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Abstract: Counting people in crowd scenarios is extensively conducted in drone inspections, video
surveillance, and public safety applications. Today, crowd count algorithms with supervised learning
have improved significantly, but with a reliance on a large amount of manual annotation. However, in
real world scenarios, different photo angles, exposures, location heights, complex backgrounds, and
limited annotation data lead to supervised learning methods not working satisfactorily, plus many of
them suffer from overfitting problems. To address the above issues, we focus on training synthetic
crowd data and investigate how to transfer information to real-world datasets while reducing the
need for manual annotation. CNN-based crowd-counting algorithms usually consist of feature
extraction, density estimation, and count regression. To improve the domain adaptation in feature
extraction, we propose an adaptive domain-invariant feature extracting module. Meanwhile, after
taking inspiration from recent innovative meta-learning, we present a dynamic-β MAML algorithm
to generate a density map in unseen novel scenes and render the density estimation model more
universal. Finally, we use a counting map refiner to optimize the coarse density map transformation
into a fine density map and then regress the crowd number. Extensive experiments show that our
proposed domain adaptation- and model-generalization methods can effectively suppress domain
gaps and produce elaborate density maps in cross-domain crowd-counting scenarios. We demonstrate
that the proposals in our paper outperform current state-of-the-art techniques.

Keywords: crowd counting; domain adaptation; cross-domain; meta-learning; synthetic dataset

1. Introduction

Crowd counting has become an essential component in crowd analysis, and attracts
increasing attention in computer vision research [1,2]. It has many applications, including
drone inspections, video surveillance, traffic flow analysis, and public safety [3]. Usually,
crowd counting is regarded as a pixel-level estimation problem [4]. Deep convolutional
networks first extract feature maps from images and the density value of each feature pixel
is then predicted. By summing the densities of all the feature-map pixels, we can regress
the final counting result [5]. Crowd counting is essential in these scenarios. Recently,
supervision-based crowd analysis algorithms [6–8] have benefited from the power of
deep learning to accomplish remarkable improvement. However, these algorithms have
obvious limitations, and current popular crowd-counting datasets do not fully satisfy the
demand [9].

In many real world scenarios, different image angles, exposures, location heights, and
complex backgrounds, along with limited annotation data, lead to supervised learning
methods that do not work satisfactorily, and many suffer from overfitting problems [10]. In
addition, abundant labeled training data, which is costly and time-consuming to produce, is
the basis of better performance. Furthermore, there are inevitably some incorrect annotations
within the popular dataset, such as in Shanghai Tech [6] and UCF_CC [11] samples.
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In this paper, we mainly focus on the problem of cross-domain crowd counting with
limited labeled data. Generally speaking, the accuracy rate will drop drastically in cross-
domain scenarios due to domain-shift issues. Therefore, many researchers pay more
attention to synthetic data, hoping to utilize massive amounts of synthetic images with
labeled data to adapt domains and train meta-learning models to reduce manual labeling
in new scenarios. Multiple challenges lead to accurate and efficient crowd-counting results
in this field.

One such challenge is extracting domain-invariant features to align the source and tar-
get domains at the feature level. Due to differences between synthetic data and real-world
images, there are issues involving domain gaps, which significantly degrade performance.
To align the domain gaps between synthetic and real-world datasets, Wang et al. [12]
proposed a CycleGAN-based method, which transfers the image styles and extracts the
domain-invariant features. Gao et al. [5] proposed an adaptive domain method for crowd
counting, which focuses on transferring domain-invariant data from a source domain to a
target domain.

Another challenge is improving the generalization of the crowd-counting meta-
learning model and accelerate convergence. Theoretically, the more meta-learning scenarios
exist for training, the higher the model accuracy. However, such model will consume more
time in training. Reddy et al. [13] proposed a new approach for few-shot scenes, which
improves the generalizable crowd-counting model, supporting the idea of learning to
learn [14].

Most studies aim to explore effective methods with only a small amount of labeled
training data needed to transfer the knowledge of crowd-counting models from source
domains to target domains. Usually, source domains use a synthetic dataset, while target
domains utilize a real-world dataset [1]. Therefore, we propose the method with model-
agnostic meta-learning for cross-domain adaptation scenarios around the aforementioned
key points. The paper’s contribution is summarized below:

(1) To improve the model’s generalization ability, in the density map estimation phase, we
propose a meta-learning-based method, which accelerates the model’s convergence in
few-shot scenes with the dynamic meta-learning rate β.

(2) In cross-domain scenarios, domain-invariant feature extraction is essential to align the
source and target domains. We propose an adaptive domain-invariant feature extracting
module based on gradient reversal layer (GRL) to perform domain adaptation.

