
applied  
sciences

Article

Few-Shot Relation Extraction on Ancient Chinese Documents

Bo Li , Jiyu Wei , Yang Liu , Yuze Chen, Xi Fang and Bin Jiang *

����������
�������

Citation: Li, B.; Wei, J.; Liu, Y.;

Chen, Y.; Fang, X.; Jiang, B. Few-Shot

Relation Extraction on Ancient

Chinese Documents. Appl. Sci. 2021,

11, 12060. https://doi.org/10.3390/

app112412060

Academic Editor: Valentino Santucci

Received: 5 July 2021

Accepted: 14 December 2021

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China;
libo18@mail.sdu.edu.cn (B.L.); weijiyu@mail.sdu.edu.cn (J.W.); liuyangproven@mail.sdu.edu.cn (Y.L.);
cyz122699@mail.sdu.edu.cn (Y.C.); fangxi@mail.sdu.edu.cn (X.F.)
* Correspondence: jiangbin@sdu.edu.cn

Featured Application: Our work can be applied to ancient Chinese documents or other digital
humanity research fields with limited data.

Abstract: Traditional humanity scholars’ inefficient method of utilizing numerous unstructured
data has hampered studies on ancient Chinese writings for several years. In this work, we aim to
develop a relation extractor for ancient Chinese documents to automatically extract the relations by
using unstructured data. To achieve this goal, we proposed a tiny ancient Chinese document relation
classification (TinyACD-RC) dataset annotated by historians and contains 32 types of general relations
in ShihChi (a famous Chinese history book). We also explored several methods and proposed a novel
model that works well on sufficient and insufficient data scenarios, the proposed sentence encoder
can simultaneously capture local and global features for a certain period. The paired attention
network enhances and extracts relations between support and query instances. Experimental results
show that our model achieved promising performance with scarce corpus. We also examined our
model on the FewRel dataset and found that outperformed the state-of-the-art no pretraining-based
models by 2.27%.

Keywords: ancient Chinese document; relation extraction; few-shot learning; sentence encoder;
digital humanity

1. Introduction

According to reference [1], traditional humanity studies are currently experiencing a
crisis in which humanity and humanistic meaning must compete with the social, economic,
popular culture, and other forms of prevailing entertainment. This crisis also has an influ-
ence on society’s pedagogy and people’s job-seeking tendency. Humanity research also
suffers from various problems, such as information overload, lack of specific recommenda-
tions, and limited dissemination in the mass media. In contrast with traditional humanity
research, digital humanity uses computer technology to process the large amounts of dis-
organized data, thereby can effectively reduce the difficulty of massive data organization
and usage [2], the scarcity of diversity in information dissemination and influence, and the
limitations of humanity research applications in the society. Therefore, digital methods,
such as Natural Language Processing (NLP), Computer Vision (CV), and Data Science (DS),
must be applied to support humanity research.

This work mainly focuses on automatically extracting relations in ancient Chinese doc-
uments under limited data (our proposed dataset and model is accessible at
https://github.com/boss66757979/MASCOT-PA, accessed on 16 December 2021), which
has similar application scenarios to the real-world tasks. Nonetheless, training and evalua-
tion samples are difficult to acquire in these tasks. For example, the research on the ShihChi
corpus necessitates the creation of a dataset by historian annotators, which would take
a significant amount of time and effort and would be expensive and unattainable. Their
progress has also been hampered due to their failure to use digital research in these fields.
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Despite the difficulties, research in these fields still has great significance. The most
difficult task for humanity researchers is to find specific pieces of information in demand
from a mess of documents, which require several years of study to learn and understand
the inner relations in this information, while it would only consume a few minutes handled
digitally. This work might also be useful in other fields, including biological science, health
care [3], law and jurisdiction [4], and chemistry [5], if similar training and evaluation data
criteria are met. These situations, which play significant roles in scientific study, are also
important to society.

According to the above reasons, research and analysis in ancient Chinese documents
with limited data are significant. A feasible measure for extracting and analyzing these
limited data must be established because a standard training dataset requires numerous
resources (time, human, and finance) to create.

The common deep learning solutions for information extractions are based on standard
or distantly supervised learning methods, which extract information, such as entities
and relations. However, these methods are limited in real-world scenarios. A training
corpus for standard learning methods is difficult to obtain, and distantly supervised
learning methods inevitably experience the long-tail problem [6] in datasets. For example,
NYT-10 [7] comprises news data that have an imbalanced distribution of topics when used
in other areas.

To deal with the problems under a limited data scenario, the few-shot learning method,
which only requires five or fewer support instances to predict the query instance label,
was proposed to extract the relations. The few-shot learning task for relation classification
has been proposed using the FewRel [6] dataset. The pretraining-based method has
achieved the best result using this dataset [8], surpassing human performance on relation
classification tasks. However, pretraining-based models require a huge amount of corpus
for model pretraining, which consumes great time and resources. The pretraining models
of BERT-large [9] with 340 M parameters are trained using 64 TPU (Tensor Processing
Unit) chips for 4 days. The training requires at least 12–16 GB GPUs to address memory
constraints while training with only one batch (https://github.com/google-research/bert,
accessed on 16 December 2021). The need for huge computation resources makes rapid
feedback or individual experiments impractical.

