if
21: end for

In the first step, a minimal sample set of size n is randomly selected from the input
dataset of size N. Then, the model parameters are computed based on an earlier selected

Appl. Sci. 2021, 11, 11985 8 of 18

random sample set. The elements of a random set (n) are smallest sufficient to determine the
model parameters in contrast with other methods such as LS, where the model parameters
are estimated using all the data points (N) with appropriate weights. In the evaluation step,
the error function is calculated for each data point. CoSiWiNeT checks which elements
of the entire dataset are consistent with the selected model whose parameters have been
estimated in the first step. The data elements which do not fit the model within some error
threshold attributed to the effect of noise are called outliers (O). Thus, CoSiWiNeT selects
the remaining data elements that support the current hypothesis. The set of such elements
is called consensus set (CS) or inlier set (I) [31,32].

CoSiWiNeT executes iteratively for k times and terminates when the probability of
finding a better–ranked CS drops below a certain threshold. The total number of inliers
typically decides the ranking. A CS that contains more elements is ranked better than a CS
that contains fewer elements. The total number of iterations that are required to ensure,
with a probability p, that at least one random sample produces an inlier set that is free from
“real” outliers is given by

k =
log(1− p)

log(1− (1− I
O)n)

. (3)

It can be learned that k can be very large if p gets closer to one. For a fixed p, k can be
made smaller if (I

O) is made larger or n is made smaller.
The CoSiWiNeT algorithm is implemented with a moving window–based approach.

The algorithm predicts a new offset value based on the best fit linear curve to the previous
window of data elements. In the current design of the 200 element window, the algorithm
starts working by predicting the 201st offset based on first 200 offset values. The algorithm
then predicts 202nd offset value based on moved window of elements 2 to 201.

CoSiWiNeT is an easily implementable method to fit the curve to noisy data with
many outliers. On the downside, there are many parameters to tune for a better fit; it may
need many iterations to get the expected accuracy and requires the inlier to outlier ratio to
be reasonable.

5. CoSiWiNeT Evaluation

The CoSiWiNeT algorithm’s performance was evaluated using the four network traces
with different conditions, summarized in Table 1. Various parameters such as predicted
time and frequency offsets, offset error, and execution time were used for the algorithm
evaluation. The proposed algorithm’s performance was also compared with NTP and
state–of–the–art methods based on KF and LS to derive the baselines. To make the proper
comparison, raw or uncorrected offsets from free–running clocks in server and client
devices were captured as described in Section 3. The uncorrected offset values captured
over a long time were fed as an input to all the algorithms implemented in a Matlab
simulator. The behavior of each algorithm captured in terms of how effectively they correct
the offset was visualized and analyzed in Matlab.

5.1. Predicted Clock Offset

The accuracy and precision of a clock synchronization algorithm depend upon the vari-
ability in clock offset and RTD values. Thus, the algorithm which reduces the variability in
raw offset measurements the most can be assured to provide a better clock synchronization
performance.

5.1.1. Network Trace 1

The clock offset output of algorithms, KF, LS, CoSiWiNeT, along with the raw input
clock offset for trace 1 are shown in Figure 5. The outliers in raw clock offset represented
by spikes are minimized by all these algorithms, more evidently by KF and CoSiWiNeT.
However, LS shows additional spikes in its clock offset output.

Appl. Sci. 2021, 11, 11985 9 of 18

Figure 5. Trace 1—Comparison of predicted clock offset.

To formulate the variability of responses, a box–plot representation of input and
output offset values for various algorithms is shown in Figure 6.

Figure 6. Trace 1—Statistical distribution of predicted clock offset.

The interquartile range (IQR), the measure of variability, is represented by a height
of the box, and it indicates the spread of data in a data set. The IQR of KF, LS, and
CoSiWiNeT is 1.4804, 37.8196, and 1.077, respectively, compared to 1.3908 of a raw offset,
which indicates that CoSiWiNeT performs better than KF and LS.

The output of the NTP algorithm, i.e., the corrected offset is shown in Figure 7.

Appl. Sci. 2021, 11, 11985 10 of 18

Figure 7. NTP clock offset response during Trace 1 measurement.

The corrected offset values ranges from 0.058 ms to 7.531 ms. The clock frequency
varies from 381.23 ppm to 498.95 ppm.