(3) To conclude, we discuss the effectiveness of domain adaptation with two critical model
generalization phases in crowd-counting scenarios: feature-map extraction and density-
map estimation. Experiments show that the methods we propose in this paper can
improve performance over the baseline and achieve state-of-the-art performance.

2. Related Work
2.1. Crowd Counting

In crowd-analysis scenarios, crowd counting is the essential component when aiming
to calculate the crowd number. In the last decade, several methods have emerged to solve
the problem of crowd counting. Many traditional algorithms have applied hand-crafted
features to detect people from images. Ref. [15] introduced the Hough forest to perform
a generalized Hough transformation for object detection. Ref. [16] boosted several weak
part detectors based on extracted features, and all detector responses were combined for
counting. Ref. [17] combined mosaic images with a foreground segmentation module and
head–shoulder detector to accurately estimate pedestrian counts. While early methods
can satisfactorily solve the occlusion problem, they are conducted at the expense of spatial
information. Various density estimation-based methods are proposed [18]. These methods
do not need to detect every object, as they estimate the image density and calculate the
area in the density map to obtain the quantity within that area. Ref. [19] proposed a
patch-based method to learn patch features and the nonlinear mapping of corresponding
objects in the patch. To improve estimation accuracy and speed, they used random forest
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regression. Ref. [20] combined deep and shallow, fully convolutional networks, for which
the high-level and low-level semantics complemented each other to predict higher-quality
density maps. Ref. [21] proposed solving accuracy problems in the generation of density
maps through multi-scale averaging. Ref. [6] attempted a multi-column-based architecture
(MCNN) used with images of dense crowds and an angle of view. In a different approach,
Ref. [22] presented a universal model for crowd counting across scenes and datasets. The
model learns to obtain the optimal image rescaling factors for alignment, by minimizing
the distances between their scale distributions. Ref. [23] proposed an unsupervised domain
adaptation problem for video-based crowd counting.

2.2. Domain Adaptation

Domain adaptation is a representative method in transfer learning, which utilizes
information-rich samples from the source domain to improve the performance of the model
in the target domain. Many methods [24–28] have been proposed to reduce the domain gap.
An unsupervised domain adaptation [29] has been proposed for semantic segmentation
for the first time. Adversarial-based DA methods are becoming more and more popular in
recent years. Sankaranarayanan et al. [30] propose a joint adversarial learning approach,
preserving the learned embedding to represent the target distribution. Hoffman et al.
Ref. [31] propose a novel discriminatively-trained cycle-consistent adversarial domain
adaptation model (CyCADA) with cycle-consistency constraints. Ref. [32] presents a
multi-level adversarial network in multi-level layers for semantic segmentation. Ref. [33]
proposes a novel self-supervised framework to solve the distributed multi-source domain
adaptation problem, referred as self-supervised federated domain adaptation (SFDA),
which utilizes multi-domain model generalization balance (MDMGB) to aggregate the
models from multiple source domains. To the domain-shift by learning domain-invariant
representations, Ref. [34] designed a method for learning domain-invariant local feature
patterns and jointly aligning holistic and local feature statistics. In our approach, we pro-
pose an adaptive domain-invariant features-extracting module based on gradient reversal
layer (GRL) to perform domain adaptation.

2.3. Few-Shot Learning

Few-shot learning (FSL) aims to learn from very few labeled examples to complete
a task. In terms of what prior knowledge is required, recent FSL work can be classified
into three types: multitask learning [35,36], embedding learning [37–39], and generative
modeling [40–42]. Ref. [43] builds a shared two-task network for general information and
to learn task-specific information from different final layers. Luo et al. [44] propose the
possibility of domain adaptation with a limited sample data. Ref. [45] propose training two
different networks; one, being the source-domain training, and the other, being the target-
domain training, which are then aligned through regularization to achieve the domain
adaptation of the two networks. Ref. [46] used auto-regressive models to enable practical
few-shot density estimation. This measurement-based method [47,48] usually uses the
similarity and consistency between uniform category data points to learn the distance
function and measure whether the data points are similar.

2.4. Synthetic Dataset

Data collection and annotation is costly and time-consuming work, which limits most
current deep learning approaches. Synthetic content generation [49–51] is considered a
promising solution, since all labels are available in the graphics engine. Some excellent
synthetic datasets have recently emerged, ranging from driving scenes [52], and crowd
counting [53], to optical flow estimation [54]. Ref. [42] have offered an approach that can
learn to modify the attributes of scene graphs obtained from probabilistic scene grammars.
Ref. [55] propose using GTA-generated synthetic data as training samples for semantic
segmentation training in urban scenes. Ref. [56] presented a novel large-scale human pose-
estimating dataset, rendered from 3D sequences of human motion-capture data. Ref. [57]
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provides a benchmark data set generated by specific low-level features to generate synthetic
images for training the attention model.