The need for a large corpus cannot be met in research fields with limited text. BERT
used 16 GB uncompressed plain text from BOOKCOPUS [10] and English WIKIPEDIA.
RoBERTa [11] (158 GB) and XLNET [12] (161 GB) used more corpus for models pretraining.
However, even the complete collection SIKUQUANSHU (http://skqs.guoxuedashi.net,
accessed on 16 December 2021) has merely a total of 1.5 GB plain text data for the ancient
Chinese documents. Pretraining-based models are impractical due to a lack of training
corpus. Moreover, the corpus cannot be collected from contemporary Chinese documents
because of their different sentence structures, idioms, and words. Pretraining is difficult
because of these factors.

Accordingly, word representation-based models, such as Meta Networks (CNN),
Prototypical Networks (CNN) [6], and MLMAN [13], were suggested. These models
achieved good performance when GloVe [14] was used as the static word embedding
vector. However, a large gap is still observed between humans and the models. The best
result of these models lags 10% behind human performance on the FewRel test dataset.
Moreover, these models require pretrained word representation (e.g., a standard GloVe
model generally requires 42 billion tokens to generate a global word representation matrix).
Although static word embedding models may be faster than dynamic models, such as
BERT, they still require an external corpus.

We examined several classical few-shot learning methods that do not have a satis-
fying performance to address the above problems. Then, we developed a multi-head
self-attention with convolution encoder (MASCOT) and paired attention (PA) relation
extractor to fill the gap. The MASCOT encoder can capture more local and global fea-
tures. Our experiment has shown that this encoder has a better sentence encoding ability

https://github.com/google-research/bert
http://skqs.guoxuedashi.net
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than convolution or transformer layer. This encoder achieves better performance than the
standard GloVe-based convolution encoder, which means that its structure relieves the
resource dependence to a large extent even without an external corpus for word embedding
pretraining. Additionally, the paired attention layer is used to enhance instance’s feature
information and expressive capability. Our experimental results show that the paired
attention achieved a 3.68% improvement over the base model.

For the ancient Chinese documents, we tested our proposed model on the ShihChi
documents and analyzed the prediction results in Section 5.5. The result shows that the
relation extraction on the ancient Chinese document is useful, and researchers can analyze
or plot the structured predicted data to support their research or arguments. We performed
a demo analysis for ShihChi documents to demonstrate a usage for our model, which
might inspire researchers using manners of this model.

Finally, our contribution may be summarized as follows: First, we examined the
prevailing few-shot learning methods and adopted them in the few-shot relation extraction
task to find a better solution. Second, we used a local GloVe word representation and
MASCOT-PA to avoid problems with the high pretraining corpus requirement. Finally, we
applied our model to an ancient Chinese document relation extraction task and achieved
promising results.

2. Related Work
2.1. Prevailing Few-Shot Learning Methods

Few-shot learning has been proposed and largely implemented in computer vision
research, such as GNN [15], SNAIL [16], meta network [17], prototypical networks [18],
feature pre-processing and rectify based methods [19–21], metric-based methods [22],
end-to-end few-shot learning framework similar to relation network [23], and memory-
augmented neural networks (MANN) [24]. The aforementioned methods are of great
benefit to the performance of models in computer vision tasks, such as image classification.

GNN regards the instance as a node in the graph using label embedding as the node
representation and propagates or receives it to predict a node label. SNAIL uses temporal
convolutional neural networks and attention for the support and query instance pairs.
Meta Network and Prototypical Networks use a distance or metric to evaluate the relation
between support and query instances, where Meta Network measures all support instances
distance from query instance in one class, and Prototypical Networks generate a prototype
for this class to measure the distance.

In the feature adjustment, such as power transforms in [19], which modifies the
instance feature vector using Equation (1), according to their experiment, 0.5 would be a
suitable γ value, and ε is usually a small number 1 × 10−6. This operation increases model
performance by 5.88% on the mini-ImageNet dataset with WRN [25] backbone.

x̄ =
(x + ε)γ

||(x + ε)γ||2
(1)

Similar to power transforms, prototype rectification [20,21] adopts a pseudo-labeling
strategy to augment the support set and diminish the prototype bias. Prototype rectification
sums pseudo-labeled instances in {S, Q} with their distance or similarity from the original
prototypes. The rectified instance is generated through Equation (2) by using this weighted
combine features of support and query instances to correct the data distribution

m̄c =
1

|Sc|+ |Qc| ∑
I∈{Sc ,Qc}

exp(dist(I, mc))

ΣC
c=1exp(dist(I, mc))

· I, (2)

where |Sc| and |Qc| represents the support and query set sizes of class c respectively;
dist(·, ·) is a euclidean distance function; and mc is the mean of all class c support instances.
Accordingly, the model performance increased by 5.91% on the mini-ImageNet from
this rectification.
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The IADM is proposed by [22], which is set up to improve the transductive learning
performance on all instances and alleviate the improper confidence weight when calculating
prototypes. The original procedure is shown in Equation (3). This metric significantly
outperforms the original ProtoNets by 3.72%.

D̄ =

∥∥∥∥ q/||q||2
gφ(q)

− cn/||cn||2
gφ(cn)

∥∥∥∥2

2
(3)

Relation network [23] is a general framework for few-shot learning, which concate-
nates all support instances with a query instance and produces their relation score or
similarity by a relation model gφ. The gφ uses convolutional block as a few-shot relation
predictor, (Deep Neural Network) DNN as zero-shot relation predictor. This framework
can be flexible for other task transplantation and powerful because of the end-to-end learn-
ing for embedding and nonlinear metrics, which achieved state-of-the-art performance on
the Omniglot dataset.