5.1.2. Network Trace 2

The comparison of raw clock offset from trace 2 and clock offsets filtered by syn-
chronization algorithms is shown in Figure 8. The moving window–based LS and CoSi-
WiNeT algorithms start working from 201st offset data and reduce the two visible peaks
of raw clock offset. However, the LS does introduce few new peaks while correcting the
input offset.

Figure 8. Trace 2—Comparison of predicted clock offset.

The graphical view of depicting the comparison of predicted clock offsets with the raw
one is represented by box plots as shown in Figure 9. The IQR values 0.9332, 3.5078, 3.4392,
and 0.9892 of raw input, KF, LS, and CoSiWiNeT, respectively, show that CoSiWiNeT does
perform better than KF and LS.

Appl. Sci. 2021, 11, 11985 11 of 18

Figure 9. Trace 2—Statistical distribution of predicted clock offset.

The corrected offset output of the NTP algorithm is shown in Figure 10. The corrected
offset values ranges from 0.058 ms to 11.851 ms. The clock frequency varies from 496 ppm
to 500 ppm.

Figure 10. NTP clock offset response during Trace 2 measurement.

5.1.3. All Network Traces

The NTP offset measurements were conducted simultaneously with raw offset mea-
surements in the same WAN. To compare the outcomes of such related measurements
based on the variability of predicted offsets, a statistical parameter called ‘coefficient of
variation (CV)’ [33] was used. CV is a statistical measure of the relative dispersion of
data points in a data series around the mean. It is calculated as the ratio of the standard
deviation to the mean (average). As shown in Table 2, the CV is lowest for CoSiWiNeT in
the case of trace 1 (41.86% and 39.13% improvement over NTP and KF, respectively) and
trace 2 (35.39% and 40.33% improvement over NTP and KF, respectively). In the case of
trace 3, the CV of CoSiNeT is lower than raw input and LS but comparable with KF and
NTP. In trace 4, the CV of all the algorithms is almost comparable.

Appl. Sci. 2021, 11, 11985 12 of 18

Table 2. Comparison of synchronization algorithms using predicted clock offset (coefficient of
variation).

Algorithm Trace 1 Trace 2 Trace 3 Trace 4

Raw 0.1112 0.0538 0.1343 0.2577

KF 0.0088 0.0051 0.0309 0.2543

LS 0.3604 0.0287 0.3532 0.2112

CoSiWiNeT 0.0053 0.0030 0.0322 0.2515

NTP 0.0092 0.0047 0.0313 0.2473

5.2. Predicted Frequency Offset

The frequency offset is closely related to clock offset (time). It can be calculated as

Frequency offset =
Current offset – Previous offset

Current time – Last measurement time
(4)

The algorithm that reduces the most variability in raw frequency offset values assures
the best clock synchronization performance.

5.2.1. Network Trace 1

The raw frequency offset and filtered frequency offsets by KF, LS, and CoSiWiNeT for
trace 1 are shown in Figure 11. The higher variability in raw frequency offset can be seen
through multiple spikes though out the duration of trace 1. The visual inspection confirms
that all the algorithms manage to curb the raw frequency offset variations.

Figure 11. Trace 1—Comparison of predicted clock frequency offset.

To quantify the individual performance of algorithms, a box–plot representation of
raw input and outputs of algorithms is shown in Figure 12. The IQR of KF, LS, and
CoSiWiNeT 3.2449, 16.7254, and 2.3331 compared to 478.2144 of a raw frequency offset
indicates that CoSiWiNeT performs better than KF and LS.

Appl. Sci. 2021, 11, 11985 13 of 18

Figure 12. Trace 1: Statistical distribution of predicted frequency offset

5.2.2. Network Trace 2

The raw frequency offset and filtered frequency offsets by KF, LS, and CoSiWiNeT for
trace 2 are shown in Figure 13. The outliers represented by higher magnitude spikes in raw
frequency offset values indicate higher variability. This variability is reduced by all the
algorithms to large extent.

Figure 13. Trace 2—Comparison of predicted clock frequency offset.

A box–plot representation comparing raw input frequency offset with filtered fre-
quency offsets is shown in Figure 14. The IQR of KF, LS, and CoSiWiNeT is 92.1462, 3.0341,
and 1.5511, respectively, compared to 214.8646 of a raw frequency offset, indicating that
CoSiWiNeT performs better than KF and LS.