3. Methods

In this paper, we break down the task of crowd counting into several parts: feature
extraction, density estimation, and the counting map. We also study the different aspects
of model generalization approaches. Many algorithms achieve excellent results when their
training and testing data are in the same domain. However, in cross-domain scenarios [58],
there are domain-shift issues, which is a result of training and testing on different domains.
Generally, the basic steps of crowd-counting algorithms’ flow [59] consists of three parts: a
feature extractor, a density estimator, and a crowd-counting mapper, as shown in Figure 1.
In most CNN-based algorithms, such as [6,60,61], the three parts are trained from end to
end. Taking CSRNet [60] as an example, whose first ten network layers are utilized as
feature extractors, and whose remaining parts are used as density estimators. Following the
idea of unsupervised domain adaptation [28], we propose an adaptive domain-invariant
feature extracting module to align the two domains along a feature level. Moreover, to
make the density estimator more universal, we propose dynamic-β MAML, based on the
idea of Alpha-MAML [62,63]. Finally, we study the counting map refiner, which transforms
a density map from coarse to refined, regresses the crowd number based on a synthetic
dataset, and applies the refiner to new domains.

Figure 1. Comparison of the main proposed algorithm flow with general crowd-counting algorithm
flow. The three modules proposed to enhance model generalization capability: Adaptive Domain-
Invariant Features Extracting module, Dynamic-β Model-Agnostic Meta-Learning Density Estimator
Module, and Counting Map Refiner Module.

3.1. Density-Map Estimator Module Based on Dynamic-β MAML

With the rapid development of computer science, powerful computing and significant
data volume have greatly improved the accuracy of computer-vision algorithms, and
with great success [64]. However, there are still many challenges, one of which is model
generalization. When there is limited labeled data, it is essential to apply a training method
that improves model generalization [52]. The supervised learning algorithm aims to learn
a function between image data and labeled data. Moreover, the meta-learning algorithm
is trained in different tasks, each containing a training set and a testing set. Originating
from meta-learning, few-shot learning solves the predictions problem with limited training
samples, while also enabling the model to adapt to new, unseen scenes with little or no
labeled data. In most real-world scenarios there is limited training data, so, improving the
model generalization to adapt more scenes quickly is an area worth studying, particularly
in crowd-counting problems. There are naturally different domains because of the angle,
location, exposure, and position of photos. Thus, we mainly focus on the meta-learning
model generalization method for estimating density in this section. Inspired by the alpha
model-agnostic meta-learning algorithm, we propose a meta-learning-based approach to
generate a dynamic learning rate for faster convergence. Therefore, this will allow the
model to quickly adapt to new scenes.

The MAML algorithm [62] is model-agnostic, which means that it is compatible with
deep learning models trained with gradient descent. Therefore, we studied the approaches
to adaptive crowd counting based on the MAML algorithm with a few samples. In this
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paper, we chose the GCC dataset [53], consisting of 15,212 synthetic images with different
scenes: rainy, cloudy, night, and so on.

We combined images in different scenes to organize multiple tasks for meta-learning [65].
The framework of the density-map estimator, based on model-agnostic meta-learning, is
shown as Figure 2. The meta-learning aims to learn a mapping function g(·), trained on
a set of tasks. Each task contains a training dataset and a testing dataset. In Figure 2, the
meta-learning is divided into two phases; the meta-train phase, and the meta-test phase. We
aimed to improve the model generalization ability based on model-agnostic meta-learning.
Furthermore, as the feature extraction parameters are fixed, we will discuss an adap-
tive feature extraction method in the next section, but the density estimating parameters
are trainable.

Figure 2. The details of meta-learning for the density estimator. There are two parts to optimize the
model parameters: inner-optimization and meta-optimization. Inner-optimization is over each task,
and the meta-optimization is across different tasks.

The MAML algorithm aims to adapt to a new task, Tt, with SGD, given the model
parameters θ. Originating from model-agnostic meta-learning, the key to our learning
procedure is to generate the initial parameters, θ, to adapt to new scenes quickly. Available
domains Dmeta−learning are split into sets of meta-train domains Dmeta−train and meta-test
domains Dmeta−test. In our study, the feature extractor is defined as f (·) and the density-
map estimator is defined as g(·). The p(T ) is the distribution over tasks. Ttrain(t) and
Ttest(t) denote the training and testing datasets, respectively, corresponding with task t. The
basic MAML algorithm is formulated as below:

θ̂t = θ − α∇θLTtrain( fθ) (1)

where, t is the task number, and α is the inter-learning rate. The tasks are sampled from
the meta-train domain Dmeta−train. Moreover, the model aims to optimize the parameters θ
such that with just one SGD step, it can adapt to the new task for optimization.