Using external memory to enhance neural network performance is a general idea
that shares a similar mechanism as the human brain learning procedure. The MANN or
Neural Turing Machines (NTMs) [26,27] use this strategy to reinforce the models’ ability
to store variables and data structures when training at long timescales, which means that
it can relieve the forgetting problem of detail information on each training step. In few-
shot learning, the meta-learning with memory-augmented neural networks [24] adopt
an external memory dump to store and retrieve previously input memory. The external
memory matrix uses a Least Recently Used Access method to refresh memories and cosine
similarity to retrieve memories. This method has a much faster converge speed than no
external memory methods and also achieved a better performance than humans on the
Omniglot dataset.

For the above models, some of them are good at classifying semantic and sentences,
and some of them perform poorly at this classification task. We developed these models
and analyzed their performance in Section 5.3, the results show that the prototypical
network has a strong ability handling the few-shot learning tasks, therefore, we consider
it as our baseline model. Other models such as relation networks or memory aggregated
neural networks perform poorly, and we analyzed its reason in Section 5.3.

2.2. Few-Shot Relation Classification

Relation classification or extraction has been proposed for several years [28,29], and
much progress has been achieved on this task [30–33]. By contrast, few-shot relation classi-
fication has only been recently proposed, and few research results have been accumulated.
FewRel [6] proposed few-shot relation classification tasks, which use the FewRel dataset to
evaluate model performance. In addition, FewRel examined some of the most competitive
few-shot learning methods, and the examination result shows that these methods cannot
achieve acceptable performance on the FewRel dataset. Therefore, a few novel models
were proposed to deal with this problem.

Proto-HATT [34] focuses on noisy data influence over the vanilla prototypical net-
works and data sparsity problem caused by the feature extraction of the support instance
set. To address these problems, researchers proposed a hybrid attention mechanism to
alleviate the deviation of prototypes and measure the sparse space distance. Proto-HATT
has a 1.07% improvement over the vanilla prototypical networks on the FewRel dataset, es-
pecially in the presence of noisy data, where it achieves an enhancement of 3.66%. TPN [35]
uses a transformer to enhance a prototypical network, and it outperforms Proto-HATT
in FewRel dataset by 1.76% because of its superior sentence and relation representation
ability. These two models are based on a prototypical network, which is a baseline for
our proposed task. Meanwhile, MLMAN [13] used another strategy to generate each
class prototype.

The MLMAN attempts to combine many types of instance aggregate methods. First, a
CNN context encoder is adopted to derive the sentence representation. Then, MLMAN
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uses local matching and an aggregation layer to improve different and similar semantics of
query instance and support instance representations. Next, MLMAN generates all classes’
prototypes by using a softmax operation with a matching degree from a matching func-
tion. Finally, MLMAN determined all query instance classes using a class-level matching
function. This method achieved 5% improvement over the baseline and surpassed the
above prototypical network-based models. However, we adopt a superior sentence encoder
MASCOT to enhance their representation and feature modeling capability in comparison
with this model. We utilize a pair function, which is also used in BERT-PAIR [36], to
increase the intensity of related instance correlation and predict instance relation after we
produce the prototype for each instance. Our experiment shows that this pair function
surpasses prototypical network-based metric measurement and the matching function
from MLMAN.

Pretraining-based models have better performance than original models. BERT-PAIR
is the first model to adopt BERT and pair mechanism on this task due to its excellent
language modeling performance, it has a great improvement over the baseline. Matching
the Blanks [8] proved that a model could even surpass human performance by learning
text representation. Based on BERT, their model modifies an output and input data form.
The result shows that the model outperforms the baseline even without training on the
FewRel dataset. Although these two models have superior performance, they cannot be
transferred to limited data fields, which is our model most excels at.

MICK [37] proposed a framework that works well when only little training data are
provided. Furthermore, MICK proposed the task enrichment that introduces other domain
datasets to enhance the training data and randomly extracts instances from in-domain or
cross-domain and training models to distinguish them. This strategy is highly effective
when there is an extreme lack of training data.

However, according to their experiments, this framework only works well for a small
number of instances (under 700) and very simple models. This framework can hardly
have an obvious improvement in complex models, such as Proto-HATT, MLMAN, and
BERT-PAIR (about 1% accuracy). This is because MICK aims to help models learn better
and doesn’t change the core part of the models. For strong baselines, the given data
is sufficient to train a satisfied model. In addition, this framework inherits the original
models’ shortcomings. These models require enough corpus to conduct a word pretraining.
Meanwhile, our model fixed these two problems through a local GloVe word embedding
and an excellent sentence encoder.

2.3. Sentence Encoding

Sentence encoding helps a machine encode a sentence from the original word embed-
ding. The four types of encoder are as follows: a recurrent neural network (RNN)-based
encoder [38], a CNN-based encoder [39], a transformer encoder [40], and their combina-
tions. Encoders, such as LSTM with attention [41] or ConvS2S [42], can easily surpass the
basic phrase-based encoder [43] with larger N-gram language models [44]. Meanwhile,
ConvS2S is slightly better than the LSTM models. The transformer encoder [45] has better
performance on language modeling but worse performance on a long-range dependency
problem. These models can capture only temporal or spatial features of a sentence, which
forces researchers to adopt a composite model.