Appl. Sci. 2021, 11, 11985 14 of 18

Figure 14. Trace 2—Statistical distribution of predicted frequency offset.

5.3. Clock Offset Error

The clock offset error was calculated as a difference between filtered or corrected
clock offset and ideal clock offset values for each measurement sample. As the raw and
uncorrected input offset values are increasing or decreasing over time, the ideal clock
offset profile was considered to follow a straight line passing through raw offset values.
Therefore, the clock offset error should be zero for the ideal clock synchronization algorithm.
In practice, the synchronization algorithm with minimum offset error is considered to be
the best algorithm.

Figure 15. Trace 1—Comparison of clock offset error.

Appl. Sci. 2021, 11, 11985 15 of 18

Figure 16. Trace 2—Comparison of clock offset error.

The clock offset error profiles of KF, LS, and CoSiWiNeT for network traces 1 and 2 are
shown in Figures 15 and 16, respectively. Both error profiles show that KF and CoSiWiNeT
produce lower offset errors compared to LS. The magnified views on both figures reveal
this fact more clearly.

Table 3. Comparison of synchronization algorithms using clock offset error (RMSE).

Algorithm Trace 1 Trace 2 Trace 3 Trace 4

Raw 28.7188 23.8147 15.6126 0.7439

KF 1.5161 10.2513 0.6584 0.1454

LS 98.9826 18.4172 47.2604 11.6701

CoSiWiNeT 1.1221 5.1374 0.6024 0.1496

To quantify the error performance of synchronization algorithms, a statistical param-
eter called root mean square error (RMSE) was used. RMSE is the standard deviation of
the residuals (prediction errors), and it informs how concentrated the filtered offset data
is around the line of the best fit. RMSE for raw input as well as output offset values of
various synchronization algorithms is shown in Table 3. In network traces 1 and 2, the
RMSE of CoSiWiNeT is lower than RMSE of raw and synchronization algorithms KF and
LS. In the case of traces 3 and 4, the RMSE of CoSiWiNeT is lower than RMSE of raw and
LS, but it is comparable with KF.

5.4. Algorithm Execution Time

The clock synchronization algorithms were also compared based on execution time.
The execution time was considered as a full processing time of one new offset data sample
through a clock synchronization filtering algorithm. The ‘tic’ time is stamped when a new
sample is available for processing, and the ‘toc’ time is noted when a predicted offset is
available. Various execution times calculated as a difference between the respective ‘tic’
and ‘toc’ timestamps are shown in Table 4. The average execution time of KF is lowest at
6.23 µs, with LS and NTP following closely at 32.02 µs and 61.53 µs. The average execution
time of CoSiWiNeT algorithm is 18.4 ms. As CoSiWiNeT executes multiple iterations (e.g.,
500 in this case) and selects the best for a single offset data prediction, its execution time
is comparatively higher than others. The execution times were measured on laboratory

Appl. Sci. 2021, 11, 11985 16 of 18

computing machines, and the effect of different machine configurations, operating systems
were not considered for this analysis.

Table 4. Comparison of synchronization algorithms using execution time (µs).

Algorithm Mean Std Dev

KF 6.23 6.78

LS 32.02 0.02

CoSiWiNeT 18,400 20,000

NTP 61.53 55.31

5.5. Results and Validity

The clock synchronization algorithm’s essential function is to reduce the variability
in raw offsets introduced by packet delay variation in a network. Therefore, a better–
performing clock synchronization algorithm is the one that curbs this variability more
effectively. For performance comparison of different clock synchronization methods,
various parameters such as (i) predicted clock offset, (ii) predicted frequency offset, (iii)
clock offset error, and (iv) algorithm execution time were used. The results of network
trace 1 and 2 reveal that CoSiWiNeT performs better than state–of–the–art KF algorithm,
LS algorithm, and state–of–the–practice NTP protocol on the first three parameters. The
results of traces 3 and 4 reveal that the performance of CoSiWiNeT is almost comparable
with state–of–the–art KF algorithm, LS algorithm, and state–of–the–practice NTP protocol
on the first three parameters. However, the fourth parameter, execution time, indicates that
CoSiWiNeT achieves better performance at the cost of a longer execution time (18.4 ms)
compared to KF, LS, and NTP (maximum 61.53 µs).