θt = θ − β∇θLTtest( fθ̂t
) (2)

where, β is the meta-learning rate, which produces an algorithm that learns an initialization
of θ that is useful in efficiently adapting new tasks with a small number of iterations.
In the MAML algorithm, there are two learning rates: α and β, which are updated with
meta-training and meta-testing iteration. In this paper, we follow the idea of Alpha-
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MAML [63] and conduct experiments on the two learning rates. The task-inner-learning
rate, α, is internal and affects the iteration result, while the meta-learning rate, β, is external
and improves the result when applied with the alpha-MAML algorithm. We derived an
updated rule for the meta-learning rate, β, which can be computed as below:

∂LTtest(i)
( fθ̂i

)

∂β
=

∂LTtest(i)
( fθ̂i

)

∂θi−1
· ∂θi−1

∂β

= ∇θi−1LTmeta−test(i)
( fθ̂i

) · (−∇θi−2LTmeta−test(i−1)
( fθ̂(i−1)))

(3)

where i is the number of iterations. We can estimate the βi as shown below:

βi = βi−1 + δhyper∇θi−1LTmeta−test(i)
( fθ̂i

) · ∇θi−2LTmeta−test(i−1)
( fθ̂i

) (4)

We randomly divided the synthetic data into a set of N tasks, where each task consisted
of both training data and testing data. For the i-th training iteration, we denote the sample
number as K{1, 5}. The algorithm we propose refers to using a small number of samples
to learn a meta-learning model. The dynamic meta-learning rate makes the model faster,
and the improved MAML algorithm increases the generalization of the model. The whole
algorithm is shown in Algorithm 1 as below:

Algorithm 1 Dynamic-β MAML
Input:
α is the fixed inter learning rate
β0 is the initial meta learning rate
δhyper is the hyper-gradient learning rates randomly initialize θ
M is the count of training iterations
Output:
θ is the parameters of meta-learning model

1: for i in range(0,M) do
2: for each sample batch Tt ∼ Dmeta−learning do
3: evaluate ∇θLDmeta−train( fθ) with respect to K examples.
4: Compute adapted parameters with gradient descent θ̂ = θ − α∇θLDmeta−train( fθ)
5: end for
6: Compute the meta-learning rate β:
7: βi = βi−1 + δhyper ∑Tt∈Dmeta−learning

∇θi−1LTmeta−test(t)
( fθ̂t

) · ∇θi−2LTmeta−test(t−1)
( fθ̂t

)

8: θi = θi−1 − βi ∑Tt∈Dmeta−test ∇θi−1LTmeta−test(t)
( fθ̂t

)

9: end for

In this section, we formulate the crowd-counting density estimation as a few-shot
learning problem, given a set of datasets whereDtrain andDtest are the training and test sets,
respectively. The CSRNet network contains several dilated convolutional layers to regress
the density map according to the inputted images for different task-specific data. For the
network architecture, we only trained the CSRNet [60] density-map estimator function
model parameters, and the other function parameters were fixed. The density estimation
model parameters are trainable in meta-learning iterations. The proposed algorithm can
dynamically adjust the learning rate of meta-learning to, in turn, dynamically adjust the
learning rate in each iteration. This will improve the algorithm convergence speed and
help the model to adapt to new scenes with only a few labeled images.

3.2. Adaptive Domain-Invariant Feature-Extracting Module

The feature extraction module is an essential part of the vision algorithm [66]. In
cross-domain scenarios, the training dataset is represented as the source domain for train-
ing, and testing or predicting is then performed in the target domain. Without domain
adaptation, accuracy and performance will be significantly reduced [67]. The different
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feature distribution between the source and target domains causes a decrease in accuracy
in cross-domain scenarios. Consequently, aligning the two domains at the feature level
will create a more adaptive model [68]. In this section, we study the adversarial training
approaches used to extract domain-invariant features, and we apply the separate feature-
extracting model in cross-domain scenes. For the source domain, we preferred the most
popular synthetic dataset in crowd-counting scenarios, the GCC datasets, created for the
GTA5 computer game, while, for the target domain, we chose real-world datasets, such
as NWPU-crowd, Shanghai A, and UCF, etc. The GTA5 dataset exploits UE4 to construct
synthetic street-scene data (different weather conditions, timestamps, and capacities) for
crowd-counting tasks. The advantage of the synthetic dataset is that there is no need to
manually label the data, and, when the image is synthesized, the objects in the image
already have accurate location information [5,53].