Composite models can capture more information. The CNN-RNN structured net-
works outperform conventional CNNs and BLSTM in terms of text semantic modeling. For
example, the LSTM-CNN network [46] used a convolution network to form character-level
representation. Then, the character-level representation was concatenated with word em-
bedding to construct an LSTM input. The output result of the LSTM input was used as
the final sequence feature, and it was sent to the CRF layer to accomplish a NER task. The
performance of the LSTM-CNN network broke the record on the Penn Treebank WSJ and
CoNLL-2003 datasets.
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However, the traditional RNN-based model can suffer from its sequential struc-
ture when dealing with long-term dependencies [47]. Accordingly, the Simultaneously
Self-Attending model [48] adopts a novel encoder called BRAN, which is similar to the
Conformer [49], to fix the above problems by replacing RNN with a self-attention mecha-
nism. This encoder uses a transformer encoder structure with a convolution module and
multi-head attention as each block component. An instance sentence passes through the
novel encoder and is sent to two MLPs to produce head or tail position-specified sentence
representation. The relation between the head and the tail is calculated by performing a
bi-affine operation of two sentence representations. This method achieved state-of-the-art
performance on the biocreative V chemical disease relation dataset.

Although BRAN eliminates the problem that RNN brings in, this model still has
problems. First, the original BRAN model uses a sequential combination of multi-head
attention and convolution modules, which may lead to the loss of information during data
transfer between two different modules. In our experimentation, the original model showed
drawbacks on few-shot learning tasks. Our proposed MASCOT encoder relieved this
problem through a parallel convolution and multi-head attention structure. In comparison
with BRAN, MASCOT has better performance under the deeper layer, faster training speed
through parallel structure, and stronger capability on capturing and storing features.

3. Background

The general few-shot relation classification problem is considered a classification task.
Given the support set in Table 1 with N classes, each class has K instances, a query set
consists of Q instances, and all Q instances belong to one of the N classes. Then, a few-shot
relation classification task is expected to predict the Q instance classes by analyzing the
given support set. In this section, we use a simple baseline model to demonstrate the overall
procedure of the few-shot relation classification task. This baseline model consists of two
components: (1) an instance encoder that converts text data into instance representation
and (2) a class predictor that distinguishes the correct class from those given instances.

Table 1. Example of the support and query sets, where cyan represents head entities, and magenta
denotes tail entities. In the query instance, the quark is part of a hadron; hence, it should be the part
of relations.

Support Set

Relation Classes Instances

(A): crosses Instance 1: Wilton Bridge was a major crossing of the River Wye and was
protected by Wilton Castle .
Instance 2: Albion Riverside, in London, is a high-end residential de-
velopment located between Albert Bridge and Battersea Bridge on the
River Thames.

(B): part of Instance 1: Lava Tree State Monument is a public park located southeast of
Pahoa in the Puna District on the island of Hawaii.
Instance 2: “Peace Train” is the title of a 1971 hit song by Cat Stevens, taken
from his album “Teaser and the Firecat”.

Query Instance

Class (A) or (B) It takes place when a quark of one hadron and an antiquark of another
hadron annihilate , creating a virtual photon or Z boson which then decays
into a pair of oppositely-charged lepton.

3.1. Instance Encoder

In the few-shot relation classification task, the initial text of Q instances should be
converted to a representation vector. Some well-known pretraining-based language models,
such as BERT, would be the best choice. However, most of these models are cumbersome
and intricate, which makes them unsuitable to be used as lightweight and fast models. To
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meet these two requirements, some static word embedding models, such as CBOW [50],
Skip-gram [51], and GloVe [14] can be used. GloVe performs fairly better than CBOW and
other models under the same feature dimension and corpus size in terms of word analogies
and word similarity tasks. We chose GloVe as the word embedding model because of its
simplicity and intelligibility.

The GloVe model transforms words into an embedding matrix using a dictionary
trained by corpus. The pretrained dictionary mapped words to a dw-dimensional vector,
with T words in the instance sentence. An instance could be represented as an RT×dw

matrix. After the word embedding for each instance in the support set and construction
of the query set will be inputted into a simple CNN encoder, which consisted of a single
convolution and pooling layer to learn the inner semantics, the matrix will be reduced
from RT×dw to RH , where H is the embedding hidden size. The CNN encoder can build
up an instance semantic representation, which can also be trained by using an RNN or
other related models. Most prevailing models choose the CNN encoder for better parallel
computing acceleration.

3.2. Class Predictor

The instance encoder builds up instance representations Sn and Q for all instances in
the support and query sets, respectively. Then, we introduce layer normalization for the
input matrix to normalize the distribution of input representations. After the data have
been normalized, similar to the prototypical network, the model will generate each class
prototype and find the nearest query instance class prototype.

In class n, the prototype cn for each class will be represented as a mean of all K instance
embedding vectors Sk

n:

cn =
1
|Sn|

ΣK
k=1Sk

n. (4)

Thus, all support class prototypes will be represented as an RN×H matrix.
With the produced prototype of each class, the distance between prototype cn and

query instance q will be regarded as a metric. A query instance class could be predicted
from a softmax operation of all class distances, which maps the distance of all instances to
be a probability:

P(q = k|S) = exp{ fd(q, cn)}
ΣN

n′=1exp{ fd(q, cn′)}
, (5)

where fd represents the distance function. Prototypical networks use the regular Bregman
divergence [52] as a distance function. Hence, squared Euclidean distance
fd(x, y) = ||x− y||2 and Mahalanobis distance [53] would be adopted as a metric function.