The evaluation of of a new clock synchronization algorithm could be done in various
ways. First, using test data obtained from live network characterization as a stimulus to the
Matlab program and measuring the time metrics; second, using live data obtained from
real industrial sites as a stimulus to Matlab program and measuring the time metrics and
thirdly implementing the software solution on a hardware platform and using the same in
real industrial networks and measuring the time metrics. All the above evaluation methods
of a new clock synchronization algorithm vary in terms of their degree of confidence.
However, practical difficulties such as availability of industrial network data or access
to industrial sites for experimentation, can act as bottlenecks. The possible approach of
comparing performance of various state–of–the–art algorithms with CoSiWiNeT is to run
these algorithms simultaneously on different devices in the same network. However, in this
case, network conditions and host device activities experienced by all algorithms would
possibly not be the same at all time and thus the comparison may not be fair. To deal with
the above–mentioned practical difficulties, the raw and uncorrected offset data obtained
from a real WAN was used as a stimulus to validate the performance of CoSiWiNeT and
compare it with KF and LS methods. Without theoretical analysis of the network, the
generalization of results based on experimental evaluation can be limited. To increase
the confidence in results, the longer network traces with different degrees of network
conditions were used for evaluation. Such analysis of realistic case studies reduced the
threats to the validity of results.

6. Conclusions

Clock synchronization for distributed sites using WAN is essential for realizing emerg-
ing automation applications based on remote monitoring and control of factory sites. GPS
and PTP can be prominent hardware–based solutions to achieve accurate clock synchro-
nization; however their use is challenged by cost, unavailability of continuous GPS signals
due to environment, and hardware failure modes. As the existing software–based solution,
NTP overcomes these challenges but lacks in accuracy, for WAN a scalable, software–based
clock synchronization algorithm called CoSiWiNeT was proposed. The new algorithm’s

Appl. Sci. 2021, 11, 11985 17 of 18

performance was evaluated by means of simulation based on parameters, predicted clock
offset, frequency offset, offset error, and execution time. Based on the first three parameters,
the evaluation shows that the CoSiWiNeT algorithm matches well NTP and state–of–the–
art method based on Kalman filter in a good network environment, but performs better by
41% and 40%, respectively, in fair and deteriorating network conditions. The downside
of the CoSiWiNeT algorithm is comparatively higher execution time. However, for a
polling rate of 1 s, this execution time is fast enough to predict offset before the next sample
measurement. Furthermore, the algorithm can successfully deal with offset changes due to
step changes in RTD and multiple errors in timing messages due to network deterioration,
improving system reliability and safety.

Having evaluated the functional performance of CoSiWiNeT in terms of accuracy and
precision, as a future step, the other aspects such as availability, scalability on different
hardware platforms, and performance in distributed topology comprising multiple master
or server devices can be studied further. In clock synchronization systems, the devices, as
well as the synchronization related communication messages are prone to security incidents
and thus security issues can be investigated for identifying effective measures.

Author Contributions: Conceptualization, R.N.G., E.L., J.Å. and M.B.; Funding acquisition, J.Å. and
M.B.; Investigation, R.N.G., E.L., J.Å. and M.B.; Methodology, M.B.; Project administration, J.Å.;
Supervision, E.L., J.Å. and M.B.; Writing—original draft, R.N.G.; Writing—review and editing, R.N.G.,
E.L., J.Å. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been financed by the Future Industrial Networks (FIN) project, grant number
2018-02196 within the strategic innovation program for process industrial IT and automation, PiiA,
and PiiA Research Etapp II, a joint program by Vinnova, Formas and Energimyndigheten.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication: Automation Networks in the Era of the

Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [CrossRef]
2. Gore, R.N.; Lisova, E.; Åkerberg, J.; Björkman, M. Clock Synchronization in Future Industrial Networks: Applications, Challenges,

and Directions. In Proceedings of the 2020 AEIT International Annual Conference (AEIT), Catania, Italy, 23–25 September 2020;
pp. 1–6.