In cross-domain scenarios, we sought to train a feature-extracting module to align
the feature distribution and extract the domain-invariant features representation. Given
the labeled source domain DS = {(xS

i , yS
i )}

NS
i=1, xS

i and yS
i denote the i-th crowd image and

corresponding label. Furthermore, we had access to the target domain DT = {(xT
i )}

NT
i=1

containing a set of unlabeled crowd images. We assumed that samples from the two
domains are drawn from different distributions, and our goal was to align the two domains
using the adversarial training method.

If the crowd-counting model is trained in different domains, the parameters of each
model for extracting feature representations are different. In cross-domain scenarios,
the domain-invariant feature representation needs to be extracted to achieve domain
adaptation. We adhered to the idea of extracting domain-invariant feature representation
and designing training algorithms in two domains by an adversarial method [69,70]. In
both domains, we usedH-divergence to measure the distribution distance of the two sets
of samples. As shown in Figure 3, we trained the adversarial discriminator module to
distinguish whether the feature is generated from a source or target domain.

Figure 3. The domain invariant feature representation module framework, which allows models
to extract domain-invariant features, to reduce the impact of domain gaps between the source and
target domains.

In this feature-extraction module, the source domain contains synthetic data and xS

and yS are the source image and source label, respectively. The target domain contains
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real-world data and xT and ŷT are the target image and pseudo-target label, respectively.
These are coarse and predicted by the model trained in the source domain. We define
h : x → {0, 1} as the adversarial discriminator, which aims to distinguish samples from the
source domain or target domain. We denote the sample of source domain xS

i as 0, and the
target domain sample xT

i as 1. We denote the method h(·) as the domain classifier, and the
H-divergence distance between the source domain and target domain is shown below:

εS(h) = Ex∼DS [|h(x)− 0|]
εT(h) = Ex∼DT [|h(x)− 1|]

dH(S, T) = 2(1−min
h∈H

(εS(h) + εT(h)))
(5)

where, εS(h) and εT(h) denote the prediction errors of h(·), predicting the domain origin,
i.e., whether source or target domain. If the prediction error of the domain classifier
is high, the two domains become closer and are harder to distinguish, so the distance
between the two domains dH(S, T) is inversely proportional to the error rate of the domain
classifier h(·).

During the training phase, we integrated a gradient reversal layer (GRL) [67] into the
feature extracting module. The GRL minimizes the objective function, and adjustment in
the negative gradient direction maximizes the objective function. If the feature is adaptive
to two different domains, the GRL will make the two domains as indistinguishable as
possible. The feature itself gradually inclines towards domain adaptation, and will become
a domain invariant feature [10,67]. Furthermore, to reduce the domain shift between
different samples in the source and target domains, as per previous studies, we divided
the output features into blocks. This is helpful in alleviating the effects of domain shifts
such as lighting, exposure, position, scale, image style, and so on.

Crowd counting is a compromise of feature extraction and density estimation, which
are considered pixel-wise regression problems, and the domain discriminator is designed
to distinguish each pixel of the extracted feature maps. We used four convolution layers
for the domain discriminator to generate two-dimensional scores to indicate the confidence
with which we can distinguish the source and target domain. Thus, the loss function can
be formulated as below:

L(xS, yS, xT) = Lcnt(xS, yS) + λLadv( f (xT)) (6)

where Lcnt is the standard MSE loss, and Ladv is the adversarial loss. λ is the weight
to balance the losses. For the feature maps f (xS), f (xT), we trained one image-level
discriminator h(·). Through h(·), we can obtain the pixel-wise domain labels for the source
and target domains, denoted as OS and OT . We utilized binary cross-entropy loss to
optimize the discriminator h(·), which is formulated as:

L f (·)(xS, xT) = − ∑
xS∈DS

∑
w∈W

∑
h∈H

log(p( f (xS)))− ∑
xT∈DT

∑
w∈W

∑
h∈H

log(1− p( f (xT))) (7)

where f (·) is the feature extracting component, f (xS) and f (xT) are two-dimensional
feature maps of size H × W. f (xS) is the source input, and f (xT) is the target input. At
the pixel level, we utilized p(·) as a soft-max function. To confuse h(·), we also added the
inverse adversarial loss into the training phase. The formulation is shown as below:

Ladv(xT) = − ∑
xT∈DT

∑
w∈W

∑
h∈H

log(p( f (xT))) (8)

We used the adversarial loss Ladv to guide f (·) to fool the discriminator h(·), by which
we effectively alleviated the domain gaps in cross-domain scenarios. This section propose
using the adversarial method to train domain-invariant feature-extracting modules for two
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different domains. With the help of feature visualization tools, the effect can be shown as
Figure 4.

Figure 4. The comparison of feature extraction between the source and target domains. (a) shows
the input images, (b) shows the feature extraction results without adaptation, and (c) shows the
feature extraction results with adaptation. When using real-world images for testing, we compared
the results in (b,c). Generated feature maps with adaptation will have less noise than those without
adaptation.