4. Methodology
4.1. Sentence Encoder

In text sources, each instance sentence should be transformed into a word embedding
matrix using the local GloVe. We first examined a standard transformer encoder to capture
the time series structure and features of sentences. However, the transformer has drawbacks
in capturing local features. Then, we evaluated the BRAN encoder to enhance different
feature types. Nonetheless, results showed that BRAN has low performance on this
task. We proposed the MASCOT encoder to promote their ability on capturing local
and global semantic features in a sentence and alleviate the convolutional influence on
original sentence feature (the overall structure is presented in Figure 1). Based on BRAN
and Conformer, the MASCOT, which shares a similar structure with transformer encoder,
shows a better performance than BRAN and transformer in our experimental results.
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Figure 1. Overall structure of the proposed model.

In MASCOT, we introduced a three-fold convolution module along with multi-head
self-attention into the proposed model to simultaneously process input source data and
calculate them using a feed-forward network (FFN). FFN is a multi-layer perceptron that
uses the activation function to solve the linearly inseparable problems. We compared our
proposed model with Conformer and BRAN encoder. The comparison results show that
our model is more suitable for the few-shot relation classification task. Moreover, the
sequential structure modules in the BRAN encoder largely slow down the converging
speed, resulting in the loss of information in input sources, which is the main drawback of
the BRAN encoder.

The three-ford convolution module structure is shown in Figure 2. There are two con-
volution layers with the Mish activation function [54]. At the end of the final convolution
layer, we used a residual learning method to connect the input of this module. Finally, we
included a layer normalization to realize a better output distribution.

After passing through the two encoding layers, the matrix will go through a
pooling layer to be reshaped. Finally, the instance matrix with the shape RN×D will
be sent to the next module, where N is the instance number, and D is the instance
embedding representation.
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Figure 2. MASCOT encoder structure of our model.

4.2. Paired Attention

On the basis of the soft-align elements [55] for input representation and the enhance-
ment of local inference information [35], we used a paired instance attention mechanism in
this study, which consists of three parts. The first part is an input sentence representation
attention, S and Q, which are generated by the sentence encoder, for the support and
query instance representations. Similar to MLMAN, we first reshape S from RN×K×H to
RTs×H . Similar to S, query instance Q also has the shape RTq×H , where Tq represents the
total number of query instances. Then, attention weights between the support and query
instances can be calculated by

eij = Q>i · Sj, (6)

where Qi and Sj represent the i-th query instances and the j-th support instances, respec-
tively; and eij is the attention weight matrix.

With the attention weight matrix, the attention-weighted support and query instance
representations can be calculated as follows:

S̃i = ΣTs
j=1

exp
(
eij
)

ΣTs
j′=1exp

(
eij′
) · Sj, (7)

Q̃j = Σ
Tq
i=1

exp
(
eij
)

Σ
Tq
i′=1exp

(
ei′ j

) ·Qi, (8)
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where S̃i collects the attention weights of each query instance and attempts to identify
related and irrelevant parts; these relations will be magnified by a product operation. The
same process is performed with Q̃j.

The second part is an aggregate of attention-weighted and original instance represen-
tations, and it is designed to enhance instance information. In support instance embedding
S, the attention-weighted embedding Q̃j has attention information about S and Q, and the
instance discrepancy metric between S and Q can be measured using the difference |S− Q̃|
and element-wise product S � Q̃. Thus, the aggregate operation for support instance
embedding will be expressed as follows:

S̄ = fφ([S; Q̃; |S− Q̃|; S� Q̃]), (9)

and it is the same for query instance embedding:

Q̄ = fφ([Q; S̃; |Q− S̃|; Q� S̃]), (10)

where the function fφ : RTs×4H → RTs×D compressed aggregated instance embedding into
a denser space. Then, the support instance embedding will be split into N classes. Next,
an instance-encoded sample, which is a conjunction of the support and query instance
embedding, will be sent to instance pair unit.

Paired = MASCOT(Concat([S̄; Q̄])) (11)

The third part is a paired instance relation extractor, which is designed to discover the
inner relations between two paired instances. The extractor uses two layers of MASCOT to
learn the relation connection of each word in the support and query instances, which is the
same as Equation (11). Then, the paired instance embedding will be compressed using the
max and average pooling operations in Equation (12).

Out = Concat([MaxPooling(Paired); AvgPooling(Paired)]) (12)

Finally, the adjusted instance vector will be normalized by layer normalization and
sent to a class predictor to find their corresponding labels.

5. Experiments

In this section, we demonstrate our experiment results. The following subsections
introduce the dataset and evaluation method we used, then the training parameter config-
uration details and the overall performance comparison, ablation study and analysis for
each component in our proposed model, and the models’ appliance on the Tiny Ancient
Chinese Document Relation Classification (TinyACD-RC) dataset.

5.1. Dataset and Evaluation

For models implemented in this work, we used the FewRel dataset as the training
and evaluation datasets, because this dataset proposed the few-shot relation classification
task and was widely adopted by models focusing on this task. As shown in Table 2, the
FewRel dataset contains 70,000 sentences with 100 relations using a distantly supervised
method extracted relations from Wikipedia; then, raw data were filtered and annotated by
annotators to generate the standard dataset.

Table 2. Detailed structures of the used datasets, where Classes is total relation types in a dataset,
and Training/Test is the ratio of Training/Test dataset.