3. Della Giustina, D.; Ferrari, P.; Flammini, A.; Rinaldi, S. Experimental characterization of time synchronization over a heteroge-
neous network for Smart Grids. In Proceedings of the 2013 IEEE International Workshop on Applied Measurements for Power
Systems (AMPS), Aachen, Germany, 25–27 September 2013; pp. 132–137.

4. Mills, D.; Delaware, U.; Martin, E.J.; Burbank, J.; Kasch, W. Network Time Protocol Version 4: Protocol and Algorithms
Specification. Available online: https://tools.ietf.org/html/rfc5905 (accessed on 14 October 2021).

5. Mills, D. Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, 2nd ed.; CRC Press: Boca Raton,
FL, USA, 2017.

6. Benhamou, E. Kalman Filter Demystified: From Intuition to Probabilistic Graphical Model to Real Case in Financial Markets.
arXiv 2018, arXiv:1811.11618.

7. Mathur, S.; Sharma, B.B. EKF and UKF based synchronization of hyperchaotic systems. In Proceedings of the International
Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India, 9–10 September 2016;
pp. 743–749.

8. Miller, S.J. The Probability Lifesaver: All the Tools You Need to Understand Chance; Princeton University Press: Princeton, NJ, USA,
2017; pp. 625–635.

9. Elson, J.; Girod, L.; Estrin, D. Fine-Grained Network Time Synchronization Using Reference Broadcasts. SIGOPS Oper. Syst. Rev.
2003, 36, 147–163. [CrossRef]

10. Ganeriwal, S.; Kumar, R.; Srivastava, M.B. Timing-Sync Protocol for Sensor Networks. In Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems, SenSys ’03, Los Angeles, CA, USA, 5–7 September, 2003; pp. 138–149.

11. Lenzen, C.; Sommer, P.; Wattenhofer, R. PulseSync: An Efficient and Scalable Clock Synchronization Protocol. IEEE/ACM Trans.
Netw. 2014, 23, 717–727. [CrossRef]

http://doi.org/10.1109/MIE.2017.2649104
https://tools.ietf.org/html/rfc5905
http://dx.doi.org/10.1145/844128.844143
http://dx.doi.org/10.1109/TNET.2014.2309805

Appl. Sci. 2021, 11, 11985 18 of 18

12. Yildirim, K.S.; Kantarci, A. Time Synchronization Based on Slow-Flooding in Wireless Sensor Networks. IEEE Trans. Parallel
Distrib. Syst. 2014, 25, 244–253. [CrossRef]

13. Lenzen, C.; Sommer, P.; Wattenhofer, R. Optimal Clock Synchronization in Networks. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’09, Raleigh, NC, USA, 5–7 November 2009; pp. 225–238.

14. Sommer, P.; Wattenhofer, R. Gradient clock synchronization in wireless sensor networks. In Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks, San Francisco, CA, USA, 13–16 April 2009; pp. 37–48.

15. Schenato, L.; Fiorentin, F. Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks.
Automatica 2011, 47, 1878–1886. [CrossRef]

16. Tirado-Andrés, F.; Rozas, A.; Araujo, A. A methodology for choosing time synchronization strategies for wireless IoT networks.
Sensors 2019, 19, 3476. [CrossRef] [PubMed]

17. Tavares Bruscato, L.; Heimfarth, T.; Pignaton de Freitas, E. Enhancing Time Synchronization Support in Wireless Sensor Networks.
Sensors 2017, 17, 2956. [CrossRef] [PubMed]

18. Sridhar, S.; Misra, P.; Gill, G.S.; Warrior, J. Cheepsync: A time synchronization service for resource constrained bluetooth le
advertisers. IEEE Commun. Mag. 2016, 54, 136–143. [CrossRef]

19. Mani, S.; Durairajan, R.; Barford, P.; Sommers, J. An architecture for IoT clock synchronization. In Proceedings of the 8th
International Conference on the Internet of Things, Santa Barbara, CA, USA, 15–18 October 2018; pp. 1–8.

20. Gore, R.N.; Lisova, E.; Åkerberg, J.; Björkman, M. CoSiNeT: A Lightweight Clock Synchronization Algorithm for Industrial IoT.
In Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada,
10–13 May 2021; pp. 92–97.