3.3. Crowd-Counting Refined-Mapper Module

By introducing the feature-extraction and density-estimator modules above, we can
generate a coarse density map. In this section, we mainly focus on refining the density map
and regressing the accurate number. Coarse maps are always produced in cross-domain
crowd counting. The first training was based on the GCC dataset and transformed the
density map from coarse to refined, before predicting crowd counting in other real-world
domains. The Figure 5 shows the structure of the counting-map refiner.

Figure 5. The mapping flow of the crowd-counting mapper from a coarse density map to a refined
density map.

Given xS and yS, we trained the model using supervised learning, and the counting-
map refiner was trained to predict the refined density map. We trained the crowd-counting
refined mapper with yS and g(xS), as shown in Figure 5. Next, we used the trained model
on the target domain to generate the pseudo-labels ŷT with xT . To reduce noise in the
density estimation, we utilized a 13× 13 kernel to obtain the receptive fields. Following
the idea of a single-column network, we subsequently designed a five-layer network as a
regression layer of the same size as the original input-density map.

4. Experiments

This work studies two different model generalization approaches in crowd-counting
tasks and proposes an adaptive crowd-counting framework for cross-domain scenarios.
The crowd-counting algorithm, based on density estimation, mainly consists of three parts:
feature extraction, density estimation, and count mapping. In cross-domain scenarios,
the testing accuracy of the model trained in the source domain will drop considerably in
the target domain without adaption. This issue is caused by domain shift. We took the
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synthetic dataset as the source domain, as a synthetic dataset like GCC will generate data
annotation points simultaneously when generating images, thus saving a lot of annotating
work. Therefore, we propose several methods for adaptive crowd counting and finally
conduct an ablation study analysis. This section will discuss the following aspects in detail:

• Verify whether our proposed density-map estimator, based on dynamic-β MAML, can
accelerate convergence and improve crowd-counting performance in few-shot learning
scenarios over the baseline and FSCC performances.

• Verify and evaluate the effectiveness of our proposed domain-invariant feature repre-
sentation in cross-domain scenarios.

• Perform additional ablation studies on the efficacy of our proposed method, to verify
the effectiveness of two key phases: feature extraction and density estimation.

We developed the crowd-counting algorithm based on the open-source crowd-counting
project C3-Framework. The hardware environment we used was the Intel Core i7-6500k
CPU 3.4 GHz with two TITAN RTX GPUs and 24gb of memory. We conducted the cross-
domain adaption experiments from the GCC dataset to various real-world datasets, such
as ShanghaiTech, UCF, NWPU-Crowd, and WorldExpo. Furthermore, in this paper, two
metrics are used to evaluate accuracy: mean absolute error (MAE) and mean square error
(MSE). They are defined as follows:

MAE =
1
N

N

∑
i
|zi − ẑi| (9)

MSE =

√√√√ 1
N

N

∑
i
(zi − ẑi)2 (10)

4.1. Evaluation of the Density-Map Estimator Based on Dynamic-β MAML

In this research, we used the synthetic data set GCC as the training set for meta-
learning. Since GCC contains seven different weather scenes, we split these seven different
scenes into different tasks. We fixed the feature extraction model parameters, and re-used
the CSRNet feature-extracting function, or the component proposed in the previous section.
The aim was to train the function g(·) to generate density maps by meta-learning, and we
trained the density-map estimator with tasks containing a training set and testing set.

To evaluate the proposed dynamic-β MAML algorithm performance, we ran a series of
training experiments to study the effect of meta-learning rate on density-estimator loss. As
shown in Figure 6, for a fair comparison, we recorded the meta-learning rate β changes with
the top 600 iterations. It was found that, no matter the initial value , under the influence of
different hyperparameters δhyper the meta-learning rate β will show different results in the
learning process. From Figure 6, our proposed dynamic-β MAML algorithm shows faster
convergence with the meta-learning rate, specifically for ∇hyper = 1e− 4. We utilized the
standard crowd-counting model trained in a supervised setting as the baseline [60]. When
the training was complete, the model was evaluated directly on target scenes without
adaption. Simultaneously, we chose FSCC [13] for the comparative analysis. FSCC is a
state-of-the-art algorithm in few-shot adaptive crowd-counting scenarios. Table 1 shows
the experimental results.

From the table above, our proposed method can achieve MAE 16.13 and MSE 22.93
for 1-shot, and MAE 16.47 and MSE 23.48 for 5-shot. FSCC is state-of-the-art in few-shot
crowd-counting problems. Our method exhibited better performance than FSCC.
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Figure 6. (a) shows the meta-learning rate β with initial value β0 = 1× 10−6, (b) shows the meta-learning rate β with initial
value β0 = 1× 10−3. (c) shows the loss with different values of hyper-parameter δhyper.