Classes Total Instances Training/Test

FewRel 1.0 100 70,000 64/16
TinyACD-RC 32 1600 24/8
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The standard FewRel 1.0 task is a general few-shot relation classification task, the four
types of tasks are as follows: 5-way-1-shot, 5-way-5-shot, 10-way-1-shot, and 10-way-5-shot.
In an N way K shot task, each training step inputs a data matrix, which consists of support
and query sets. The support set consists of N random classes extracted from the FewRel
dataset, and K samples are extracted by each class as an instance. Similar to the support
set, the query set will also extract Q × N samples from N classes. The standard few-shot
relation classification task is used to predict all query instance classes by analyzing other
support set instances.

The TinyACD-RC dataset is proposed to simulate the digital humanity analysis tasks.
This dataset is generated from the ShihChi corpus (http://hanchi.ihp.sinica.edu.tw/ihp/
hanji.htm, accessed on 16 December 2021) and manually annotated by historians, a sample
of this dataset can be seen in Figure 3. As discussed in [56], people could have different
interpretations for the same topic or sentence; therefore, these two datasets are annotated
twice. First, the data will be individually labeled by two annotators and re-evaluated by the
third annotator. Given that this dataset mainly focuses on an ancient Chinese document, the
instance sentence consists of traditional Chinese characters. This dataset has 11 entity pair
types with 32 relation classes, and the detailed compositions for this dataset are displayed
in Table 3.

Figure 3. Samples for TinyACD-RC dataset, which has same structure with Table 1. For query
instance, where Ji Li married Tai Ren, and because the word married, Ji Li should have a marital
relation with Tai Ren.

To make the dataset more accurate and fine-grained, we refer to the entity pair types in
SemEval 2010 task 8 [29], while the original dataset only contains 9 types of entity pairs, and
some of their types are unsuitable for our dataset, we modify and append some pair types.
In our dataset, the entity subject focuses on person or object, then as the original entity
pairs cause-effect and message-topic have no connection with person or object, we delete
these two entity pairs. For the types we add, the executant-recipient contains relations that

http://hanchi.ihp.sinica.edu.tw/ihp/hanji.htm
http://hanchi.ihp.sinica.edu.tw/ihp/hanji.htm
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represent an action the executant performs to the recipient. The entity pair giver-receiver
contains the giving relation between entities, the giving thing can be an object or message.
And the rest of two pair types represent the relations between the giving thing and the
giver or receiver, where the giving thing can be tangible or intangible, such as a letter or a
few words.

The TinyACD-RC dataset is smaller compared with FewRel. However, the instance
sentence in TinyACD-RC contains an extremely complex structure and frequent ellipsis
for sentence components, which makes their analysis more difficult than the normal
sentence in FewRel. The traditional Chinese words in the TinyACD-RC dataset come
from the hieroglyph, which means the word mainly focuses on describing the event or
object. In comparison with other languages, such as Latin, hieroglyphs are less concerned
about grammar, which is a complication of the TinyACD-RC dataset. Almost all ancient
documents, such as ShihChi, are written with limited materials. The author has to notch
words on bamboo slips without ink and pen, which means that they will omit a considerable
number of words that humans can infer and understand after learning ancient Chinese for
several years. For example, in ShihChi the subject for an action or event can stay far from
the object, usually across a few paragraphs or the whole chapter, because author believes
that the reader can infer the real subject by reading the previous paragraphs. Moreover,
the document used a mass of pronouns and implications to reduce the word usage, which
increases the difficulty in understanding and analyzing them. Even for humans, these
papers are difficult to analyze because of their intricacy.

Table 3. All relation classes for TinyACD-RC dataset, where entity type is the category for entities in
sentence and relation classes is their corresponding relation name.

Entity Pair Relation Classes

Operator-Object (OO) operate
Producer-Object (PO) give birth to, create, think of

Container-Content (CC) contain
Entity-Origin (EO) tribute from, come from

Entity-Destination (ED) leave, attend, enfeoff
Whole-Component (WC) attribute, alias
Member-Collection (MC) family member of, take office, inside, buried in, stay at

Executant-Recipient (ER) attack, defy, pardon, recommend, manage,
meet, appraise, marry, appoint, request

Giver-Receiver (GR) give to, talk to, worship
Receiver-Giving (RG) accept

Giver-Giving (GG) speak

5.2. Training Configurations

Common parameter settings: The model experimental parameters are illustrated in
Table 4. As mentioned in Section 3.1, we initiated word embedding using two types of
GloVe matrices: the local GloVe generated by a training corpus and the pretrained GloVe
matrix adopted from FewRel2.0. The local GloVe generated the 17 k frequently used word
embedding vectors through an unsupervised method using FewRel texts. By contrast,
pretrained GloVe consists of the 400 k frequently used word embedding vectors.

As previously mentioned, the experimentation has four types of standard FewRel 1.0
tasks. To compare the performance of the different models, we regard the model mentioned
in Section 3 as the base model. We illustrated the effect of changing other components of
the model by comparing their performance. The result is shown in Section 5.3.

MANN parameter setting: Similar to [57], we used 64 and 128 memory locations, Each
location contains a 256-dimensional vector. In addition, the forget rate λ is set to 0.5; there
is a dropout layer behind the memory-aggregate module, and the dropout rate is set up
to 0.1.
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Table 4. Model parameter settings.