21. Hao, T.; Zhou, R.; Xing, G.; Mutka, M. WizSync: Exploiting Wi-Fi Infrastructure for Clock Synchronization in Wireless Sensor
Networks. In Proceedings of the 2011 IEEE 32nd Real-Time Systems Symposium, Vienna, Austria, 29 November–3 December
2014; pp. 149–158.

22. Bletsas, A. Evaluation of Kalman filtering for network time keeping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52,
1452–1460. [CrossRef] [PubMed]

23. Giorgi, G.; Narduzzi, C. Performance analysis of Kalman filter-based clock synchronization in IEEE 1588 networks. In Proceedings
of the International Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS),
Brescia, Italy, 12–16 October 2009; pp. 1–6.

24. Yang, S.; Xu, C.; Guan, J.; Zhang, T. Event-based Diffusion Kalman Filter Strategy for Clock Synchronization in WSNs. In
Proceedings of the International Conference on Networking and Network Applications (NaNA), Xi’an, China, 12–15 October
2018; pp. 270–276.

25. Giorgi, G.; Narduzzi, C. Kalman filtering for multi-path network synchronization. In Proceedings of the IEEE International
Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS), Austin, TX, USA, 22–26
September 2014; pp. 65–70.

26. Le, R.; Wang, X. Smart Power Grid Synchronization Using Extended Kalman Filtering: Theory and Implementation with
CompactRIO. In Proceedings of the IEEE Green Technologies Conference (GreenTech), Austin, TX, USA, 4–6 April 2018;
pp. 38–43.

27. Jia, P.; Wang, X.; Shen, X. Digital Twin Enabled Intelligent Distributed Clock Synchronization in Industrial IoT Systems. IEEE
Internet Things J. 2020, 8, 4548–4559. [CrossRef]

28. Zhang, Y.; He, F.; Lu, G.; Xiong, H. Clock synchronization compensation of Time-Triggered Ethernet based on least squares
algorithm. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC Workshops), Chengdu,
China, 27–29 July 2016; pp. 1–5.

29. Ting, W.; Heng, W.; Ping, W. Networked synchronization control method by least squares support vector machine. In Proceedings
of the 2nd International Conference on Signal Processing Systems, Dalian, China, 5–7 July 2010; Volume 2, pp. 215–218.

30. Tian, Y. Time Synchronization in WSNs with Random Bounded Communication Delays. IEEE Trans. Autom. Control. 2017, 62,
5445–5450. [CrossRef]

31. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

32. Haifeng, L.; Rong, C. Optimal line feature generation from low-level line segments under RANSAC framework. In Proceedings
of the 26th Chinese Control and Decision Conference (CCDC), Changsha, China, 31 May–2 June 2014; pp. 4589–4593.

33. Yue, Z.; Baleanu, D. Inference about the Ratio of the Coefficients of Variation of Two Independent Symmetric or Asymmetric
Populations. Symmetry 2019, 11, 824. [CrossRef]

http://dx.doi.org/10.1109/TPDS.2013.40
http://dx.doi.org/10.1016/j.automatica.2011.06.012
http://dx.doi.org/10.3390/s19163476
http://www.ncbi.nlm.nih.gov/pubmed/31395809
http://dx.doi.org/10.3390/s17122956
http://www.ncbi.nlm.nih.gov/pubmed/29261113
http://dx.doi.org/10.1109/MCOM.2016.7378439
http://dx.doi.org/10.1109/TUFFC.2005.1516016
http://www.ncbi.nlm.nih.gov/pubmed/16285442
http://dx.doi.org/10.1109/JIOT.2020.3029131
http://dx.doi.org/10.1109/TAC.2017.2697683
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.3390/sym11060824

	Introduction
	Related Work
	WANs: Time Data Measurement and Analysis
	Network Data Capture Method
	Trace 1: Wide Area Network
	Trace 2: Wide Area Network
	NTP Measurement in Wide Area Network
	Summary: Network Time Data Measurement

	CoSiWiNeT: RANSAC–Based Clock Synchronization Algorithm
	CoSiWiNeT Evaluation
	Predicted Clock Offset
	Network Trace 1
	Network Trace 2
	All Network Traces

	Predicted Frequency Offset
	Network Trace 1
	Network Trace 2

	Clock Offset Error
	Algorithm Execution Time
	 Results and Validity

	Conclusions
	References