Table 1. Verification of the proposed dynamic-β MAML algorithm with δhyper = 1× 10−4 on dataset
GCC by comparing with baseline and FSCC [13] method.

Tasks Method 1-Shot (K = 1) 5-Shot (K = 5)
MAE MSE MAE MSE

Scene1: Clear
Baseline 23.11 34.16 22.54 33.24
FSCC 19.33 28.08 19.33 28.08
Ours 18.34 26.48 18.34 26.48

Scene2: Clouds
Baseline 21.99 32.35 21.81 32.06
FSCC 17.12 24.52 17.37 24.92
Ours 17.18 24.62 17.39 24.96

Scene3: Rain
Baseline 14.87 20.89 14.88 20.91
FSCC 11.31 15.16 11.87 16.06
Ours 11.32 15.17 11.91 16.12

Scene4: Foggy
Baseline 32.00 48.45 32.13 48.66
FSCC 15.99 22.70 15.78 22.36
Ours 15.71 22.25 15.99 22.70

Scene5: Thunder
Baseline 39.56 60.59 39.13 59.90
FSCC 20.44 29.86 20.31 29.65
Ours 19.23 27.91 20.01 29.17

Scene6: Overcast
Baseline 19.44 28.25 19.72 28.70
FSCC 14.30 19.97 14.28 19.94
Ours 14.22 19.85 14.65 20.54

Scene7: Extra Sunny
Baseline 24.52 36.43 24.37 36.19
FSCC 17.49 25.11 17.47 25.08
Ours 16.94 24.23 17.03 24.37

Average
Baseline 25.07 37.30 24.94 37.10
FSCC 16.57 23.63 16.63 23.73
Ours 16.13 22.93 16.47 23.48



Appl. Sci. 2021, 11, 12037 12 of 18

4.2. Evaluation of Domain-Invariant Feature Representation in Cross-Domain Scenarios

In cross-domain scenario problems, domain adaptation aims to solve the issue that a
model trained on one domain cannot generalize to another domain due to domain-shift
issues. This paper follows [67]’s idea and proposes a domain-adaptation method, at the
feature layer, to extract domain-invariant feature representations to reduce domain gaps.
This section describes the experiments of the proposed domain-invariant feature-extracting
method, on GCC and three real-world datasets. The GCC dataset is presented as the source
domain and the remaining three real-world datasets are defined as the target domain. The
results are shown in Figure 7.

Figure 7. The comparison results between ground truth, baseline with no adaptation, SFCN [10], and
our method.

We propose a new method for extracting domain-invariant features in cross-domain
scenarios. First of all, we trained the crowd count models, which each consist of a feature
extractor and density estimator. Then, we predicted the density maps, based on the
previous phase, and generated pseudo-labels for the real-world datasets. Finally, the
domain discriminator was trained, in adversarial mode, with a real-world dataset and
GCC dataset. The discriminator was unable to distinguish whether the input images are
from the GCC or real-world domain, and simultaneously, the domain-invariant feature
extraction layer was reversed. In this section, we verify the efficacy of our proposed
domain-invariant feature method. As shown in Figure 7, the methods we provide in
this paper can be adapted for medium-sized crowd scenarios, as well as extremely large
and empty scenarios. Therefore, we use CSRNet as the backbone of this module and
test it on four different domains for satisfactory verification. Table 2 shows the results
of the baseline without any adaptation, SFCN (state-of-the-art) [10], and our proposed
cross-domain feature-extracting method. It is clear that our proposed method can improve
performance in different real-world domains.

Table 2. The results for our methods on three different real-world datasets. We compare with baseline
without adaptation and SFCN [10] (state-of-art) [10].

Method SH-B MALL UCSD
MAE MSE MAE MSE MAE MSE

NoAdapt 22.4 31.3 5.11 5.98 16.23 18.22
SFCN [10] 17.1 26.1 2.56 3.88 2.09 2.42
Ours 17.4 26.8 2.55 3.81 2.03 2.41

4.3. Ablation Study

In this section, to demonstrate the effectiveness of these modules in our approach,
we performed ablation studies on the NWPU-Crowd dataset with cross-domain scenarios.
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More concisely, we used FE to represent the adaptive domain-invariant features-extracting
module, DE to represent the density-map estimator module based on dynamic-β MAML,
and CM to represent the crowd-counting refined-mapper module. We utilized the different
modules on the source domain GCC dataset and verified the performance on the target
domain NWPU-Crowd dataset. As shown in Table 3, compared with the baseline, we
obtained a significant improvement, using only adaptation. Our proposed FE method,
similar to CSRNet with adaptation, improved performance and reduced the MAE 4.12
and MSE 4.15, respectively. When DE was used to perform the model generalization
module for density-map estimation, the improvement was significant, with a 0.75 and 1.12
improvement compared with FE only. When applying the FE + DE + CM module, the
improvement was 1.65 and 1.84. The results indicate that the domain-alignment processing
and model generalization, through performing feature extraction and density evaluation,
proved effective in cross-domain scenarios. Finally, Figure 8 shows the visualization
results of the real-world dataset. We selected different crowd-volume photos for the
results visualization.