Parameters Value

Batch Size 1
Learning Rate 0.05/0.1

Optimization Strategy SGD
Train Iteration 50,000
Test Iteration 10,000
Weight Decay 1 × 10−5

Word Embedding Dimension 50
Position Embedding Dimension 5

Hidden Size 60
Sentence Max Length 40

Training Class N 20/10
Evaluate Class N 10/5

Support Instance K 5/1
Query Instance Q 5/1

5.3. Overall Results

To find a proper few-shot learning method for relation classification, we introduce
and modify a few prevailing methods to few-shot relation classification tasks, while GNN,
Meta Network, SNAIL, and Prototypical Networks have been implemented and clearly
introduced in FewRel, We examined the rest of the models, and the comparison of all the
results is illustrated in Table 5.

Table 5. Class predictor comparison, Model is the abbreviation for proposed model name and No.
is their identification number (the same below). PT represents power transforms, PR represents
prototype rectification, Relation represents the relation network for few-shot learning, MANN
represents the memory aggregated neural network, and IADM represents the input-adaptive distance
metric from the MCT model.

Model No. 5-w-1-s

Base model 1 73.64

+PT 2 74.50
+PR 3 74.40
+Relation 4 56.49
+MANN 5 73.52
+IADM 6 75.93

Power transform has more improvement compared with the base model, partly be-
cause it maps original spread data to a Gaussian distribution, which revises the skew
distribution of the data. Prototype rectification also performs pseudo-labeling that aug-
ments support samples, which rectifies the prototype and distributes it closer to the ideal
one. These adjustments will prevent the deformative distribution of variables and degrade
the effect of extreme values, which may predominate other values.

For IADM, We eliminated the CNN layer and retained FFN as a scaling function gφ(x)
according to the differences between the two environments. IADM has an improvement
of 2.29% over the original model. In comparison with power transform, IADM also
normalizes the data distribution. Moreover, IADM can better adjust the extreme value
across the overall distribution with a scaling function, and this scaling can capture global
features and map sparse data into a limited space. Accordingly, the model will be less
influenced by the sparse distribution caused by a large-scale transformation operation.

By contrast, the relation network did not achieve a noteworthy result. This model,
which is proposed for image classification, has low performance on few-shot relation



Appl. Sci. 2021, 11, 12060 14 of 21

classification tasks. This defect stems from the disparate structure of data, and the model
cannot use transfer learning on these two tasks.

MANN [26] can easily achieve great performance on the training dataset, but it seldom
improved the performance on the development dataset.

This phenomenon resulted from the MANN memory dump’s overfitting. As shown in
Figure 4, after 90,000 steps, the development accuracy remains unchanged, and the model
cannot learn more patterns. With the refreshing memory dump saving all advantageous
and suitable information, the model for each training step only overfits the current training
query and support instances.

Figure 4. Comparison of training steps for training and development set performance for MANN.

In Table 6, we compared our model with other extant models on the FewRel 1.0
task. The result shows that MASCOT-PA has advantages over other no pretraining-based
models, even outperforms the BERT-based TPN model and prototypical network in the
5-way-1-shot task, which proves that MASCOT-PA is excel at handling few-shot relation
classification tasks. While it also exposes a drawback for MASCOT-PA. When the model
adopts local GloVe as word embedding, it only performs well on N-way-1-shot tasks, the
test result on N-way-5-shot even weaker than the baseline. This is because MASCOT-PA
focuses on expressing more information in a sentence, trying to excavate more intercon-
nection and relations in it, which also can be done by using more training data. This is
why improving the number of the shot data has a lesser promotion for the MASCOT-PA
than baseline.

Our proposed model is essential when facing the dilemma that no pretraining or
external corpus is available for the pretraining procedure. Moreover, the expense of
huge model training and inference makes BERT not an ideal choice for edge computing,
portable computer, and devices. Therefore, we overcome the prevent models’ problem
with limited corpus.
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Table 6. Overall result for the FewRel 1.0 task, where N-w-K-s represent the N-way-K-shot
task performance.

5-w-1-s 5-w-5-s 10-w-1-s 10-w-5-s

Proto (CNN) [6] 69.20 84.79 56.44 75.55

Proto-HATT [58] 75.01 87.09 62.48 77.50

MLMAN [13] 79.01 88.86 67.37 80.07

TPN (BERT) [59] 80.14 93.60 72.67 89.83

Proto (BERT) [36] 80.68 89.60 71.48 82.89

ConceptFERE(s) [60] 84.28 90.34 74.00 81.82

CTEG [58] 84.72 92.52 76.01 84.89

BERT-PAIR [58] 85.66 89.48 76.84 81.76

BERTEM+MTB [8] 88.9 - - -

baseline 73.64 86.93 60.91 76.88

local GloVe MASCOT-PA 76.43 86.01 62.31 74.84

MASCOT-PA 81.28 89.25 69.03 80.65

5.4. Ablation Study

To demonstrate the effect and importance of each component in MASCOT-PA, we
performed the ablation study. Table 7 displays three ablation modules’ performance, which
includes our proposed MASCOT encoder, the paired function, and the input instance
attention. We also used the standard FewRel 1.0 dataset to evaluate each module’s effec-
tiveness on this few-shot task. Given that the pair function depends on the enhancement
and transformation that instance attention implements, it cannot be set apart from instance
attention as a single module.

Table 7. Ablation study for our model, MASCOT is the MASCOT encoder, pair is the pair function,
attention is the instance attention.

MASCOT Pair Attention No. FewRel 5-w-1-s

# # # 1 73.64
! # # 2 75.49
# # ! 3 77.67
# ! ! 4 78.34
! ! ! 5 81.28

The paired attention mentioned in Section 4.2 has achieved a remarkable performance,
which means that this operation for query and support instances is suitable. The attention
matrix collects similarities between query and support instances and magnifies the dif-
ferences and noise in sentences and words will have less influence on class prediction by
sharing this background information. The paired function also enhanced the model relation
learning ability compared with the single instance attention module, and it increases the
model performance by 0.67%. MASCOT has a stronger expression ability than CNN in
the base model. However, in Nos. 2 and 5 in Table 7, MASCOT improves the model
by 2.58% and 3.9% without and with pair attention, respectively. Therefore, only paired
attention can learn and utilize the external features even though MASCOT generates richer
expression features.

We also deeply analyzed the sentence encoders in Table 8. The MASCOT encoder
adds a three-fold convolution layer to enhance the local relation between words compared
with the standard transformer encoder. The convolutional DNN [31] shows that a proper
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convolution network should have the ability to represent sentence-level features. In addi-
tion, MASCOT applies a parallel structure to avoid the information loss problem, which
BRAN is mainly suffered from. MASCOT will be more expressive than BRAN and alleviate
BRAN’s overfitting problem. As a result, MASCOT increases the model’s performance to
75.49%. By comparing the above three encoders, we can learn that transformer has a stable
performance as the layer gets deeper by simultaneously computing the global and local
features through multi-head attention and convolution layer, while it does not surpass
MASCOT. From Figure 5, we can see that the residual connection structure for BRAN does
not properly function after stacking six layers, which is probably due to the inner structure
between the multi-head attention and convolution layer.

Table 8. Encoder performance comparison; BRAN represents the bi-affine relation attention networks,
MASCOT is our proposed multi-head self-attention with convolution Encoder, and TE represents the
standard Transformer Encoder.

Model No. 5-Way-1-Shot (Single Layer) 5-Way-1-Shot (2 Layers)

Base model 1 73.64

+BRAN encoder 2 74.06 73.43
+MASCOT 3 74.83 75.49
+TE 4 75.04 75.12

Figure 5. Comparison of the different model depth performance.

This result shows that an annex convolution module can capture additional informa-
tion about the sentence. Nonetheless, the sequential structure may degrade the extraction
performance due to the transformation between the self-attention and convolution layers.
According to [61], the aggregation of convolution and self-attention regularly improves
performance. The convolution layer is better at capturing local information through a
constant weight owing to the limited size of the kernel. Vanilla self-attention will focus
more on global information, and Longformer [62] shows that properly organized global
and local information can lead to a significant improvement.

5.5. ShihChi Relation Extraction

We performed the few-shot relation extraction on the ShihChi document, which is
designed to examine the models’ capability on a digital humanity analytical task. As
illustrated in Figure 6, our proposed model has the comparative advantage in handling
complex sentences with scarce training corpus. When training with the 5-way-1-shot
task, MASCOT-PA can extract the deep and implied meaning by the sufficient information
representation structure, while baseline lack of this ability then easily overfits in the training
procedure, which makes baseline lags 14.58% behind the MASCOT-PA.
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Figure 6. ShihChi document 5-way-K-shot relation extraction performance.

To analyze errors in the result of relation extraction, we draw two heatmaps for
the baseline and MASCOT-PA in Figure 7. Where the left subgraph represents a simple
baseline prediction, and the right subgraph is for the MASCOT-PA prediction. From the
heatmap, we can see that MASCOT improves most of the relation predict performance. But
there are a few relation classes that have no improvement or even get worse in prediction.
For example, the give-to relation is predicted as the enfeoff relation both for these two
models, this is because both of give-to and enfeoff relation contain the meaning of accepting
something from a person, but due to the ellipsis of the sentence, most of the sentence will
be like person A gives (an object) to person B and (person A) enfeoffs person B with place
C. While the no pretraining-based model cannot easily distinguish whether an entity is a
place or person, which exposes the drawbacks of the word embedding with limited corpus,
and we believe this issue will be solved after collecting sufficient corpus for the word
embedding model.

Figure 7. Wrong predicted relation distributions for base model and MASCOT-PA.

Besides we find that some of the predictions for enfeoff become worse in MASCOT-
PA, the enfeoff is predicted as alias. We believe this problem has a connection with the
polysemy for word enfeoff.
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The word enfeoff in Chinese is not only the meaning of enfeoffing a person for a
place, it also contains the meaning of conferring a title or an office on a person. And in the
ShihChi, a large number of people is called by their offices or titles, which makes it easy to
confuse the real referent for the word enfeoff. Moreover, as the baseline is simple enough
to omit the minority implications, it can perform well to distinguish these two relations,
while MASCOT-PA captures the minority meaning but cannot make a distinction between
fief and office, then wrongly determines their relations.

6. Conclusions and Future Work

In this work, we presented a TinyACD-RC dataset for the ancient Chinese document
analysis. In this no extra corpus task, we implemented several models to meet the no
pretraining requirements for the few-shot relation classification and proposed a MASCOT-
PA model. Our model outperforms satisfactory algorithms for this task in the FewRel
dataset. We also applied this model to the TinyACD-RC dataset for training and test, which
also shows our model’s ability to handle scarce corpus.

Compared to an adhoc IR system, this model neither requires extra corpus nor has
to build a complex parsing model for a specific language. When facing data scarcity or
a scenario where the data needed to retrieve is little, our model can be considered as an
alternative or auxiliary. Nevertheless, the other predictions require further study. We are
aware of the pretraining models’ advantages and will collect more of the ancient Chinese
document corpus in future work to create the pretraining model for this task.
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