Table 3. Ablation Study: The performance of baseline with and without adaptation and our approach
in cross-domain scenarios.

Method GCC - > NWPU-Crowd
MAE MSE

CSRNet w/o Adapt 86.12 148.32
CSRNet w/Adapt 45.84 91.12
Ours w/FE 41.72 80.97
Ours w/DE 40.97 78.85
Ours w/FE + CM 40.83 79.13
Ours w/FE + DE + CM 39.18 77.29

Figure 8. Visualization results of adaptation from GCC to real-world dataset.

In real-world scenarios, perspective is generally that of cameras on the ground or
of drones in the sky. Nevertheless, the domain-shift issue affects performance due to
weather, illumination, rotation, and scale changes. Our proposed method mainly focuses
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on alleviating the issue above. Taking camera scenes from different angles, we first utilize
UE4 to generate labeled annotations and synthetic images; the perspective, in the latter,
was similar to a real-world position. Then, we used an adaptive domain-invariant feature-
extracting module to extract the domain-invariant feature layer as a pre-training model.
Next, we train the meta-learning model by using only a few labeled data. Finally, the
network predicts the number of crowds.

4.4. Computational Cost Analysis

This section conducts the computational cost analysis on the whole work, in com-
parison with other methods. We divide the training phase of our method into two parts:
training for cross-domain adaptation, to extract domain-invariant features, and training for
the few-shot meta-learning model, to estimate the density map from the feature map. Thus,
the whole training time consumed mainly concerns domain-invariant feature-extraction
training and density-map-estimation training. In the adaptive domain-invariant feature-
extracting module, we first pre-trained the feature extraction module on the synthetic
dataset for 80 epochs and then generated pseudo labels for real-world images. We uti-
lized synthetic and real images to train the domain-invariant feature-extracting layer for
80 epochs. In the following training, this layer can be integrated into the network. In the
density-map-estimator module, we divided the synthetic data into multiple tasks and used
the synthetic data to train a meta-learning model for 1000 epochs. As shown in Figure 9,
we compare our proposed algorithm with other algorithms in terms of computational cost.
In the domain adaptation phase, the number of epochs to convergence of our method was
the same as that of SFCN and better than cycleGAN; and, in the phase of meta-learning
training, the Dynamic-β MAML we have proposed can improve this convergence, such
that the number of epochs to convergence of our method is better than SFCC and Reptile.

Figure 9. Comparison of Computational Cost Analysis with other methods.

If the whole work is compared with other crowd-counting algorithms, the time
spent is much greater than others because of additional domain adaptation and meta-
learning. However, we can train the domain-adaptation module as a pre-training model.
The remaining training time of our algorithm is almost the same as that of other algo-
rithms. In addition, in real-time crowd-counting estimation scenarios, as shown in Table 4,
our algorithm can reach 1one∼two frames per second , which can satisfy the real-time
density estimation.

Table 4. Real-time analysis in the inference phase.

Method Frames per Second

CSRnet 8∼10
SFCC 3∼5
Ours 1∼2

5. Conclusions

Crowd counting is becoming increasingly popular in computer vision, as it is relevant
to an extensive range of applications. In supervised learning, particularly, its performance
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has dramatically improved. However, in many real-world scenarios, the different angles,
exposures, location heights, and complex backgrounds of photos, along with limited
annotation data, lead to supervised learning methods not working satisfactorily, and
many suffer from overfitting problems. In this research, we focused on training synthetic
crowd data and examined how to transfer knowledge to real-world datasets in two key
phases: feature extraction and density estimation. The adaptive domain-invariant feature-
extracting module aims to align the feature level with the source and target domains. In
addition, the density-map-estimator module, based on dynamic-β MAML, trains the model
in few-shot scenarios to improve generalization. Furthermore, we used a counting-map
refiner to optimize the coarse density map into a fine density map and then regressed the
crowd size. Finally, we compared our proposed method to the benchmark and achieved
superior performance in cross-domain scenarios. The proposed method also has some
limitations, such as more time to train domain-invariant features in the domain-adaptation
phase and the need for more synthetic data to cover different scenarios. However, the
advantage is that synthetic data is easier to generate and label annotations for in batches
than is real-world data, which is equivalent to replacing manual annotation time with
computational time.
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